This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/cvodes/serial/cvsRoberts_ASAi_dns.c is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
 * -----------------------------------------------------------------
 * $Revision: 1.4 $
 * $Date: 2011/11/23 23:53:02 $
 * ----------------------------------------------------------------- 
 * Programmer(s): Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * Copyright (c) 2002, The Regents of the University of California.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * -----------------------------------------------------------------
 * Adjoint sensitivity example problem.
 * The following is a simple example problem, with the coding
 * needed for its solution by CVODES. The problem is from chemical
 * kinetics, and consists of the following three rate equations.
 *    dy1/dt = -p1*y1 + p2*y2*y3
 *    dy2/dt =  p1*y1 - p2*y2*y3 - p3*(y2)^2
 *    dy3/dt =  p3*(y2)^2
 * on the interval from t = 0.0 to t = 4.e10, with initial
 * conditions: y1 = 1.0, y2 = y3 = 0. The reaction rates are:
 * p1=0.04, p2=1e4, and p3=3e7. The problem is stiff.
 * This program solves the problem with the BDF method, Newton
 * iteration with the CVODE dense linear solver, and a user-supplied
 * Jacobian routine.
 * It uses a scalar relative tolerance and a vector absolute
 * tolerance.
 * Output is printed in decades from t = .4 to t = 4.e10.
 * Run statistics (optional outputs) are printed at the end.
 * 
 * Optionally, CVODES can compute sensitivities with respect to
 * the problem parameters p1, p2, and p3 of the following quantity:
 *   G = int_t0^t1 g(t,p,y) dt
 * where
 *   g(t,p,y) = y3
 *        
 * The gradient dG/dp is obtained as:
 *   dG/dp = int_t0^t1 (g_p - lambda^T f_p ) dt - lambda^T(t0)*y0_p
 *         = - xi^T(t0) - lambda^T(t0)*y0_p
 * where lambda and xi are solutions of:
 *   d(lambda)/dt = - (f_y)^T * lambda - (g_y)^T
 *   lambda(t1) = 0
 * and
 *   d(xi)/dt = - (f_p)^T * lambda + (g_p)^T
 *   xi(t1) = 0
 * 
 * During the backward integration, CVODES also evaluates G as
 *   G = - phi(t0)
 * where
 *   d(phi)/dt = g(t,y,p)
 *   phi(t1) = 0
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>

#include <cvodes/cvodes.h>
#include <cvodes/cvodes_dense.h>
#include <nvector/nvector_serial.h>
#include <sundials/sundials_types.h>
#include <sundials/sundials_math.h>

/* Accessor macros */

#define Ith(v,i)    NV_Ith_S(v,i-1)       /* i-th vector component, i=1..NEQ */
#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* (i,j)-th matrix el., i,j=1..NEQ */

/* Problem Constants */

#define NEQ      3             /* number of equations                  */

#define RTOL     RCONST(1e-6)  /* scalar relative tolerance            */

#define ATOL1    RCONST(1e-8)  /* vector absolute tolerance components */
#define ATOL2    RCONST(1e-14)
#define ATOL3    RCONST(1e-6)

#define ATOLl    RCONST(1e-8)  /* absolute tolerance for adjoint vars. */
#define ATOLq    RCONST(1e-6)  /* absolute tolerance for quadratures   */

#define T0       RCONST(0.0)   /* initial time                         */
#define TOUT     RCONST(4e7)   /* final time                           */

#define TB1      RCONST(4e7)   /* starting point for adjoint problem   */
#define TB2      RCONST(50.0)  /* starting point for adjoint problem   */

#define STEPS    150           /* number of steps between check points */

#define NP       3             /* number of problem parameters         */

#define ZERO     RCONST(0.0)


/* Type : UserData */

typedef struct {
  realtype p[3];
} *UserData;

/* Prototypes of user-supplied functions */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(long int N, realtype t,
               N_Vector y, N_Vector fy, 
               DlsMat J, void *user_data, 
               N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int fQ(realtype t, N_Vector y, N_Vector qdot, void *user_data);
static int ewt(N_Vector y, N_Vector w, void *user_data);

static int fB(realtype t, N_Vector y, 
              N_Vector yB, N_Vector yBdot, void *user_dataB);
static int JacB(long int NB, realtype t,
                N_Vector y, N_Vector yB, N_Vector fyB,
                DlsMat JB, void *user_dataB,
                N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
static int fQB(realtype t, N_Vector y, N_Vector yB, 
               N_Vector qBdot, void *user_dataB);


/* Prototypes of private functions */

static void PrintOutput(realtype tfinal, N_Vector yB, N_Vector qB);
static int check_flag(void *flagvalue, char *funcname, int opt);

/*
 *--------------------------------------------------------------------
 * MAIN PROGRAM
 *--------------------------------------------------------------------
 */

int main(int argc, char *argv[])
{
  UserData data;

  void *cvode_mem;

  realtype reltolQ, abstolQ;
  N_Vector y, q;

  int steps;

  int indexB;

  realtype reltolB, abstolB, abstolQB;
  N_Vector yB, qB;

  realtype time;
  int flag, ncheck;

  long int nst, nstB;

  CVadjCheckPointRec *ckpnt;

  data = NULL;
  cvode_mem = NULL;
  ckpnt = NULL;
  y = yB = qB = NULL;

  /* Print problem description */
  printf("\nAdjoint Sensitivity Example for Chemical Kinetics\n");
  printf("-------------------------------------------------\n\n");
  printf("ODE: dy1/dt = -p1*y1 + p2*y2*y3\n");
  printf("     dy2/dt =  p1*y1 - p2*y2*y3 - p3*(y2)^2\n");
  printf("     dy3/dt =  p3*(y2)^2\n\n");
  printf("Find dG/dp for\n");
  printf("     G = int_t0^tB0 g(t,p,y) dt\n");
  printf("     g(t,p,y) = y3\n\n\n");

  /* User data structure */
  data = (UserData) malloc(sizeof *data);
  if (check_flag((void *)data, "malloc", 2)) return(1);
  data->p[0] = RCONST(0.04);
  data->p[1] = RCONST(1.0e4);
  data->p[2] = RCONST(3.0e7);

  /* Initialize y */
  y = N_VNew_Serial(NEQ);
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return(1);
  Ith(y,1) = RCONST(1.0);
  Ith(y,2) = ZERO;
  Ith(y,3) = ZERO;

  /* Initialize q */
  q = N_VNew_Serial(1);
  if (check_flag((void *)q, "N_VNew_Serial", 0)) return(1);
  Ith(q,1) = ZERO;

  /* Set the scalar realtive and absolute tolerances reltolQ and abstolQ */
  reltolQ = RTOL;
  abstolQ = ATOLq;

  /* Create and allocate CVODES memory for forward run */
  printf("Create and allocate CVODES memory for forward runs\n");

  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if (check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  flag = CVodeInit(cvode_mem, f, T0, y);
  if (check_flag(&flag, "CVodeInit", 1)) return(1);

  flag = CVodeWFtolerances(cvode_mem, ewt);
  if (check_flag(&flag, "CVodeWFtolerances", 1)) return(1);

  flag = CVodeSetUserData(cvode_mem, data);
  if (check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  flag = CVDense(cvode_mem, NEQ);
  if (check_flag(&flag, "CVDense", 1)) return(1);

  flag = CVDlsSetDenseJacFn(cvode_mem, Jac);
  if (check_flag(&flag, "CVDlsSetDenseJacFn", 1)) return(1);

  flag = CVodeQuadInit(cvode_mem, fQ, q);
  if (check_flag(&flag, "CVodeQuadInit", 1)) return(1);

  flag = CVodeQuadSStolerances(cvode_mem, reltolQ, abstolQ);
  if (check_flag(&flag, "CVodeQuadSStolerances", 1)) return(1);

  flag = CVodeSetQuadErrCon(cvode_mem, TRUE);
  if (check_flag(&flag, "CVodeSetQuadErrCon", 1)) return(1);

  /* Allocate global memory */

  steps = STEPS;
  flag = CVodeAdjInit(cvode_mem, steps, CV_HERMITE);
  /*
  flag = CVodeAdjInit(cvode_mem, steps, CV_POLYNOMIAL);
  */
  if (check_flag(&flag, "CVodeAdjInit", 1)) return(1);

  /* Perform forward run */
  printf("Forward integration ... ");
  
  flag = CVodeF(cvode_mem, TOUT, y, &time, CV_NORMAL, &ncheck);
  if (check_flag(&flag, "CVodeF", 1)) return(1);
  flag = CVodeGetNumSteps(cvode_mem, &nst);
  if (check_flag(&flag, "CVodeGetNumSteps", 1)) return(1);

  printf("done ( nst = %ld )\n",nst);
  printf("\nncheck = %d\n\n", ncheck);

  flag = CVodeGetQuad(cvode_mem, &time, q);
  if (check_flag(&flag, "CVodeGetQuad", 1)) return(1);

  printf("--------------------------------------------------------\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("G:          %12.4Le \n",Ith(q,1));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("G:          %12.4le \n",Ith(q,1));
#else
  printf("G:          %12.4e \n",Ith(q,1));
#endif
  printf("--------------------------------------------------------\n\n");

  /* Test check point linked list 
     (uncomment next block to print check point information) */
  
  /*
  {
    int i;
    
    printf("\nList of Check Points (ncheck = %d)\n\n", ncheck);
    ckpnt = (CVadjCheckPointRec *) malloc ( (ncheck+1)*sizeof(CVadjCheckPointRec));
    CVodeGetAdjCheckPointsInfo(cvode_mem, ckpnt);
    for (i=0;i<=ncheck;i++) {
      printf("Address:       %p\n",ckpnt[i].my_addr);
      printf("Next:          %p\n",ckpnt[i].next_addr);
      printf("Time interval: %le  %le\n",ckpnt[i].t0, ckpnt[i].t1);
      printf("Step number:   %ld\n",ckpnt[i].nstep);
      printf("Order:         %d\n",ckpnt[i].order);
      printf("Step size:     %le\n",ckpnt[i].step);
      printf("\n");
    }
    
  }
  */
  
  /* Initialize yB */
  yB = N_VNew_Serial(NEQ);
  if (check_flag((void *)yB, "N_VNew_Serial", 0)) return(1);
  Ith(yB,1) = ZERO;
  Ith(yB,2) = ZERO;
  Ith(yB,3) = ZERO;

  /* Initialize qB */
  qB = N_VNew_Serial(NP);
  if (check_flag((void *)qB, "N_VNew", 0)) return(1);
  Ith(qB,1) = ZERO;
  Ith(qB,2) = ZERO;
  Ith(qB,3) = ZERO;

  /* Set the scalar relative tolerance reltolB */
  reltolB = RTOL;               

  /* Set the scalar absolute tolerance abstolB */
  abstolB = ATOLl;

  /* Set the scalar absolute tolerance abstolQB */
  abstolQB = ATOLq;

  /* Create and allocate CVODES memory for backward run */
  printf("Create and allocate CVODES memory for backward run\n");

  flag = CVodeCreateB(cvode_mem, CV_BDF, CV_NEWTON, &indexB);
  if (check_flag(&flag, "CVodeCreateB", 1)) return(1);

  flag = CVodeInitB(cvode_mem, indexB, fB, TB1, yB);
  if (check_flag(&flag, "CVodeInitB", 1)) return(1);

  flag = CVodeSStolerancesB(cvode_mem, indexB, reltolB, abstolB);
  if (check_flag(&flag, "CVodeSStolerancesB", 1)) return(1);

  flag = CVodeSetUserDataB(cvode_mem, indexB, data);
  if (check_flag(&flag, "CVodeSetUserDataB", 1)) return(1);

  flag = CVDenseB(cvode_mem, indexB, NEQ);
  if (check_flag(&flag, "CVDenseB", 1)) return(1);

  flag = CVDlsSetDenseJacFnB(cvode_mem, indexB, JacB);
  if (check_flag(&flag, "CVDlsSetDenseJacFnB", 1)) return(1);

  flag = CVodeQuadInitB(cvode_mem, indexB, fQB, qB);
  if (check_flag(&flag, "CVodeQuadInitB", 1)) return(1);

  flag = CVodeQuadSStolerancesB(cvode_mem, indexB, reltolB, abstolQB);
  if (check_flag(&flag, "CVodeQuadSStolerancesB", 1)) return(1);

  flag = CVodeSetQuadErrConB(cvode_mem, indexB, TRUE);
  if (check_flag(&flag, "CVodeSetQuadErrConB", 1)) return(1);

  /* Backward Integration */
  printf("Backward integration ... ");

  flag = CVodeB(cvode_mem, T0, CV_NORMAL);
  if (check_flag(&flag, "CVodeB", 1)) return(1);
  CVodeGetNumSteps(CVodeGetAdjCVodeBmem(cvode_mem, indexB), &nstB);
  printf("done ( nst = %ld )\n", nstB);

  flag = CVodeGetB(cvode_mem, indexB, &time, yB);
  if (check_flag(&flag, "CVodeGetB", 1)) return(1);

  flag = CVodeGetQuadB(cvode_mem, indexB, &time, qB);
  if (check_flag(&flag, "CVodeGetQuadB", 1)) return(1);

  PrintOutput(TB1, yB, qB);

  /* Reinitialize backward phase (new tB0) */

  Ith(yB,1) = ZERO;
  Ith(yB,2) = ZERO;
  Ith(yB,3) = ZERO;

  Ith(qB,1) = ZERO;
  Ith(qB,2) = ZERO;
  Ith(qB,3) = ZERO;

  printf("Re-initialize CVODES memory for backward run\n");

  flag = CVodeReInitB(cvode_mem, indexB, TB2, yB);
  if (check_flag(&flag, "CVodeReInitB", 1)) return(1);

  flag = CVodeQuadReInitB(cvode_mem, indexB, qB); 
  if (check_flag(&flag, "CVodeQuadReInitB", 1)) return(1);

  printf("Backward integration ... ");

  flag = CVodeB(cvode_mem, T0, CV_NORMAL);
  if (check_flag(&flag, "CVodeB", 1)) return(1);
  CVodeGetNumSteps(CVodeGetAdjCVodeBmem(cvode_mem, indexB), &nstB);
  printf("done ( nst = %ld )\n", nstB);

  flag = CVodeGetB(cvode_mem, indexB, &time, yB);
  if (check_flag(&flag, "CVodeGetB", 1)) return(1);

  flag = CVodeGetQuadB(cvode_mem, indexB, &time, qB);
  if (check_flag(&flag, "CVodeGetQuadB", 1)) return(1);

  PrintOutput(TB2, yB, qB);

  /* Free memory */
  printf("Free memory\n\n");

  CVodeFree(&cvode_mem);
  N_VDestroy_Serial(y); 
  N_VDestroy_Serial(q);
  N_VDestroy_Serial(yB);
  N_VDestroy_Serial(qB);

  if (ckpnt != NULL) free(ckpnt);
  free(data);

  return(0);

}

/*
 *--------------------------------------------------------------------
 * FUNCTIONS CALLED BY CVODES
 *--------------------------------------------------------------------
 */

/*
 * f routine. Compute f(t,y). 
*/

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype y1, y2, y3, yd1, yd3;
  UserData data;
  realtype p1, p2, p3;

  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
  data = (UserData) user_data;
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;
  yd3 = Ith(ydot,3) = p3*y2*y2;
        Ith(ydot,2) = -yd1 - yd3;

  return(0);
}

/* 
 * Jacobian routine. Compute J(t,y). 
*/

static int Jac(long int N, realtype t,
               N_Vector y, N_Vector fy, 
               DlsMat J, void *user_data, 
               N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  realtype y1, y2, y3;
  UserData data;
  realtype p1, p2, p3;
 
  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
  data = (UserData) user_data;
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
 
  IJth(J,1,1) = -p1;  IJth(J,1,2) = p2*y3;          IJth(J,1,3) = p2*y2;
  IJth(J,2,1) =  p1;  IJth(J,2,2) = -p2*y3-2*p3*y2; IJth(J,2,3) = -p2*y2;
                      IJth(J,3,2) = 2*p3*y2;

  return(0);
}

/* 
 * fQ routine. Compute fQ(t,y). 
*/

static int fQ(realtype t, N_Vector y, N_Vector qdot, void *user_data)
{
  Ith(qdot,1) = Ith(y,3);  

  return(0);
}
 
/*
 * EwtSet function. Computes the error weights at the current solution.
 */

static int ewt(N_Vector y, N_Vector w, void *user_data)
{
  int i;
  realtype yy, ww, rtol, atol[3];

  rtol    = RTOL;
  atol[0] = ATOL1;
  atol[1] = ATOL2;
  atol[2] = ATOL3;

  for (i=1; i<=3; i++) {
    yy = Ith(y,i);
    ww = rtol * ABS(yy) + atol[i-1];  
    if (ww <= 0.0) return (-1);
    Ith(w,i) = 1.0/ww;
  }

  return(0);
}

/* 
 * fB routine. Compute fB(t,y,yB). 
*/

static int fB(realtype t, N_Vector y, N_Vector yB, N_Vector yBdot, void *user_dataB)
{
  UserData data;
  realtype y1, y2, y3;
  realtype p1, p2, p3;
  realtype l1, l2, l3;
  realtype l21, l32, y23;
  
  data = (UserData) user_dataB;

  /* The p vector */
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  /* The y vector */
  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
  
  /* The lambda vector */
  l1 = Ith(yB,1); l2 = Ith(yB,2); l3 = Ith(yB,3);

  /* Temporary variables */
  l21 = l2-l1;
  l32 = l3-l2;
  y23 = y2*y3;

  /* Load yBdot */
  Ith(yBdot,1) = - p1*l21;
  Ith(yBdot,2) = p2*y3*l21 - RCONST(2.0)*p3*y2*l32;
  Ith(yBdot,3) = p2*y2*l21 - RCONST(1.0);

  return(0);
}

/* 
 * JacB routine. Compute JB(t,y,yB). 
*/

static int JacB(long int NB, realtype t,
                N_Vector y, N_Vector yB, N_Vector fyB,
                DlsMat JB, void *user_dataB,
                N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)
{
  UserData data;
  realtype y1, y2, y3;
  realtype p1, p2, p3;
  
  data = (UserData) user_dataB;

  /* The p vector */
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  /* The y vector */
  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

  /* Load JB */
  IJth(JB,1,1) = p1;     IJth(JB,1,2) = -p1; 
  IJth(JB,2,1) = -p2*y3; IJth(JB,2,2) = p2*y3+2.0*p3*y2;
                         IJth(JB,2,3) = RCONST(-2.0)*p3*y2;
  IJth(JB,3,1) = -p2*y2; IJth(JB,3,2) = p2*y2;

  return(0);
}

/*
 * fQB routine. Compute integrand for quadratures 
*/

static int fQB(realtype t, N_Vector y, N_Vector yB, 
               N_Vector qBdot, void *user_dataB)
{
  UserData data;
  realtype y1, y2, y3;
  realtype p1, p2, p3;
  realtype l1, l2, l3;
  realtype l21, l32, y23;

  data = (UserData) user_dataB;

  /* The p vector */
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  /* The y vector */
  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
  
  /* The lambda vector */
  l1 = Ith(yB,1); l2 = Ith(yB,2); l3 = Ith(yB,3);

  /* Temporary variables */
  l21 = l2-l1;
  l32 = l3-l2;
  y23 = y2*y3;

  Ith(qBdot,1) = y1*l21;
  Ith(qBdot,2) = - y23*l21;
  Ith(qBdot,3) = y2*y2*l32;

  return(0);
}

/*
 *--------------------------------------------------------------------
 * PRIVATE FUNCTIONS
 *--------------------------------------------------------------------
 */

/*
 * Print results after backward integration
 */

static void PrintOutput(realtype tfinal, N_Vector yB, N_Vector qB)
{
  printf("--------------------------------------------------------\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("tB0:        %12.4Le\n",tfinal);
  printf("dG/dp:      %12.4Le %12.4Le %12.4Le\n", 
         -Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
  printf("lambda(t0): %12.4Le %12.4Le %12.4Le\n", 
         Ith(yB,1), Ith(yB,2), Ith(yB,3));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("tB0:        %12.4le\n",tfinal);
  printf("dG/dp:      %12.4le %12.4le %12.4le\n", 
         -Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
  printf("lambda(t0): %12.4le %12.4le %12.4le\n", 
         Ith(yB,1), Ith(yB,2), Ith(yB,3));
#else
  printf("tB0:        %12.4e\n",tfinal);
  printf("dG/dp:      %12.4e %12.4e %12.4e\n", 
         -Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
  printf("lambda(t0): %12.4e %12.4e %12.4e\n", 
         Ith(yB,1), Ith(yB,2), Ith(yB,3));
#endif
  printf("--------------------------------------------------------\n\n");
}

/* 
 * Check function return value.
 *    opt == 0 means SUNDIALS function allocates memory so check if
 *             returned NULL pointer
 *    opt == 1 means SUNDIALS function returns a flag so check if
 *             flag >= 0
 *    opt == 2 means function allocates memory so check if returned
 *             NULL pointer 
 */

static int check_flag(void *flagvalue, char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return(1); }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
	      funcname, *errflag);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return(1); }

  return(0);
}