This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/ida/serial/idaRoberts_dns.c is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
 * -----------------------------------------------------------------
 * $Revision: 1.4 $
 * $Date: 2010/12/01 23:02:23 $
 * -----------------------------------------------------------------
 * Programmer(s): Allan Taylor, Alan Hindmarsh and
 *                Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * This simple example problem for IDA, due to Robertson, 
 * is from chemical kinetics, and consists of the following three 
 * equations:
 *
 *      dy1/dt = -.04*y1 + 1.e4*y2*y3
 *      dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
 *         0   = y1 + y2 + y3 - 1
 *
 * on the interval from t = 0.0 to t = 4.e10, with initial
 * conditions: y1 = 1, y2 = y3 = 0.
 *
 * While integrating the system, we also use the rootfinding
 * feature to find the points at which y1 = 1e-4 or at which
 * y3 = 0.01.
 *
 * The problem is solved with IDA using IDADENSE for the linear
 * solver, with a user-supplied Jacobian. Output is printed at
 * t = .4, 4, 40, ..., 4e10.
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <math.h>

#include <ida/ida.h>
#include <ida/ida_dense.h>
#include <nvector/nvector_serial.h>
#include <sundials/sundials_math.h>
#include <sundials/sundials_types.h>

/* Problem Constants */

#define NEQ   3
#define NOUT  12

#define ZERO RCONST(0.0);
#define ONE  RCONST(1.0);

/* Macro to define dense matrix elements, indexed from 1. */

#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1)

/* Prototypes of functions called by IDA */

int resrob(realtype tres, N_Vector yy, N_Vector yp, 
           N_Vector resval, void *user_data);

static int grob(realtype t, N_Vector yy, N_Vector yp,
                realtype *gout, void *user_data);

int jacrob(long int Neq, realtype tt,  realtype cj, 
           N_Vector yy, N_Vector yp, N_Vector resvec,
           DlsMat JJ, void *user_data,
           N_Vector tempv1, N_Vector tempv2, N_Vector tempv3);

/* Prototypes of private functions */
static void PrintHeader(realtype rtol, N_Vector avtol, N_Vector y);
static void PrintOutput(void *mem, realtype t, N_Vector y);
static void PrintRootInfo(int root_f1, int root_f2);
static void PrintFinalStats(void *mem);
static int check_flag(void *flagvalue, char *funcname, int opt);

/*
 *--------------------------------------------------------------------
 * Main Program
 *--------------------------------------------------------------------
 */

int main(void)
{
  void *mem;
  N_Vector yy, yp, avtol;
  realtype rtol, *yval, *ypval, *atval;
  realtype t0, tout1, tout, tret;
  int iout, retval, retvalr;
  int rootsfound[2];

  mem = NULL;
  yy = yp = avtol = NULL;
  yval = ypval = atval = NULL;

  /* Allocate N-vectors. */
  yy = N_VNew_Serial(NEQ);
  if(check_flag((void *)yy, "N_VNew_Serial", 0)) return(1);
  yp = N_VNew_Serial(NEQ);
  if(check_flag((void *)yp, "N_VNew_Serial", 0)) return(1);
  avtol = N_VNew_Serial(NEQ);
  if(check_flag((void *)avtol, "N_VNew_Serial", 0)) return(1);

  /* Create and initialize  y, y', and absolute tolerance vectors. */
  yval  = NV_DATA_S(yy);
  yval[0] = ONE;
  yval[1] = ZERO;
  yval[2] = ZERO;

  ypval = NV_DATA_S(yp);
  ypval[0]  = RCONST(-0.04);
  ypval[1]  = RCONST(0.04);
  ypval[2]  = ZERO;  

  rtol = RCONST(1.0e-4);

  atval = NV_DATA_S(avtol);
  atval[0] = RCONST(1.0e-8);
  atval[1] = RCONST(1.0e-14);
  atval[2] = RCONST(1.0e-6);

  /* Integration limits */
  t0 = ZERO;
  tout1 = RCONST(0.4);

  PrintHeader(rtol, avtol, yy);

  /* Call IDACreate and IDAInit to initialize IDA memory */
  mem = IDACreate();
  if(check_flag((void *)mem, "IDACreate", 0)) return(1);
  retval = IDAInit(mem, resrob, t0, yy, yp);
  if(check_flag(&retval, "IDAInit", 1)) return(1);
  /* Call IDASVtolerances to set tolerances */
  retval = IDASVtolerances(mem, rtol, avtol);
  if(check_flag(&retval, "IDASVtolerances", 1)) return(1);

  /* Free avtol */
  N_VDestroy_Serial(avtol);

  /* Call IDARootInit to specify the root function grob with 2 components */
  retval = IDARootInit(mem, 2, grob);
  if (check_flag(&retval, "IDARootInit", 1)) return(1);

  /* Call IDADense and set up the linear solver. */
  retval = IDADense(mem, NEQ);
  if(check_flag(&retval, "IDADense", 1)) return(1);
  retval = IDADlsSetDenseJacFn(mem, jacrob);
  if(check_flag(&retval, "IDADlsSetDenseJacFn", 1)) return(1);

  /* In loop, call IDASolve, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached. */

  iout = 0; tout = tout1;
  while(1) {

    retval = IDASolve(mem, tout, &tret, yy, yp, IDA_NORMAL);

    PrintOutput(mem,tret,yy);

    if(check_flag(&retval, "IDASolve", 1)) return(1);

    if (retval == IDA_ROOT_RETURN) {
      retvalr = IDAGetRootInfo(mem, rootsfound);
      check_flag(&retvalr, "IDAGetRootInfo", 1);
      PrintRootInfo(rootsfound[0],rootsfound[1]);
    }

    if (retval == IDA_SUCCESS) {
      iout++;
      tout *= RCONST(10.0);
    }

    if (iout == NOUT) break;
  }

  PrintFinalStats(mem);

  /* Free memory */

  IDAFree(&mem);
  N_VDestroy_Serial(yy);
  N_VDestroy_Serial(yp);

  return(0);
  
}

/*
 *--------------------------------------------------------------------
 * Functions called by IDA
 *--------------------------------------------------------------------
 */

/*
 * Define the system residual function. 
 */

int resrob(realtype tres, N_Vector yy, N_Vector yp, N_Vector rr, void *user_data)
{
  realtype *yval, *ypval, *rval;

  yval = NV_DATA_S(yy); 
  ypval = NV_DATA_S(yp); 
  rval = NV_DATA_S(rr);

  rval[0]  = RCONST(-0.04)*yval[0] + RCONST(1.0e4)*yval[1]*yval[2];
  rval[1]  = -rval[0] - RCONST(3.0e7)*yval[1]*yval[1] - ypval[1];
  rval[0] -=  ypval[0];
  rval[2]  =  yval[0] + yval[1] + yval[2] - ONE;

  return(0);
}

/*
 * Root function routine. Compute functions g_i(t,y) for i = 0,1. 
 */

static int grob(realtype t, N_Vector yy, N_Vector yp, realtype *gout,
                void *user_data)
{
  realtype *yval, y1, y3;

  yval = NV_DATA_S(yy); 
  y1 = yval[0]; y3 = yval[2];
  gout[0] = y1 - RCONST(0.0001);
  gout[1] = y3 - RCONST(0.01);

  return(0);
}

/*
 * Define the Jacobian function. 
 */

int jacrob(long int Neq, realtype tt,  realtype cj, 
           N_Vector yy, N_Vector yp, N_Vector resvec,
           DlsMat JJ, void *user_data,
           N_Vector tempv1, N_Vector tempv2, N_Vector tempv3)
{
  realtype *yval;
  
  yval = NV_DATA_S(yy);

  IJth(JJ,1,1) = RCONST(-0.04) - cj;
  IJth(JJ,2,1) = RCONST(0.04);
  IJth(JJ,3,1) = ONE;
  IJth(JJ,1,2) = RCONST(1.0e4)*yval[2];
  IJth(JJ,2,2) = RCONST(-1.0e4)*yval[2] - RCONST(6.0e7)*yval[1] - cj;
  IJth(JJ,3,2) = ONE;
  IJth(JJ,1,3) = RCONST(1.0e4)*yval[1];
  IJth(JJ,2,3) = RCONST(-1.0e4)*yval[1];
  IJth(JJ,3,3) = ONE;

  return(0);
}

/*
 *--------------------------------------------------------------------
 * Private functions
 *--------------------------------------------------------------------
 */

/* 
 * Print first lines of output (problem description)
 */

static void PrintHeader(realtype rtol, N_Vector avtol, N_Vector y)
{
  realtype *atval, *yval;

  atval  = NV_DATA_S(avtol);
  yval  = NV_DATA_S(y);

  printf("\nidaRoberts_dns: Robertson kinetics DAE serial example problem for IDA\n");
  printf("         Three equation chemical kinetics problem.\n\n");
  printf("Linear solver: IDADENSE, with user-supplied Jacobian.\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("Tolerance parameters:  rtol = %Lg   atol = %Lg %Lg %Lg \n",
         rtol, atval[0],atval[1],atval[2]);
  printf("Initial conditions y0 = (%Lg %Lg %Lg)\n",
         yval[0], yval[1], yval[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("Tolerance parameters:  rtol = %lg   atol = %lg %lg %lg \n",
         rtol, atval[0],atval[1],atval[2]);
  printf("Initial conditions y0 = (%lg %lg %lg)\n",
         yval[0], yval[1], yval[2]);
#else
  printf("Tolerance parameters:  rtol = %g   atol = %g %g %g \n",
         rtol, atval[0],atval[1],atval[2]);
  printf("Initial conditions y0 = (%g %g %g)\n",
         yval[0], yval[1], yval[2]);
#endif
  printf("Constraints and id not used.\n\n");
  printf("-----------------------------------------------------------------------\n");
  printf("  t             y1           y2           y3");
  printf("      | nst  k      h\n");
  printf("-----------------------------------------------------------------------\n");
}

/*
 * Print Output
 */

static void PrintOutput(void *mem, realtype t, N_Vector y)
{
  realtype *yval;
  int retval, kused;
  long int nst;
  realtype hused;

  yval  = NV_DATA_S(y);

  retval = IDAGetLastOrder(mem, &kused);
  check_flag(&retval, "IDAGetLastOrder", 1);
  retval = IDAGetNumSteps(mem, &nst);
  check_flag(&retval, "IDAGetNumSteps", 1);
  retval = IDAGetLastStep(mem, &hused);
  check_flag(&retval, "IDAGetLastStep", 1);
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%10.4Le %12.4Le %12.4Le %12.4Le | %3ld  %1d %12.4Le\n", 
         t, yval[0], yval[1], yval[2], nst, kused, hused);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%10.4le %12.4le %12.4le %12.4le | %3ld  %1d %12.4le\n", 
         t, yval[0], yval[1], yval[2], nst, kused, hused);
#else
  printf("%10.4e %12.4e %12.4e %12.4e | %3ld  %1d %12.4e\n", 
         t, yval[0], yval[1], yval[2], nst, kused, hused);
#endif
}

static void PrintRootInfo(int root_f1, int root_f2)
{
  printf("    rootsfound[] = %3d %3d\n", root_f1, root_f2);
  return;
}

/*
 * Print final integrator statistics
 */

static void PrintFinalStats(void *mem)
{
  int retval;
  long int nst, nni, nje, nre, nreLS, netf, ncfn, nge;

  retval = IDAGetNumSteps(mem, &nst);
  check_flag(&retval, "IDAGetNumSteps", 1);
  retval = IDAGetNumResEvals(mem, &nre);
  check_flag(&retval, "IDAGetNumResEvals", 1);
  retval = IDADlsGetNumJacEvals(mem, &nje);
  check_flag(&retval, "IDADlsGetNumJacEvals", 1);
  retval = IDAGetNumNonlinSolvIters(mem, &nni);
  check_flag(&retval, "IDAGetNumNonlinSolvIters", 1);
  retval = IDAGetNumErrTestFails(mem, &netf);
  check_flag(&retval, "IDAGetNumErrTestFails", 1);
  retval = IDAGetNumNonlinSolvConvFails(mem, &ncfn);
  check_flag(&retval, "IDAGetNumNonlinSolvConvFails", 1);
  retval = IDADlsGetNumResEvals(mem, &nreLS);
  check_flag(&retval, "IDADlsGetNumResEvals", 1);
  retval = IDAGetNumGEvals(mem, &nge);
  check_flag(&retval, "IDAGetNumGEvals", 1);

  printf("\nFinal Run Statistics: \n\n");
  printf("Number of steps                    = %ld\n", nst);
  printf("Number of residual evaluations     = %ld\n", nre+nreLS);
  printf("Number of Jacobian evaluations     = %ld\n", nje);
  printf("Number of nonlinear iterations     = %ld\n", nni);
  printf("Number of error test failures      = %ld\n", netf);
  printf("Number of nonlinear conv. failures = %ld\n", ncfn);
  printf("Number of root fn. evaluations     = %ld\n", nge);
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns a flag so check if
 *            flag >= 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer 
 */

static int check_flag(void *flagvalue, char *funcname, int opt)
{
  int *errflag;
  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, 
            "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n", 
            funcname);
    return(1);
  } else if (opt == 1) {
    /* Check if flag < 0 */
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, 
              "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n", 
              funcname, *errflag);
      return(1); 
    }
  } else if (opt == 2 && flagvalue == NULL) {
    /* Check if function returned NULL pointer - no memory allocated */
    fprintf(stderr, 
            "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n", 
            funcname);
    return(1);
  }

  return(0);
}