This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/cvodes/serial/cvsDiurnal_kry.c is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
 * -----------------------------------------------------------------
 * $Revision: 1.3 $
 * $Date: 2010/12/01 22:57:59 $
 * -----------------------------------------------------------------
 * Programmer(s): Scott D. Cohen, Alan C. Hindmarsh and
 *                Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * Example problem:
 *
 * An ODE system is generated from the following 2-species diurnal
 * kinetics advection-diffusion PDE system in 2 space dimensions:
 *
 * dc(i)/dt = Kh*(d/dx)^2 c(i) + V*dc(i)/dx + (d/dy)(Kv(y)*dc(i)/dy)
 *                 + Ri(c1,c2,t)      for i = 1,2,   where
 *   R1(c1,c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2 ,
 *   R2(c1,c2,t) =  q1*c1*c3 - q2*c1*c2 - q4(t)*c2 ,
 *   Kv(y) = Kv0*exp(y/5) ,
 * Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t)
 * vary diurnally. The problem is posed on the square
 *   0 <= x <= 20,    30 <= y <= 50   (all in km),
 * with homogeneous Neumann boundary conditions, and for time t in
 *   0 <= t <= 86400 sec (1 day).
 * The PDE system is treated by central differences on a uniform
 * 10 x 10 mesh, with simple polynomial initial profiles.
 * The problem is solved with CVODES, with the BDF/GMRES
 * method (i.e. using the CVSPGMR linear solver) and the
 * block-diagonal part of the Newton matrix as a left
 * preconditioner. A copy of the block-diagonal part of the
 * Jacobian is saved and conditionally reused within the Precond
 * routine.
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cvodes/cvodes.h>            /* main integrator header file */
#include <cvodes/cvodes_spgmr.h>      /* prototypes & constants for CVSPGMR solver */
#include <nvector/nvector_serial.h>   /* serial N_Vector types, fct. and macros */
#include <sundials/sundials_dense.h>  /* use generic DENSE solver in preconditioning */
#include <sundials/sundials_types.h>  /* definition of realtype */
#include <sundials/sundials_math.h>   /* contains the macros ABS, SQR, and EXP */

/* Problem Constants */

#define ZERO RCONST(0.0)
#define ONE  RCONST(1.0)
#define TWO  RCONST(2.0)

#define NUM_SPECIES  2                 /* number of species         */
#define KH           RCONST(4.0e-6)    /* horizontal diffusivity Kh */
#define VEL          RCONST(0.001)     /* advection velocity V      */
#define KV0          RCONST(1.0e-8)    /* coefficient in Kv(y)      */
#define Q1           RCONST(1.63e-16)  /* coefficients q1, q2, c3   */ 
#define Q2           RCONST(4.66e-16)
#define C3           RCONST(3.7e16)
#define A3           RCONST(22.62)     /* coefficient in expression for q3(t) */
#define A4           RCONST(7.601)     /* coefficient in expression for q4(t) */
#define C1_SCALE     RCONST(1.0e6)     /* coefficients in initial profiles    */
#define C2_SCALE     RCONST(1.0e12)

#define T0           ZERO                 /* initial time */
#define NOUT         12                   /* number of output times */
#define TWOHR        RCONST(7200.0)       /* number of seconds in two hours  */
#define HALFDAY      RCONST(4.32e4)       /* number of seconds in a half day */
#define PI       RCONST(3.1415926535898)  /* pi */ 

#define XMIN         ZERO                 /* grid boundaries in x  */
#define XMAX         RCONST(20.0)           
#define YMIN         RCONST(30.0)         /* grid boundaries in y  */
#define YMAX         RCONST(50.0)
#define XMID         RCONST(10.0)         /* grid midpoints in x,y */          
#define YMID         RCONST(40.0)

#define MX           10             /* MX = number of x mesh points */
#define MY           10             /* MY = number of y mesh points */
#define NSMX         20             /* NSMX = NUM_SPECIES*MX */
#define MM           (MX*MY)        /* MM = MX*MY */

/* CVodeInit Constants */

#define RTOL    RCONST(1.0e-5)    /* scalar relative tolerance */
#define FLOOR   RCONST(100.0)     /* value of C1 or C2 at which tolerances */
                                  /* change from relative to absolute      */
#define ATOL    (RTOL*FLOOR)      /* scalar absolute tolerance */
#define NEQ     (NUM_SPECIES*MM)  /* NEQ = number of equations */

/* User-defined vector and matrix accessor macros: IJKth, IJth */

/* IJKth is defined in order to isolate the translation from the
   mathematical 3-dimensional structure of the dependent variable vector
   to the underlying 1-dimensional storage. IJth is defined in order to
   write code which indexes into small dense matrices with a (row,column)
   pair, where 1 <= row, column <= NUM_SPECIES.   
   
   IJKth(vdata,i,j,k) references the element in the vdata array for
   species i at mesh point (j,k), where 1 <= i <= NUM_SPECIES,
   0 <= j <= MX-1, 0 <= k <= MY-1. The vdata array is obtained via
   the macro call vdata = NV_DATA_S(v), where v is an N_Vector. 
   For each mesh point (j,k), the elements for species i and i+1 are
   contiguous within vdata.

   IJth(a,i,j) references the (i,j)th entry of the small matrix realtype **a,
   where 1 <= i,j <= NUM_SPECIES. The small matrix routines in sundials_dense.h
   work with matrices stored by column in a 2-dimensional array. In C,
   arrays are indexed starting at 0, not 1. */

#define IJKth(vdata,i,j,k) (vdata[i-1 + (j)*NUM_SPECIES + (k)*NSMX])
#define IJth(a,i,j)        (a[j-1][i-1])

/* Type : UserData 
   contains preconditioner blocks, pivot arrays, and problem constants */

typedef struct {
  realtype **P[MX][MY], **Jbd[MX][MY];
  long int *pivot[MX][MY];
  realtype q4, om, dx, dy, hdco, haco, vdco;
} *UserData;

/* Private Helper Functions */

static UserData AllocUserData(void);
static void InitUserData(UserData data);
static void FreeUserData(UserData data);
static void SetInitialProfiles(N_Vector u, realtype dx, realtype dy);
static void PrintOutput(void *cvode_mem, N_Vector u, realtype t);
static void PrintFinalStats(void *cvode_mem);
static int check_flag(void *flagvalue, char *funcname, int opt);

/* Functions Called by the Solver */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);

static int jtv(N_Vector v, N_Vector Jv, realtype t,
               N_Vector y, N_Vector fy,
               void *user_data, N_Vector tmp);

static int Precond(realtype tn, N_Vector u, N_Vector fu,
                   booleantype jok, booleantype *jcurPtr, realtype gamma,
                   void *user_data, N_Vector vtemp1, N_Vector vtemp2,
                   N_Vector vtemp3);

static int PSolve(realtype tn, N_Vector u, N_Vector fu,
                  N_Vector r, N_Vector z,
                  realtype gamma, realtype delta,
                  int lr, void *user_data, N_Vector vtemp);


/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main()
{
  realtype abstol, reltol, t, tout;
  N_Vector u;
  UserData data;
  void *cvode_mem;
  int iout, flag;

  u = NULL;
  data = NULL;
  cvode_mem = NULL;

  /* Allocate memory, and set problem data, initial values, tolerances */ 
  u = N_VNew_Serial(NEQ);
  if(check_flag((void *)u, "N_VNew_Serial", 0)) return(1);
  data = AllocUserData();
  if(check_flag((void *)data, "AllocUserData", 2)) return(1);
  InitUserData(data);
  SetInitialProfiles(u, data->dx, data->dy);
  abstol=ATOL; 
  reltol=RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

  /* Call CVSpgmr to specify the linear solver CVSPGMR 
   * with left preconditioning and the maximum Krylov dimension maxl */
  flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
  if(check_flag(&flag, "CVSpgmr", 1)) return(1);

  /* set the JAcobian-times-vector function */
  flag = CVSpilsSetJacTimesVecFn(cvode_mem, jtv);
  if(check_flag(&flag, "CVSpilsSetJacTimesVecFn", 1)) return(1);

  /* Set modified Gram-Schmidt orthogonalization */
  flag = CVSpilsSetGSType(cvode_mem, MODIFIED_GS);
  if(check_flag(&flag, "CVSpilsSetGSType", 1)) return(1);

  /* Set the preconditioner solve and setup functions */
  flag = CVSpilsSetPreconditioner(cvode_mem, Precond, PSolve);
  if(check_flag(&flag, "CVSpilsSetPreconditioner", 1)) return(1);

  /* In loop over output points, call CVode, print results, test for error */
  printf(" \n2-species diurnal advection-diffusion problem\n\n");
  for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
    flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    PrintOutput(cvode_mem, u, t);
    if(check_flag(&flag, "CVode", 1)) break;
  }

  PrintFinalStats(cvode_mem);

  /* Free memory */
  N_VDestroy_Serial(u);
  FreeUserData(data);
  CVodeFree(&cvode_mem);

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

/* Allocate memory for data structure of type UserData */

static UserData AllocUserData(void)
{
  int jx, jy;
  UserData data;

  data = (UserData) malloc(sizeof *data);

  for (jx=0; jx < MX; jx++) {
    for (jy=0; jy < MY; jy++) {
      (data->P)[jx][jy] = newDenseMat(NUM_SPECIES, NUM_SPECIES);
      (data->Jbd)[jx][jy] = newDenseMat(NUM_SPECIES, NUM_SPECIES);
      (data->pivot)[jx][jy] = newLintArray(NUM_SPECIES);
    }
  }

  return(data);
}

/* Load problem constants in data */

static void InitUserData(UserData data)
{
  data->om = PI/HALFDAY;
  data->dx = (XMAX-XMIN)/(MX-1);
  data->dy = (YMAX-YMIN)/(MY-1);
  data->hdco = KH/SQR(data->dx);
  data->haco = VEL/(TWO*data->dx);
  data->vdco = (ONE/SQR(data->dy))*KV0;
}

/* Free data memory */

static void FreeUserData(UserData data)
{
  int jx, jy;

  for (jx=0; jx < MX; jx++) {
    for (jy=0; jy < MY; jy++) {
      destroyMat((data->P)[jx][jy]);
      destroyMat((data->Jbd)[jx][jy]);
      destroyArray((data->pivot)[jx][jy]);
    }
  }

  free(data);
}

/* Set initial conditions in u */

static void SetInitialProfiles(N_Vector u, realtype dx, realtype dy)
{
  int jx, jy;
  realtype x, y, cx, cy;
  realtype *udata;

  /* Set pointer to data array in vector u. */

  udata = NV_DATA_S(u);

  /* Load initial profiles of c1 and c2 into u vector */

  for (jy=0; jy < MY; jy++) {
    y = YMIN + jy*dy;
    cy = SQR(RCONST(0.1)*(y - YMID));
    cy = ONE - cy + RCONST(0.5)*SQR(cy);
    for (jx=0; jx < MX; jx++) {
      x = XMIN + jx*dx;
      cx = SQR(RCONST(0.1)*(x - XMID));
      cx = ONE - cx + RCONST(0.5)*SQR(cx);
      IJKth(udata,1,jx,jy) = C1_SCALE*cx*cy; 
      IJKth(udata,2,jx,jy) = C2_SCALE*cx*cy;
    }
  }
}

/* Print current t, step count, order, stepsize, and sampled c1,c2 values */

static void PrintOutput(void *cvode_mem, N_Vector u, realtype t)
{
  long int nst;
  int qu, flag;
  realtype hu, *udata;
  int mxh = MX/2 - 1, myh = MY/2 - 1, mx1 = MX - 1, my1 = MY - 1;

  udata = NV_DATA_S(u);

  flag = CVodeGetNumSteps(cvode_mem, &nst);
  check_flag(&flag, "CVodeGetNumSteps", 1);
  flag = CVodeGetLastOrder(cvode_mem, &qu);
  check_flag(&flag, "CVodeGetLastOrder", 1);
  flag = CVodeGetLastStep(cvode_mem, &hu);
  check_flag(&flag, "CVodeGetLastStep", 1);

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("t = %.2Le   no. steps = %ld   order = %d   stepsize = %.2Le\n",
         t, nst, qu, hu);
  printf("c1 (bot.left/middle/top rt.) = %12.3Le  %12.3Le  %12.3Le\n",
         IJKth(udata,1,0,0), IJKth(udata,1,mxh,myh), IJKth(udata,1,mx1,my1));
  printf("c2 (bot.left/middle/top rt.) = %12.3Le  %12.3Le  %12.3Le\n\n",
         IJKth(udata,2,0,0), IJKth(udata,2,mxh,myh), IJKth(udata,2,mx1,my1));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("t = %.2le   no. steps = %ld   order = %d   stepsize = %.2le\n",
         t, nst, qu, hu);
  printf("c1 (bot.left/middle/top rt.) = %12.3le  %12.3le  %12.3le\n",
         IJKth(udata,1,0,0), IJKth(udata,1,mxh,myh), IJKth(udata,1,mx1,my1));
  printf("c2 (bot.left/middle/top rt.) = %12.3le  %12.3le  %12.3le\n\n",
         IJKth(udata,2,0,0), IJKth(udata,2,mxh,myh), IJKth(udata,2,mx1,my1));
#else
  printf("t = %.2e   no. steps = %ld   order = %d   stepsize = %.2e\n",
         t, nst, qu, hu);
  printf("c1 (bot.left/middle/top rt.) = %12.3e  %12.3e  %12.3e\n",
         IJKth(udata,1,0,0), IJKth(udata,1,mxh,myh), IJKth(udata,1,mx1,my1));
  printf("c2 (bot.left/middle/top rt.) = %12.3e  %12.3e  %12.3e\n\n",
         IJKth(udata,2,0,0), IJKth(udata,2,mxh,myh), IJKth(udata,2,mx1,my1));
#endif
}

/* Get and print final statistics */

static void PrintFinalStats(void *cvode_mem)
{
  long int lenrw, leniw ;
  long int lenrwLS, leniwLS;
  long int nst, nfe, nsetups, nni, ncfn, netf;
  long int nli, npe, nps, ncfl, nfeLS;
  int flag;

  flag = CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);
  check_flag(&flag, "CVodeGetWorkSpace", 1);
  flag = CVodeGetNumSteps(cvode_mem, &nst);
  check_flag(&flag, "CVodeGetNumSteps", 1);
  flag = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_flag(&flag, "CVodeGetNumRhsEvals", 1);
  flag = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_flag(&flag, "CVodeGetNumLinSolvSetups", 1);
  flag = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_flag(&flag, "CVodeGetNumErrTestFails", 1);
  flag = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_flag(&flag, "CVodeGetNumNonlinSolvIters", 1);
  flag = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_flag(&flag, "CVodeGetNumNonlinSolvConvFails", 1);

  flag = CVSpilsGetWorkSpace(cvode_mem, &lenrwLS, &leniwLS);
  check_flag(&flag, "CVSpilsGetWorkSpace", 1);
  flag = CVSpilsGetNumLinIters(cvode_mem, &nli);
  check_flag(&flag, "CVSpilsGetNumLinIters", 1);
  flag = CVSpilsGetNumPrecEvals(cvode_mem, &npe);
  check_flag(&flag, "CVSpilsGetNumPrecEvals", 1);
  flag = CVSpilsGetNumPrecSolves(cvode_mem, &nps);
  check_flag(&flag, "CVSpilsGetNumPrecSolves", 1);
  flag = CVSpilsGetNumConvFails(cvode_mem, &ncfl);
  check_flag(&flag, "CVSpilsGetNumConvFails", 1);
  flag = CVSpilsGetNumRhsEvals(cvode_mem, &nfeLS);
  check_flag(&flag, "CVSpilsGetNumRhsEvals", 1);

  printf("\nFinal Statistics.. \n\n");
  printf("lenrw   = %5ld     leniw   = %5ld\n", lenrw, leniw);
  printf("lenrwLS = %5ld     leniwLS = %5ld\n", lenrwLS, leniwLS);
  printf("nst     = %5ld\n"                  , nst);
  printf("nfe     = %5ld     nfeLS   = %5ld\n"  , nfe, nfeLS);
  printf("nni     = %5ld     nli     = %5ld\n"  , nni, nli);
  printf("nsetups = %5ld     netf    = %5ld\n"  , nsetups, netf);
  printf("npe     = %5ld     nps     = %5ld\n"  , npe, nps);
  printf("ncfn    = %5ld     ncfl    = %5ld\n\n", ncfn, ncfl);
}

/* Check function return value...
     opt == 0 means SUNDIALS function allocates memory so check if
              returned NULL pointer
     opt == 1 means SUNDIALS function returns a flag so check if
              flag >= 0
     opt == 2 means function allocates memory so check if returned
              NULL pointer */

static int check_flag(void *flagvalue, char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
              funcname, *errflag);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}

/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/* f routine. Compute RHS function f(t,u). */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data)
{
  realtype q3, c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt;
  realtype c1rt, c2rt, cydn, cyup, hord1, hord2, horad1, horad2;
  realtype qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, ydn, yup;
  realtype q4coef, dely, verdco, hordco, horaco;
  realtype *udata, *dudata;
  int jx, jy, idn, iup, ileft, iright;
  UserData data;

  data = (UserData) user_data;
  udata = NV_DATA_S(u);
  dudata = NV_DATA_S(udot);

  /* Set diurnal rate coefficients. */

  s = sin(data->om*t);
  if (s > ZERO) {
    q3 = EXP(-A3/s);
    data->q4 = EXP(-A4/s);
  } else {
      q3 = ZERO;
      data->q4 = ZERO;
  }

  /* Make local copies of problem variables, for efficiency. */

  q4coef = data->q4;
  dely = data->dy;
  verdco = data->vdco;
  hordco  = data->hdco;
  horaco  = data->haco;

  /* Loop over all grid points. */

  for (jy=0; jy < MY; jy++) {

    /* Set vertical diffusion coefficients at jy +- 1/2 */

    ydn = YMIN + (jy - RCONST(0.5))*dely;
    yup = ydn + dely;
    cydn = verdco*EXP(RCONST(0.2)*ydn);
    cyup = verdco*EXP(RCONST(0.2)*yup);
    idn = (jy == 0) ? 1 : -1;
    iup = (jy == MY-1) ? -1 : 1;
    for (jx=0; jx < MX; jx++) {

      /* Extract c1 and c2, and set kinetic rate terms. */

      c1 = IJKth(udata,1,jx,jy); 
      c2 = IJKth(udata,2,jx,jy);
      qq1 = Q1*c1*C3;
      qq2 = Q2*c1*c2;
      qq3 = q3*C3;
      qq4 = q4coef*c2;
      rkin1 = -qq1 - qq2 + TWO*qq3 + qq4;
      rkin2 = qq1 - qq2 - qq4;

      /* Set vertical diffusion terms. */

      c1dn = IJKth(udata,1,jx,jy+idn);
      c2dn = IJKth(udata,2,jx,jy+idn);
      c1up = IJKth(udata,1,jx,jy+iup);
      c2up = IJKth(udata,2,jx,jy+iup);
      vertd1 = cyup*(c1up - c1) - cydn*(c1 - c1dn);
      vertd2 = cyup*(c2up - c2) - cydn*(c2 - c2dn);

      /* Set horizontal diffusion and advection terms. */

      ileft = (jx == 0) ? 1 : -1;
      iright =(jx == MX-1) ? -1 : 1;
      c1lt = IJKth(udata,1,jx+ileft,jy); 
      c2lt = IJKth(udata,2,jx+ileft,jy);
      c1rt = IJKth(udata,1,jx+iright,jy);
      c2rt = IJKth(udata,2,jx+iright,jy);
      hord1 = hordco*(c1rt - TWO*c1 + c1lt);
      hord2 = hordco*(c2rt - TWO*c2 + c2lt);
      horad1 = horaco*(c1rt - c1lt);
      horad2 = horaco*(c2rt - c2lt);

      /* Load all terms into udot. */

      IJKth(dudata, 1, jx, jy) = vertd1 + hord1 + horad1 + rkin1; 
      IJKth(dudata, 2, jx, jy) = vertd2 + hord2 + horad2 + rkin2;
    }
  }

  return(0);
}


/* Jacobian-times-vector routine. */

static int jtv(N_Vector v, N_Vector Jv, realtype t,
               N_Vector u, N_Vector fu,
               void *user_data, N_Vector tmp)
{
  realtype c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt, c1rt, c2rt;
  realtype v1, v2, v1dn, v2dn, v1up, v2up, v1lt, v2lt, v1rt, v2rt;
  realtype Jv1, Jv2;
  realtype cydn, cyup;
  realtype s, ydn, yup;
  realtype q4coef, dely, verdco, hordco, horaco;
  int jx, jy, idn, iup, ileft, iright;
  realtype *udata, *vdata, *Jvdata;
  UserData data;

  data = (UserData) user_data;

  udata = NV_DATA_S(u);
  vdata = NV_DATA_S(v);
  Jvdata = NV_DATA_S(Jv);

  /* Set diurnal rate coefficients. */

  s = sin(data->om*t);
  if (s > ZERO) {
    data->q4 = EXP(-A4/s);
  } else {
    data->q4 = ZERO;
  }

  /* Make local copies of problem variables, for efficiency. */

  q4coef = data->q4;
  dely = data->dy;
  verdco = data->vdco;
  hordco  = data->hdco;
  horaco  = data->haco;

  /* Loop over all grid points. */

  for (jy=0; jy < MY; jy++) {

    /* Set vertical diffusion coefficients at jy +- 1/2 */

    ydn = YMIN + (jy - RCONST(0.5))*dely;
    yup = ydn + dely;

    cydn = verdco*EXP(RCONST(0.2)*ydn);
    cyup = verdco*EXP(RCONST(0.2)*yup);

    idn = (jy == 0) ? 1 : -1;
    iup = (jy == MY-1) ? -1 : 1;

    for (jx=0; jx < MX; jx++) {

      Jv1 = ZERO;
      Jv2 = ZERO;

      /* Extract c1 and c2 at the current location and at neighbors */

      c1 = IJKth(udata,1,jx,jy); 
      c2 = IJKth(udata,2,jx,jy);

      v1 = IJKth(vdata,1,jx,jy); 
      v2 = IJKth(vdata,2,jx,jy);

      c1dn = IJKth(udata,1,jx,jy+idn);
      c2dn = IJKth(udata,2,jx,jy+idn);
      c1up = IJKth(udata,1,jx,jy+iup);
      c2up = IJKth(udata,2,jx,jy+iup);

      v1dn = IJKth(vdata,1,jx,jy+idn);
      v2dn = IJKth(vdata,2,jx,jy+idn);
      v1up = IJKth(vdata,1,jx,jy+iup);
      v2up = IJKth(vdata,2,jx,jy+iup);

      ileft = (jx == 0) ? 1 : -1;
      iright =(jx == MX-1) ? -1 : 1;

      c1lt = IJKth(udata,1,jx+ileft,jy); 
      c2lt = IJKth(udata,2,jx+ileft,jy);
      c1rt = IJKth(udata,1,jx+iright,jy);
      c2rt = IJKth(udata,2,jx+iright,jy);

      v1lt = IJKth(vdata,1,jx+ileft,jy); 
      v2lt = IJKth(vdata,2,jx+ileft,jy);
      v1rt = IJKth(vdata,1,jx+iright,jy);
      v2rt = IJKth(vdata,2,jx+iright,jy);

      /* Set kinetic rate terms. */

      //rkin1 = -Q1*C3 * c1 - Q2 * c1*c2 + q4coef * c2  + TWO*C3*q3;
      //rkin2 =  Q1*C3 * c1 - Q2 * c1*c2 - q4coef * c2;

      Jv1 += -(Q1*C3 + Q2*c2) * v1  +  (q4coef - Q2*c1) * v2;
      Jv2 +=  (Q1*C3 - Q2*c2) * v1  -  (q4coef + Q2*c1) * v2;

      /* Set vertical diffusion terms. */

      //vertd1 = -(cyup+cydn) * c1 + cyup * c1up + cydn * c1dn;
      //vertd2 = -(cyup+cydn) * c2 + cyup * c2up + cydn * c2dn;

      Jv1 += -(cyup+cydn) * v1  +  cyup * v1up  +  cydn * v1dn;
      Jv2 += -(cyup+cydn) * v2  +  cyup * v2up  +  cydn * v2dn;

      /* Set horizontal diffusion and advection terms. */

      //hord1 = hordco*(c1rt - TWO*c1 + c1lt);
      //hord2 = hordco*(c2rt - TWO*c2 + c2lt);

      Jv1 += hordco*(v1rt - TWO*v1 + v1lt);
      Jv2 += hordco*(v2rt - TWO*v2 + v2lt);

      //horad1 = horaco*(c1rt - c1lt);
      //horad2 = horaco*(c2rt - c2lt);

      Jv1 += horaco*(v1rt - v1lt);
      Jv2 += horaco*(v2rt - v2lt);

      /* Load two components of J*v */

      //IJKth(dudata, 1, jx, jy) = vertd1 + hord1 + horad1 + rkin1; 
      //IJKth(dudata, 2, jx, jy) = vertd2 + hord2 + horad2 + rkin2;

      IJKth(Jvdata, 1, jx, jy) = Jv1;
      IJKth(Jvdata, 2, jx, jy) = Jv2;

    }

  }

  return(0);

}


/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(realtype tn, N_Vector u, N_Vector fu,
                   booleantype jok, booleantype *jcurPtr, realtype gamma,
                   void *user_data, N_Vector vtemp1, N_Vector vtemp2,
                   N_Vector vtemp3)
{
  realtype c1, c2, cydn, cyup, diag, ydn, yup, q4coef, dely, verdco, hordco;
  realtype **(*P)[MY], **(*Jbd)[MY];
  long int *(*pivot)[MY], ier;
  int jx, jy;
  realtype *udata, **a, **j;
  UserData data;
  
  /* Make local copies of pointers in user_data, and of pointer to u's data */
  
  data = (UserData) user_data;
  P = data->P;
  Jbd = data->Jbd;
  pivot = data->pivot;
  udata = NV_DATA_S(u);
  
  if (jok) {
    
    /* jok = TRUE: Copy Jbd to P */
    
    for (jy=0; jy < MY; jy++)
      for (jx=0; jx < MX; jx++)
        denseCopy(Jbd[jx][jy], P[jx][jy], NUM_SPECIES, NUM_SPECIES);
    
    *jcurPtr = FALSE;
    
  }
  
  else {
    /* jok = FALSE: Generate Jbd from scratch and copy to P */
    
    /* Make local copies of problem variables, for efficiency. */
    
    q4coef = data->q4;
    dely = data->dy;
    verdco = data->vdco;
    hordco  = data->hdco;
    
    /* Compute 2x2 diagonal Jacobian blocks (using q4 values 
       computed on the last f call).  Load into P. */
    
    for (jy=0; jy < MY; jy++) {
      ydn = YMIN + (jy - RCONST(0.5))*dely;
      yup = ydn + dely;
      cydn = verdco*EXP(RCONST(0.2)*ydn);
      cyup = verdco*EXP(RCONST(0.2)*yup);
      diag = -(cydn + cyup + TWO*hordco);
      for (jx=0; jx < MX; jx++) {
        c1 = IJKth(udata,1,jx,jy);
        c2 = IJKth(udata,2,jx,jy);
        j = Jbd[jx][jy];
        a = P[jx][jy];
        IJth(j,1,1) = (-Q1*C3 - Q2*c2) + diag;
        IJth(j,1,2) = -Q2*c1 + q4coef;
        IJth(j,2,1) = Q1*C3 - Q2*c2;
        IJth(j,2,2) = (-Q2*c1 - q4coef) + diag;
        denseCopy(j, a, NUM_SPECIES, NUM_SPECIES);
      }
    }
    
    *jcurPtr = TRUE;
    
  }
  
  /* Scale by -gamma */
  
  for (jy=0; jy < MY; jy++)
    for (jx=0; jx < MX; jx++)
      denseScale(-gamma, P[jx][jy], NUM_SPECIES, NUM_SPECIES);
  
  /* Add identity matrix and do LU decompositions on blocks in place. */
  
  for (jx=0; jx < MX; jx++) {
    for (jy=0; jy < MY; jy++) {
      denseAddIdentity(P[jx][jy], NUM_SPECIES);
      ier = denseGETRF(P[jx][jy], NUM_SPECIES, NUM_SPECIES, pivot[jx][jy]);
      if (ier != 0) return(1);
    }
  }
  
  return(0);
}

/* Preconditioner solve routine */

static int PSolve(realtype tn, N_Vector u, N_Vector fu,
                  N_Vector r, N_Vector z,
                  realtype gamma, realtype delta,
                  int lr, void *user_data, N_Vector vtemp)
{
  realtype **(*P)[MY];
  long int *(*pivot)[MY];
  int jx, jy;
  realtype *zdata, *v;
  UserData data;

  /* Extract the P and pivot arrays from user_data. */

  data = (UserData) user_data;
  P = data->P;
  pivot = data->pivot;
  zdata = NV_DATA_S(z);
  
  N_VScale(ONE, r, z);
  
  /* Solve the block-diagonal system Px = r using LU factors stored
     in P and pivot data in pivot, and return the solution in z. */
  
  for (jx=0; jx < MX; jx++) {
    for (jy=0; jy < MY; jy++) {
      v = &(IJKth(zdata, 1, jx, jy));
      denseGETRS(P[jx][jy], NUM_SPECIES, pivot[jx][jy], v);
    }
  }

  return(0);
}