This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/cvode/fcmix_serial/fcvRoberts_dns.f is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
C     ----------------------------------------------------------------
C     $Revision: 1.1 $
C     $Date: 2007/10/25 20:03:27 $
C     ----------------------------------------------------------------
C     FCVODE Example Problem: Robertson kinetics, dense user Jacobian.
C
C     The following is a simple example problem, with the coding
C     needed for its solution by CVODE. The problem is from chemical
C     kinetics, and consists of the following three rate equations:
C
C     dy1/dt = -.04*y1 + 1.e4*y2*y3
C     dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
C     dy3/dt = 3.e7*y2**2
C
C     on the interval from t = 0.0 to t = 4.e10, with initial
C     conditions:
C
C     y1 = 1.0, y2 = y3 = 0.
C
C     The problem is stiff. While integrating the system, we also
C     enable the root finding feature to find the points at which
C     y1 = 1.e-4 or at which y3 = 0.01. The following coding solves
C     this problem with CVODE, using the Fortran/C interface routine
C     package. This solution uses the BDF method and a user-supplied
C     Jacobian routine, and prints results at t = .4, 4., ..., 4.e10.
C     It uses ITOL = 2 and ATOL much smaller for y2 than y1 or y3
C     because y2 has much smaller values. At the end of the run,
C     various counters of interest are printed.
C     ----------------------------------------------------------------
C
      IMPLICIT NONE
C
      INTEGER IER, I 
      INTEGER LNST, LNFE, LNSETUP, LNNI, LNCF, LNETF, LNJE, LNGE
      INTEGER METH, ITMETH, ITOL, ITASK, JOUT, NOUT, IERROOT
      INTEGER INFO(2)
      INTEGER*4 IOUT(25), IPAR
      INTEGER*4 NEQ
      DOUBLE PRECISION RTOL, T, T0, TOUT
      DOUBLE PRECISION Y(3), ATOL(3), ROUT(10), RPAR
C
      DATA LNST/3/, LNFE/4/, LNETF/5/,  LNCF/6/, LNNI/7/, LNSETUP/8/, 
     1     LNGE/12/, LNJE/17/
C
      NEQ = 3
      T0 = 0.0D0
      Y(1) = 1.0D0
      Y(2) = 0.0D0
      Y(3) = 0.0D0
      METH = 2
      ITMETH = 2
      ITOL = 2
      RTOL = 1.0D-4
      ATOL(1) = 1.0D-8
      ATOL(2) = 1.0D-14
      ATOL(3) = 1.0D-6
      TOUT = 0.4D0
      ITASK = 1
      JOUT = 0
      NOUT = 12
C
      WRITE(6,10) NEQ
 10   FORMAT('Dense example problem:'//
     1       ' Robertson kinetics, NEQ = ', I2//)
C
      CALL FNVINITS(1, NEQ, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,20) IER
 20     FORMAT(///' SUNDIALS_ERROR: FNVINITS returned IER = ', I5)
        STOP
      ENDIF
C

      CALL FCVMALLOC(T0, Y, METH, ITMETH, ITOL, RTOL, ATOL,
     1               IOUT, ROUT, IPAR, RPAR, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,30) IER
 30     FORMAT(///' SUNDIALS_ERROR: FCVMALLOC returned IER = ', I5)
        STOP
      ENDIF
C

      CALL FCVROOTINIT(2, IER)
      IF (IER .NE. 0) THEN
         WRITE(6,45) IER
 45      FORMAT(///' SUNDIALS_ERROR: FCVROOTINIT returned IER = ', I5)
         CALL FCVFREE
         STOP
      ENDIF
C
      CALL FCVDENSE(NEQ, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,40) IER
 40     FORMAT(///' SUNDIALS_ERROR: FCVDENSE returned IER = ', I5)
        CALL FCVFREE
        STOP
      ENDIF
C
      CALL FCVDENSESETJAC(1, IER)
C
      DO WHILE(JOUT .LT. NOUT)
C
        CALL FCVODE(TOUT, T, Y, ITASK, IER)
C
        WRITE(6,50) T, Y(1), Y(2), Y(3)
 50     FORMAT('At t = ', E12.4, '   y = ', 3E14.6)
C
        IF (IER .LT. 0) THEN
           WRITE(6,60) IER, IOUT(15)
 60        FORMAT(///' SUNDIALS_ERROR: FCVODE returned IER = ', I5, /,
     1            '                 Linear Solver returned IER = ', I5)
           CALL FCVROOTFREE
           CALL FCVFREE
           STOP
        ENDIF
C
        IF (IER .EQ. 2) THEN
           CALL FCVROOTINFO(2, INFO, IERROOT)
           IF (IERROOT .LT. 0) THEN
              WRITE(6,65) IER
 65           FORMAT(///' SUNDIALS_ERROR: FCVROOTINFO returned IER = ',
     1              I5)
              CALL FCVROOTFREE
              CALL FCVFREE
              STOP
           ENDIF
           WRITE(6,70) (INFO(I), I = 1, 2)
 70        FORMAT(5X, 'Above is a root, INFO() = ', 2I3)
        ENDIF                   
C
        IF (IER .EQ. 0) THEN
           TOUT = TOUT * 10.0D0
           JOUT = JOUT + 1
        ENDIF
C
      ENDDO
C
      CALL FCVDKY(T, 1, Y, IER)
      IF (IER .NE. 0) THEN
         WRITE(6,80) IER
 80      FORMAT(///' SUNDIALS_ERROR: FCVDKY returned IER = ', I4)
         CALL FCVROOTFREE
         CALL FCVFREE
         STOP
      ENDIF
      WRITE(6,85) Y(1), Y(2), Y(3)
 85   FORMAT(/'Final value of ydot = ', 3E14.6)
C
      WRITE(6,90) IOUT(LNST), IOUT(LNFE), IOUT(LNJE), IOUT(LNSETUP),
     1            IOUT(LNNI), IOUT(LNCF), IOUT(LNETF), IOUT(LNGE)
 90   FORMAT(//'Final statistics:'//
     1       ' No. steps = ', I4, '   No. f-s = ', I4,
     2       '   No. J-s = ', I4, '   No. LU-s = ', I4/
     3       ' No. nonlinear iterations = ', I4/
     4       ' No. nonlinear convergence failures = ', I4/
     5       ' No. error test failures = ', I4/
     6       ' No. root function evals = ', I4)
C
      CALL FCVROOTFREE
      CALL FCVFREE
C
      STOP
      END

C     ----------------------------------------------------------------

      SUBROUTINE FCVFUN(T, Y, YDOT, IPAR, RPAR, IER)
C Fortran routine for right-hand side function.
      IMPLICIT NONE
C
      INTEGER*4 IPAR(*), IER
      DOUBLE PRECISION T, Y(*), YDOT(*), RPAR(*)
C
      YDOT(1) = -0.04D0 * Y(1) + 1.0D4 * Y(2) * Y(3)
      YDOT(3) = 3.0D7 * Y(2) * Y(2)
      YDOT(2) = -YDOT(1) - YDOT(3)
C
      IER = 0
C
      RETURN
      END

C     ----------------------------------------------------------------

      SUBROUTINE FCVROOTFN(T, Y, G, IPAR, RPAR, IER)
C Fortran routine for root finding
      IMPLICIT NONE
C
      DOUBLE PRECISION T, Y(*), G(*), RPAR(*)
      INTEGER*4 IPAR(*), IER
C
      G(1) = Y(1) - 1.0D-4
      G(2) = Y(3) - 1.0D-2
C
      IER = 0

      RETURN
      END

C     ----------------------------------------------------------------

      SUBROUTINE FCVDJAC(N, T, Y, FY, JAC, H, IPAR, RPAR, 
     1                   V1, V2, V3, IER)
C Fortran routine for dense user-supplied Jacobian.
      IMPLICIT NONE
C
      INTEGER*4 N, IPAR(*), IER
      DOUBLE PRECISION T, Y(*), FY(*), JAC(N,*), H, RPAR(*)
      DOUBLE PRECISION V1(*), V2(*), V3(*)
C
      DOUBLE PRECISION  Y1, Y2, Y3
C
      Y1 = Y(1)
      Y2 = Y(2)
      Y3 = Y(3)
      JAC(1,1) = -0.04D0
      JAC(1,2) = 1.0D4 * Y3
      JAC(1,3) = 1.0D4 * Y2
      JAC(2,1) =  0.04D0
      JAC(2,2) = -1.0D4 * Y3 - 6.0D7 * Y2
      JAC(2,3) = -1.0D4 * Y2
      JAC(3,2) = 6.0D7 * Y2
C
      IER = 0
C
      RETURN
      END