This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/ida/fcmix_serial/fidaRoberts_dns-updated.f is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
c     ----------------------------------------------------------------
c     $Revision: 1.3 $
c     $Date: 2010/12/01 23:04:14 $
c     ----------------------------------------------------------------
c     This simple example problem for FIDA, due to Robertson, is from 
c     chemical kinetics, and consists of the following three equations:
c
c          dy1/dt = -.04*y1 + 1.e4*y2*y3
c          dy2/dt =  .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
c             0   = y1 + y2 + y3 - 1
c
c     on the interval from t = 0.0 to t = 4.e10, with initial
c     conditions: y1 = 1, y2 = y3 = 0.
c
c     While integrating the system, we also employ the rootfinding feature
c     to find the points at which y1 = 1.e-4 or at which y3 = 0.01.
c
c     The problem is solved using a dense linear solver, with a
c     user-supplied Jacobian. Output is printed at
c     t = .4, 4, 40, ..., 4e10.
c     ----------------------------------------------------------------
c
      program fidaRoberts_dns
c
      implicit none
c
      integer*4 ier, ierroot, info(2)
      integer*8 iout(25), ipar
      double precision rout(10), rpar
c
      integer*4 iatol, nout, jout, itask
      integer*4 nst, kused, hused
      integer*8 neq, i
      double precision t0, t1, rtol, tout, tret
      double precision y(3), yp(3), atol(3)
c
      data nst/3/, kused/9/, hused/2/
c
c Initialize variables
c
      neq = 3
      nout = 12
      rtol = 1.0d-4
      t0 = 0.0d0
      t1 = 0.4d0
      iatol = 2
      itask = 1
c
      y(1) = 1.0d0
      y(2) = 0.0d0
      y(3) = 0.0d0
c
      yp(1) = -0.04d0
      yp(2) = 0.04d0
      yp(3) = 0.0d0
c
      atol(1) = 1.0d-6
      atol(2) = 1.0d-10
      atol(3) = 1.0d-6
c
c Initialize IDA vector environment
c
      call fnvinits(2, neq, ier)
      if (ier .ne. 0) then
         write(6,10) ier
 10      format(///' SUNDIALS_ERROR: FNVINITS returned IER = ', i5)
         stop
      endif
c
      call fidamalloc(t0, y, yp, iatol, rtol, atol, 
     &                iout, rout, ipar, rpar, ier)
      if (ier .ne. 0) then
         write(6,20) ier
 20      format(///' SUNDIALS_ERROR: FIDAMALLOC returned IER = ', i5)
         stop
      endif
c
c Initialize rootfinding problem

      call fidarootinit(2, ier)
      if (ier .ne. 0) then
         write(6,25) ier
 25      format(///' SUNDIALS_ERROR: FIDAROOTINIT returned IER = ', i5)
         call fidafree
         stop
      endif
c
c Attach dense linear solver
c
      call fidadense(neq, ier)
      call fidadensesetjac(1, ier)
c
c Print header
c
      call prntintro(rtol, atol, y)
c
      tout = t1
c
c
      jout = 1
      do while(jout .le. nout)
c
        call fidasolve(tout, tret, y, yp, itask, ier)
c
        write(6,40) tret, (y(i), i = 1,3), iout(nst), iout(kused),
     &              rout(hused)
 40     format(e10.4, 3(1x,e12.4), i5, i3, e12.4)
c
        if (ier .lt. 0) then
           write(6,50) ier, iout(15)
 50        format(///' SUNDIALS_ERROR: FIDASOLVE returned IER = ',i5,/,
     1            '                 Linear Solver returned IER = ',i5)
           call fidarootfree
           call fidafree
           stop
        endif
c
        if (ier .eq. 2) then
          call fidarootinfo(2, info, ierroot)
          if (ierroot .lt. 0) then
            write(6,55) ier
 55         format(///' SUNDIALS_ERROR: FIDAROOTINFO returned IER = ',
     1             i5)
            call fidarootfree
            call fidafree
            stop
          endif
          write(6,60) (info(i), i = 1,2)
 60       format(5x, 'Above is a root, INFO() = ', 2i3)
        endif                   
c
        if (ier .eq. 0) then
           tout = tout * 10.0d0
           jout = jout + 1
        endif
c
      ENDDO
c
c Print final statistics
c
      call prntstats(iout)
c
c Free IDA memory
c
      call fidarootfree
      call fidafree
c
      stop
      end
c
c ==========
c
      subroutine fidaresfun(tres, y, yp, res, ipar, rpar, reserr)
c
      implicit none
c
      integer*4 reserr
      integer*8 ipar(*)
      double precision tres, rpar(*)
      double precision y(*), yp(*), res(*)
c
      res(1) = -0.04d0*y(1)+1.0d4*y(2)*y(3)
      res(2) = -res(1)-3.0d7*y(2)*y(2)-yp(2)
      res(1) = res(1)-yp(1)
      res(3) = y(1)+y(2)+y(3)-1.0d0
c
      reserr = 0
c
      return
      end
c
c ==========
c
      subroutine fidadjac(neq, t, y, yp, r, jac, cj, ewt, h,
     1                    ipar, rpar, wk1, wk2, wk3, djacerr)
c
      implicit none
c
      integer*8 neq
      integer*8 ipar(*)
      integer*4 djacerr
      double precision t, h, cj, rpar(*)
      double precision y(*), yp(*), r(*), ewt(*), jac(neq,neq)
      double precision wk1(*), wk2(*), wk3(*)
c
      jac(1,1) = -0.04d0-cj
      jac(2,1) = 0.04d0
      jac(3,1) = 1.0d0
      jac(1,2) = 1.0d4*y(3)
      jac(2,2) = -1.0d4*y(3)-6.0d7*y(2)-cj
      jac(3,2) = 1.0d0
      jac(1,3) = 1.0d4*y(2)
      jac(2,3) = -1.0d4*y(2)
      jac(3,3) = 1.0d0
c
      djacerr = 0

      return
      end
c
c ==========
c
      subroutine fidarootfn(t, y, yp, g, ipar, rpar, ier)
c Fortran routine for rootfinding
      implicit none
c
      INTEGER*8 ipar(*), ier
      double precision t, y(*), yp(*), g(*), rpar(*)
c
      g(1) = y(1) - 1.0d-4
      g(2) = y(3) - 1.0d-2

      ier = 0

      return
      end
c
c ==========
c
      subroutine prntintro(rtol, atol, y)
c
      implicit none
c
      integer*8 i
      double precision rtol, atol(*), y(*)
c
      write(6,60) rtol, (atol(i), i = 1,3), (y(i), i = 1,3)
 60   format(/'fidaRoberts_dns: Robertson kinetics DAE serial example',
     &       'problem for IDA', /,'          Three equation chemical',
     &       'kinetics problem.', //,
     &       'Tolerance parameters:  rtol = ', e8.2,
     &       '   atol = ', 3(1x,e8.2), /,
     &       'Initial conditions y0 = (', 3(1x,e8.2), ')', //,
     &       '  t            y1           y2           y3        nst',
     &       '  k    h')
c
      return
      end
c
c ==========
c
      subroutine prntstats(iout)
c
      implicit none
c
      integer*8 iout(25)
      integer*4 nst, reseval, jaceval, nni, ncf, netf, nge
c
      data nst/3/, reseval/4/, jaceval/17/, nni/7/, netf/5/,
     &     ncf/6/, nge/12/
c
      write(6,70) iout(nst), iout(reseval), iout(jaceval),
     &             iout(nni), iout(netf), iout(ncf), iout(nge)
 70   format(/'Final Run Statistics:', //,
     &         'Number of steps                    = ', i3, /,
     &         'Number of residual evaluations     = ', i3, /,
     &         'Number of Jacobian evaluations     = ', i3, /,
     &         'Number of nonlinear iterations     = ', i3, /,
     &         'Number of error test failures      = ', i3, /,
     &         'Number of nonlinear conv. failures = ', i3, /,
     &         'Number of root function evals.     = ', i3)
c
      return
      end