This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/cvodes/parallel/cvsAdvDiff_ASAp_non_p.c is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 * -----------------------------------------------------------------
 * $Revision: 1.1 $
 * $Date: 2007/10/25 20:03:30 $
 * -----------------------------------------------------------------
 * Programmer(s): Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem, with the program for
 * its solution by CVODE. The problem is the semi-discrete form of
 * the advection-diffusion equation in 1-D:
 *   du/dt = p1 * d^2u / dx^2 + p2 * du / dx
 * on the interval 0 <= x <= 2, and the time interval 0 <= t <= 5.
 * Homogeneous Dirichlet boundary conditions are posed, and the
 * initial condition is:
 *   u(x,t=0) = x(2-x)exp(2x).
 * The nominal values of the two parameters are: p1=1.0, p2=0.5
 * The PDE is discretized on a uniform grid of size MX+2 with
 * central differencing, and with boundary values eliminated,
 * leaving an ODE system of size NEQ = MX.
 * This program solves the problem with the option for nonstiff
 * systems: ADAMS method and functional iteration.
 * It uses scalar relative and absolute tolerances.
 *
 * In addition to the solution, sensitivities with respect to p1
 * and p2 as well as with respect to initial conditions are
 * computed for the quantity:
 *    g(t, u, p) = int_x u(x,t) at t = 5
 * These sensitivities are obtained by solving the adjoint system:
 *    dv/dt = -p1 * d^2 v / dx^2 + p2 * dv / dx
 * with homogeneous Ditrichlet boundary conditions and the final
 * condition:
 *    v(x,t=5) = 1.0
 * Then, v(x, t=0) represents the sensitivity of g(5) with respect
 * to u(x, t=0) and the gradient of g(5) with respect to p1, p2 is
 *    (dg/dp)^T = [  int_t int_x (v * d^2u / dx^2) dx dt ]
 *                [  int_t int_x (v * du / dx) dx dt     ]
 *
 * This version uses MPI for user routines.
 * Execute with Number of Processors = N,  with 1 <= N <= MX.
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cvodes/cvodes.h>
#include <nvector/nvector_parallel.h>
#include <sundials/sundials_math.h>
#include <sundials/sundials_types.h>

#include <mpi.h>

/* Problem Constants */

#define XMAX  RCONST(2.0)   /* domain boundary            */
#define MX    20            /* mesh dimension             */
#define NEQ   MX            /* number of equations        */
#define ATOL  RCONST(1.e-5) /* scalar absolute tolerance  */
#define T0    RCONST(0.0)   /* initial time               */
#define TOUT  RCONST(2.5)   /* output time increment      */

/* Adjoint Problem Constants */

#define NP    2            /* number of parameters       */
#define STEPS 200          /* steps between check points */

#define ZERO RCONST(0.0)
#define ONE  RCONST(1.0)
#define TWO  RCONST(2.0)

/* Type : UserData */

typedef struct {
  realtype p[2];            /* model parameters                         */
  realtype dx;              /* spatial discretization grid              */
  realtype hdcoef, hacoef;  /* diffusion and advection coefficients     */
  long int local_N;
  long int npes, my_pe;     /* total number of processes and current ID */
  long int nperpe, nrem;
  MPI_Comm comm;            /* MPI communicator                         */
  realtype *z1, *z2;        /* work space                               */
} *UserData;

/* Prototypes of user-supplied funcitons */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);
static int fB(realtype t, N_Vector u, 
              N_Vector uB, N_Vector uBdot, void *user_dataB);

/* Prototypes of private functions */

static void SetIC(N_Vector u, realtype dx, long int my_length, long int my_base);
static void SetICback(N_Vector uB, long int my_base);
static realtype Xintgr(realtype *z, long int l, realtype dx);
static realtype Compute_g(N_Vector u, UserData data);
static void PrintOutput(realtype g_val, N_Vector uB, UserData data);
static int check_flag(void *flagvalue, char *funcname, int opt, int id);

/*
 *--------------------------------------------------------------------
 * MAIN PROGRAM
 *--------------------------------------------------------------------
 */

int main(int argc, char *argv[])
{
  UserData data;

  void *cvode_mem;
  
  N_Vector u;
  realtype reltol, abstol;

  int indexB;
  N_Vector uB;

  realtype dx, t, g_val;
  int flag, my_pe, nprocs, npes, ncheck;
  long int local_N=0, nperpe, nrem, my_base=-1;

  MPI_Comm comm;

  data = NULL;
  cvode_mem = NULL;
  u = uB = NULL;

  /*------------------------------------------------------
    Initialize MPI and get total number of pe's, and my_pe
    ------------------------------------------------------*/
  MPI_Init(&argc, &argv);
  comm = MPI_COMM_WORLD;
  MPI_Comm_size(comm, &nprocs);
  MPI_Comm_rank(comm, &my_pe);

  npes = nprocs - 1; /* pe's dedicated to PDE integration */

  if ( npes <= 0 ) {
    if (my_pe == npes)
      fprintf(stderr, "\nMPI_ERROR(%d): number of processes must be >= 2\n\n",
	      my_pe);
    MPI_Finalize();
    return(1);
  }

  /*-----------------------
    Set local vector length
    -----------------------*/
  nperpe = NEQ/npes;
  nrem = NEQ - npes*nperpe;
  if (my_pe < npes) {

    /* PDE vars. distributed to this proccess */
    local_N = (my_pe < nrem) ? nperpe+1 : nperpe;
    my_base = (my_pe < nrem) ? my_pe*local_N : my_pe*nperpe + nrem;

  } else {

    /* Make last process inactive for forward phase */
    local_N = 0;

  }

  /*-------------------------------------
    Allocate and load user data structure
    -------------------------------------*/
  data = (UserData) malloc(sizeof *data);
  if (check_flag((void *)data , "malloc", 2, my_pe)) MPI_Abort(comm, 1);
  data->p[0] = ONE;
  data->p[1] = RCONST(0.5);
  dx = data->dx = XMAX/((realtype)(MX+1));
  data->hdcoef = data->p[0]/(dx*dx);
  data->hacoef = data->p[1]/(TWO*dx);
  data->comm = comm;
  data->npes = npes;
  data->my_pe = my_pe;
  data->nperpe = nperpe;
  data->nrem = nrem;
  data->local_N = local_N;

  /*------------------------- 
    Forward integration phase
    -------------------------*/
  
  /* Set relative and absolute tolerances for forward phase */
  reltol = ZERO;
  abstol = ATOL;

  /* Allocate and initialize forward variables */
  u = N_VNew_Parallel(comm, local_N, NEQ);
  if (check_flag((void *)u, "N_VNew_Parallel", 0, my_pe)) MPI_Abort(comm, 1);
  SetIC(u, dx, local_N, my_base);

  /* Allocate CVODES memory for forward integration */
  cvode_mem = CVodeCreate(CV_ADAMS, CV_FUNCTIONAL);
  if (check_flag((void *)cvode_mem, "CVodeCreate", 0, my_pe)) MPI_Abort(comm, 1);

  flag = CVodeSetUserData(cvode_mem, data);
  if (check_flag(&flag, "CVodeSetUserData", 1, my_pe)) MPI_Abort(comm, 1);

  flag = CVodeInit(cvode_mem, f, T0, u);
  if (check_flag(&flag, "CVodeInit", 1, my_pe)) MPI_Abort(comm, 1);

  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1, my_pe)) MPI_Abort(comm, 1);

  /* Allocate combined forward/backward memory */
  flag = CVodeAdjInit(cvode_mem, STEPS, CV_HERMITE);
  if (check_flag(&flag, "CVadjInit", 1, my_pe)) MPI_Abort(comm, 1);

  /* Integrate to TOUT and collect check point information */
  flag = CVodeF(cvode_mem, TOUT, u, &t, CV_NORMAL, &ncheck);
  if (check_flag(&flag, "CVodeF", 1, my_pe)) MPI_Abort(comm, 1);

  /*---------------------------
    Compute and value of g(t_f)
    ---------------------------*/
  g_val = Compute_g(u, data);

  /*-------------------------- 
    Backward integration phase
    --------------------------*/

  if (my_pe == npes) {

    /* Activate last process for integration of the quadrature equations */
    local_N = NP;

  } else {

    /* Allocate work space */
    data->z1 = (realtype *)malloc(local_N*sizeof(realtype));
    if (check_flag((void *)data->z1, "malloc", 2, my_pe)) MPI_Abort(comm, 1);
    data->z2 = (realtype *)malloc(local_N*sizeof(realtype));
    if (check_flag((void *)data->z2, "malloc", 2, my_pe)) MPI_Abort(comm, 1);

  }

  /* Allocate and initialize backward variables */
  uB = N_VNew_Parallel(comm, local_N, NEQ+NP);
  if (check_flag((void *)uB, "N_VNew_Parallel", 0, my_pe)) MPI_Abort(comm, 1);
  SetICback(uB, my_base);

  /* Allocate CVODES memory for the backward integration */
  flag = CVodeCreateB(cvode_mem, CV_ADAMS, CV_FUNCTIONAL, &indexB);
  if (check_flag(&flag, "CVodeCreateB", 1, my_pe)) MPI_Abort(comm, 1);
  flag = CVodeSetUserDataB(cvode_mem, indexB, data);
  if (check_flag(&flag, "CVodeSetUserDataB", 1, my_pe)) MPI_Abort(comm, 1);
  flag = CVodeInitB(cvode_mem, indexB, fB, TOUT, uB);
  if (check_flag(&flag, "CVodeInitB", 1, my_pe)) MPI_Abort(comm, 1);
  flag = CVodeSStolerancesB(cvode_mem, indexB, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerancesB", 1, my_pe)) MPI_Abort(comm, 1);

  /* Integrate to T0 */
  flag = CVodeB(cvode_mem, T0, CV_NORMAL);
  if (check_flag(&flag, "CVodeB", 1, my_pe)) MPI_Abort(comm, 1);

  flag = CVodeGetB(cvode_mem, indexB, &t, uB);
  if (check_flag(&flag, "CVodeGetB", 1, my_pe)) MPI_Abort(comm, 1);

  /* Print results (adjoint states and quadrature variables) */
  PrintOutput(g_val, uB, data);


  /* Free memory */
  N_VDestroy_Parallel(u);
  N_VDestroy_Parallel(uB);
  CVodeFree(&cvode_mem);  

  if (my_pe != npes) {
    free(data->z1);
    free(data->z2);
  }
  free(data);

  MPI_Finalize();

  return(0);
}

/*
 *--------------------------------------------------------------------
 * FUNCTIONS CALLED BY CVODES
 *--------------------------------------------------------------------
 */

/*
 * f routine. Compute f(t,u) for forward phase. 
 */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data)
{
  realtype uLeft, uRight, ui, ult, urt;
  realtype hordc, horac, hdiff, hadv;
  realtype *udata, *dudata;
  long int i, my_length;
  int npes, my_pe, my_pe_m1, my_pe_p1, last_pe, my_last;
  UserData data;
  MPI_Status status;
  MPI_Comm comm;

  /* Extract MPI info. from data */
  data = (UserData) user_data;
  comm = data->comm;
  npes = data->npes;
  my_pe = data->my_pe;
  
  /* If this process is inactive, return now */
  if (my_pe == npes) return(0);

  /* Extract problem constants from data */
  hordc = data->hdcoef;
  horac = data->hacoef;

  /* Find related processes */
  my_pe_m1 = my_pe - 1;
  my_pe_p1 = my_pe + 1;
  last_pe = npes - 1;

  /* Obtain local arrays */
  udata = NV_DATA_P(u);
  dudata = NV_DATA_P(udot);
  my_length = NV_LOCLENGTH_P(u);
  my_last = my_length - 1;

  /* Pass needed data to processes before and after current process. */
   if (my_pe != 0)
     MPI_Send(&udata[0], 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm);
   if (my_pe != last_pe)
     MPI_Send(&udata[my_length-1], 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm);   

  /* Receive needed data from processes before and after current process. */
   if (my_pe != 0)
     MPI_Recv(&uLeft, 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm, &status);
   else uLeft = ZERO;
   if (my_pe != last_pe)
     MPI_Recv(&uRight, 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm,
              &status);   
   else uRight = ZERO;

  /* Loop over all grid points in current process. */
  for (i=0; i<my_length; i++) {

    /* Extract u at x_i and two neighboring points */
    ui = udata[i];
    ult = (i==0) ? uLeft: udata[i-1];
    urt = (i==my_length-1) ? uRight : udata[i+1];

    /* Set diffusion and advection terms and load into udot */
    hdiff = hordc*(ult - TWO*ui + urt);
    hadv = horac*(urt - ult);
    dudata[i] = hdiff + hadv;
  }

  return(0);
}

/*
 * fB routine. Compute right hand side of backward problem 
 */

static int fB(realtype t, N_Vector u, 
              N_Vector uB, N_Vector uBdot, void *user_dataB)
{
  realtype *uBdata, *duBdata, *udata;
  realtype uBLeft, uBRight, uBi, uBlt, uBrt;
  realtype uLeft, uRight, ui, ult, urt;
  realtype dx, hordc, horac, hdiff, hadv;
  realtype *z1, *z2, intgr1, intgr2;
  long int i, my_length;
  int npes, my_pe, my_pe_m1, my_pe_p1, last_pe, my_last;
  UserData data;
  realtype data_in[2], data_out[2];
  MPI_Status status;
  MPI_Comm comm;

  /* Extract MPI info. from data */
  data = (UserData) user_dataB;
  comm = data->comm;
  npes = data->npes;
  my_pe = data->my_pe;

  if (my_pe == npes) { /* This process performs the quadratures */

    /* Obtain local arrays */
    duBdata = NV_DATA_P(uBdot);
    my_length = NV_LOCLENGTH_P(uB);

    /* Loop over all other processes and load right hand side of quadrature eqs. */
    duBdata[0] = ZERO;
    duBdata[1] = ZERO;
    for (i=0; i<npes; i++) {
      MPI_Recv(&intgr1, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status); 
      duBdata[0] += intgr1;
      MPI_Recv(&intgr2, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status); 
      duBdata[1] += intgr2;
    }

  } else { /* This process integrates part of the PDE */

    /* Extract problem constants and work arrays from data */
    dx    = data->dx;
    hordc = data->hdcoef;
    horac = data->hacoef;
    z1    = data->z1;
    z2    = data->z2;

    /* Obtain local arrays */
    uBdata = NV_DATA_P(uB);
    duBdata = NV_DATA_P(uBdot);
    udata = NV_DATA_P(u);
    my_length = NV_LOCLENGTH_P(uB);

    /* Compute related parameters. */
    my_pe_m1 = my_pe - 1;
    my_pe_p1 = my_pe + 1;
    last_pe  = npes - 1;
    my_last  = my_length - 1;

    /* Pass needed data to processes before and after current process. */
    if (my_pe != 0) {
      data_out[0] = udata[0];
      data_out[1] = uBdata[0];
    
      MPI_Send(data_out, 2, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm);
    }
    if (my_pe != last_pe) {
      data_out[0] = udata[my_length-1];
      data_out[1] = uBdata[my_length-1];

      MPI_Send(data_out, 2, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm);
    }
    
    /* Receive needed data from processes before and after current process. */
    if (my_pe != 0) {
      MPI_Recv(data_in, 2, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm, &status);
      
      uLeft = data_in[0];
      uBLeft = data_in[1];
    } else {
      uLeft = ZERO;
      uBLeft = ZERO;
    }
    if (my_pe != last_pe) {
      MPI_Recv(data_in, 2, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm, &status);

      uRight = data_in[0];
      uBRight = data_in[1];
    } else {
      uRight = ZERO;
      uBRight = ZERO;
    }

    /* Loop over all grid points in current process. */
    for (i=0; i<my_length; i++) {
      
      /* Extract uB at x_i and two neighboring points */
      uBi = uBdata[i];
      uBlt = (i==0) ? uBLeft: uBdata[i-1];
      uBrt = (i==my_length-1) ? uBRight : uBdata[i+1];
      
      /* Set diffusion and advection terms and load into udot */
      hdiff = hordc*(uBlt - TWO*uBi + uBrt);
      hadv = horac*(uBrt - uBlt);
      duBdata[i] = - hdiff + hadv;

      /* Extract u at x_i and two neighboring points */
      ui = udata[i];
      ult = (i==0) ? uLeft: udata[i-1];
      urt = (i==my_length-1) ? uRight : udata[i+1];

      /* Load integrands of the two space integrals */
      z1[i] = uBdata[i]*(ult - TWO*ui + urt)/(dx*dx);
      z2[i] = uBdata[i]*(urt - ult)/(TWO*dx);
    }

    /* Compute local integrals */
    intgr1 = Xintgr(z1, my_length, dx);
    intgr2 = Xintgr(z2, my_length, dx);

    /* Send local integrals to 'quadrature' process */
    MPI_Send(&intgr1, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);
    MPI_Send(&intgr2, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);

  }


  return(0);
}

/*
 *--------------------------------------------------------------------
 * PRIVATE FUNCTIONS
 *--------------------------------------------------------------------
 */

/* 
 * Set initial conditions in u vector 
 */

static void SetIC(N_Vector u, realtype dx, long int my_length, long int my_base)
{
  int i;
  long int iglobal;
  realtype x;
  realtype *udata;

  /* Set pointer to data array and get local length of u */
  udata = NV_DATA_P(u);
  my_length = NV_LOCLENGTH_P(u);

  /* Load initial profile into u vector */
  for (i=1; i<=my_length; i++) {
    iglobal = my_base + i;
    x = iglobal*dx;
    udata[i-1] = x*(XMAX - x)*EXP(TWO*x);
  }  
}

/* 
 * Set final conditions in uB vector 
 */

static void SetICback(N_Vector uB, long int my_base)
{
  int i;
  realtype *uBdata;
  long int my_length;

  /* Set pointer to data array and get local length of uB */
  uBdata = NV_DATA_P(uB);
  my_length = NV_LOCLENGTH_P(uB);

  /* Set adjoint states to 1.0 and quadrature variables to 0.0 */
  if (my_base == -1) for (i=0; i<my_length; i++) uBdata[i] = ZERO;
  else               for (i=0; i<my_length; i++) uBdata[i] = ONE;
}

/*
 * Compute local value of the space integral int_x z(x) dx 
 */

static realtype Xintgr(realtype *z, long int l, realtype dx)
{
  realtype my_intgr;
  long int i;

  my_intgr = RCONST(0.5)*(z[0] + z[l-1]);
  for (i = 1; i < l-1; i++)
    my_intgr += z[i]; 
  my_intgr *= dx;

  return(my_intgr);
}

/*
 * Compute value of g(u) 
 */

static realtype Compute_g(N_Vector u, UserData data)
{
  realtype intgr, my_intgr, dx, *udata;
  long int my_length;
  int npes, my_pe, i;
  MPI_Status status;
  MPI_Comm comm;

  /* Extract MPI info. from data */
  comm = data->comm;
  npes = data->npes;
  my_pe = data->my_pe;

  dx = data->dx;

  if (my_pe == npes) {  /* Loop over all other processes and sum */
    intgr = ZERO;
    for (i=0; i<npes; i++) {
      MPI_Recv(&my_intgr, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status); 
      intgr += my_intgr;
    }
    return(intgr);
  } else {              /* Compute local portion of the integral */
    udata = NV_DATA_P(u);
    my_length = NV_LOCLENGTH_P(u);
    my_intgr = Xintgr(udata, my_length, dx);
    MPI_Send(&my_intgr, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);
    return(my_intgr);
  }
}

/* 
 * Print output after backward integration
 */

static void PrintOutput(realtype g_val, N_Vector uB, UserData data)
{
  MPI_Comm comm;
  MPI_Status status;
  int npes, my_pe;
  long int i, Ni, indx, local_N, nperpe, nrem;
  realtype *uBdata;
  realtype *mu;

  comm = data->comm;
  npes = data->npes;
  my_pe = data->my_pe;
  local_N = data->local_N;
  nperpe = data->nperpe;
  nrem = data->nrem;

  uBdata = NV_DATA_P(uB);

  if (my_pe == npes) {

#if defined(SUNDIALS_EXTENDED_PRECISION)
    printf("\ng(tf) = %8Le\n\n", g_val);
    printf("dgdp(tf)\n  [ 1]: %8Le\n  [ 2]: %8Le\n\n", -uBdata[0], -uBdata[1]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
    printf("\ng(tf) = %8le\n\n", g_val);
    printf("dgdp(tf)\n  [ 1]: %8le\n  [ 2]: %8le\n\n", -uBdata[0], -uBdata[1]);
#else
    printf("\ng(tf) = %8e\n\n", g_val);
    printf("dgdp(tf)\n  [ 1]: %8e\n  [ 2]: %8e\n\n", -uBdata[0], -uBdata[1]);
#endif

    mu = (realtype *)malloc(NEQ*sizeof(realtype));
    if (check_flag((void *)mu, "malloc", 2, my_pe)) MPI_Abort(comm, 1);

    indx = 0;
    for ( i = 0; i < npes; i++) {
      Ni = ( i < nrem ) ? nperpe+1 : nperpe;
      MPI_Recv(&mu[indx], Ni, PVEC_REAL_MPI_TYPE, i, 0, comm, &status);
      indx += Ni;
    }

    printf("mu(t0)\n");

#if defined(SUNDIALS_EXTENDED_PRECISION)
    for (i=0; i<NEQ; i++)
      printf("  [%2ld]: %8Le\n", i+1, mu[i]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
    for (i=0; i<NEQ; i++)
      printf("  [%2ld]: %8le\n", i+1, mu[i]);
#else
    for (i=0; i<NEQ; i++)
      printf("  [%2ld]: %8e\n", i+1, mu[i]);
#endif

    free(mu);

  } else {

    MPI_Send(uBdata, local_N, PVEC_REAL_MPI_TYPE, npes, 0, comm);

  }

}

/* 
 * Check function return value.
 *    opt == 0 means SUNDIALS function allocates memory so check if
 *             returned NULL pointer
 *    opt == 1 means SUNDIALS function returns a flag so check if
 *             flag >= 0
 *    opt == 2 means function allocates memory so check if returned
 *             NULL pointer 
 */

static int check_flag(void *flagvalue, char *funcname, int opt, int id)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed - returned NULL pointer\n\n",
	    id, funcname);
    return(1); }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed with flag = %d\n\n",
	      id, funcname, *errflag);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR(%d): %s() failed - returned NULL pointer\n\n",
	    id, funcname);
    return(1); }

  return(0);
}