This file is indexed.

/usr/share/doc/libntl-dev/NTL/mat_lzz_p.txt is in libntl-dev 9.9.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/**************************************************************************\

MODULE: mat_zz_p

SUMMARY:

Defines the class mat_zz_p.
Note that the modulus p need not be a prime, except as indicated below.

IMPLEMENTATION NOTES: 

Starting with NTL version 9.7.0 (and 9.7.1), many of the routines here have
been optimized to take better advantage of specific hardware features available
on 64-bit Intel CPU's.  Currently, the mul, inv, determinant, solve, gauss,
kernel, and image routines are fastest for p up to 23-bits long (assuming the
CPU supports AVX instructions).  After that, performance degrades in three
stages: stage 1: up to 28-bits; stage 2: up to 31-bits; stage 3: 32-bits and
up. 

For primes up to 23-bits, AVX floating point instructions are used.  After
that, ordinary integer arithmetic is used.  In a future version, I may exploit
AVX2 integer instructions to get better stage 2 performance.  And in the more
distant future, AVX512 instructions will be used, when they become available.

On older Intel machines, or non-Intel machines that have "long long" support,
one still gets optimizations corresponding to the three stages above.  On
32-bit machines, one still gets three stages, just with smaller crossover
points.

\**************************************************************************/


#include <NTL/matrix.h>
#include "vec_vec_zz_p.h"


typedef Mat<zz_p> mat_zz_p; // backward compatibility

void add(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B); 
// X = A + B

void sub(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B); 
// X = A - B

void mul(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B); 
// X = A * B

void mul(vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b); 
// x = A * b

void mul(vec_zz_p& x, const vec_zz_p& a, const mat_zz_p& B); 
// x = a * B

void mul(mat_zz_p& X, const mat_zz_p& A, zz_p b);
void mul(mat_zz_p& X, const mat_zz_p& A, long b);
// X = A * b

void mul(mat_zz_p& X, zz_p a, const mat_zz_p& B);
void mul(mat_zz_p& X, long a, const mat_zz_p& B);
// X = a * B


void transpose(mat_zz_p& X, const mat_zz_p& A);
mat_zz_p transpose(const mat_zz_p& A);
// X = transpose of A


void determinant(zz_p& d, const mat_zz_p& A);
zz_p determinant(const mat_zz_p& a); 
// d = determinant(A)

void solve(zz_p& d, vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b);
// A is an n x n matrix, b is a length n vector.  Computes d = determinant(A).
// If d != 0, solves x*A = b (so x and b are treated as a row vectors).

void solve(zz_p& d, const mat_zz_p& A, vec_zz_p& x, const vec_zz_p& b);
// A is an n x n matrix, b is a length n vector.  Computes d = determinant(A).
// If d != 0, solves A*x = b (so x and b are treated as a column vectors).

void inv(zz_p& d, mat_zz_p& X, const mat_zz_p& A);
// A is an n x n matrix.  Computes d = determinant(A).  If d != 0,
// computes X = A^{-1}.


void inv(mat_zz_p& X, const mat_zz_p& A);
mat_zz_p inv(const mat_zz_p& A);
// X = A^{-1}; error is raised if A is  singular

void power(mat_zz_p& X, const mat_zz_p& A, const ZZ& e);
mat_zz_p power(const mat_zz_p& A, const ZZ& e);
void power(mat_zz_p& X, const mat_zz_p& A, long e);
mat_zz_p power(const mat_zz_p& A, long e);
// X = A^e; e may be negative (in which case A must be nonsingular).

// NOTE: the routines determinant, solve, inv, and power (with negative
// exponent) all require that the modulus p is prime: during elimination, if a
// non-zero pivot element does not have an inverse, and error is raised.  The
// following "relaxed" versions of these routines will also work with prime
// powers, if the optional parameter relax is true (which is the default).
// However, note that in these relaxed routines, if a computed determinant
// value is zero, this may not be the true determinant: all that you can assume
// is that the true determinant is is not invertible mod p. If the parameter
// relax==false, then these routines behave identically to their "unrelaxed"
// counterparts.

void relaxed_determinant(zz_p& d, const mat_zz_p& A, bool relax=true);
zz_p relaxed_determinant(const mat_zz_p& a, bool relax=true); 
void relaxed_solve(zz_p& d, vec_zz_p& x, const mat_zz_p& A, const vec_zz_p& b, bool relax=true);
void relaxed_solve(zz_p& d, const mat_zz_p& A, vec_zz_p& x, const vec_zz_p& b, bool relax=true);
void relaxed_inv(zz_p& d, mat_zz_p& X, const mat_zz_p& A, bool relax=true);
void relaxed_inv(mat_zz_p& X, const mat_zz_p& A, bool relax=true);
mat_zz_p relaxed_inv(const mat_zz_p& A, bool relax=true);
void relaxed_power(mat_zz_p& X, const mat_zz_p& A, const ZZ& e, bool relax=true);
mat_zz_p relaxed_power(const mat_zz_p& A, const ZZ& e, bool relax=true);
void relaxed_power(mat_zz_p& X, const mat_zz_p& A, long e, bool relax=true);
mat_zz_p relaxed_power(const mat_zz_p& A, long e, bool relax=true);


void sqr(mat_zz_p& X, const mat_zz_p& A);
mat_zz_p sqr(const mat_zz_p& A);
// X = A*A   

void ident(mat_zz_p& X, long n);
mat_zz_p ident_mat_zz_p(long n);
// X = n x n identity matrix

long IsIdent(const mat_zz_p& A, long n);
// test if A is the n x n identity matrix

void diag(mat_zz_p& X, long n, zz_p d);
mat_zz_p diag(long n, zz_p d);
// X = n x n diagonal matrix with d on diagonal

long IsDiag(const mat_zz_p& A, long n, zz_p d);
// test if X is an  n x n diagonal matrix with d on diagonal



long gauss(mat_zz_p& M);
long gauss(mat_zz_p& M, long w);
// Performs unitary row operations so as to bring M into row echelon
// form.  If the optional argument w is supplied, stops when first w
// columns are in echelon form.  The return value is the rank (or the
// rank of the first w columns).

void image(mat_zz_p& X, const mat_zz_p& A);
// The rows of X are computed as basis of A's row space.  X is is row
// echelon form

void kernel(mat_zz_p& X, const mat_zz_p& A);
// Computes a basis for the kernel of the map x -> x*A. where x is a
// row vector.

// NOTE: the gauss, image, and kernel routines all require that
// the modulus p is prime. 



// miscellaneous:

void clear(mat_zz_p& a);
// x = 0 (dimension unchanged)

long IsZero(const mat_zz_p& a);
// test if a is the zero matrix (any dimension)


// operator notation:

mat_zz_p operator+(const mat_zz_p& a, const mat_zz_p& b);
mat_zz_p operator-(const mat_zz_p& a, const mat_zz_p& b);
mat_zz_p operator*(const mat_zz_p& a, const mat_zz_p& b);

mat_zz_p operator-(const mat_zz_p& a);


// matrix/scalar multiplication:

mat_zz_p operator*(const mat_zz_p& a, zz_p b);
mat_zz_p operator*(const mat_zz_p& a, long b);

mat_zz_p operator*(zz_p a, const mat_zz_p& b);
mat_zz_p operator*(long a, const mat_zz_p& b);


// matrix/vector multiplication:

vec_zz_p operator*(const mat_zz_p& a, const vec_zz_p& b);

vec_zz_p operator*(const vec_zz_p& a, const mat_zz_p& b);


// assignment operator notation:

mat_zz_p& operator+=(mat_zz_p& x, const mat_zz_p& a);
mat_zz_p& operator-=(mat_zz_p& x, const mat_zz_p& a);
mat_zz_p& operator*=(mat_zz_p& x, const mat_zz_p& a);

mat_zz_p& operator*=(mat_zz_p& x, zz_p a);
mat_zz_p& operator*=(mat_zz_p& x, long a);

vec_zz_p& operator*=(vec_zz_p& x, const mat_zz_p& a);