This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/idas/serial/idasHeat2D_kry.c is in libsundials-serial-dev 2.5.0-3+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*
 * -----------------------------------------------------------------
 * $Revision: 1.2 $
 * $Date: 2009/09/30 23:33:29 $
 * -----------------------------------------------------------------
 * Programmer(s): Allan Taylor, Alan Hindmarsh and
 *                Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * Example problem for IDA: 2D heat equation, serial, GMRES.
 *
 * This example solves a discretized 2D heat equation problem.
 * This version uses the Krylov solver IDASpgmr.
 *
 * The DAE system solved is a spatial discretization of the PDE
 *          du/dt = d^2u/dx^2 + d^2u/dy^2
 * on the unit square. The boundary condition is u = 0 on all edges.
 * Initial conditions are given by u = 16 x (1 - x) y (1 - y). The
 * PDE is treated with central differences on a uniform M x M grid.
 * The values of u at the interior points satisfy ODEs, and
 * equations u = 0 at the boundaries are appended, to form a DAE
 * system of size N = M^2. Here M = 10.
 *
 * The system is solved with IDA using the Krylov linear solver
 * IDASPGMR. The preconditioner uses the diagonal elements of the
 * Jacobian only. Routines for preconditioning, required by
 * IDASPGMR, are supplied here. The constraints u >= 0 are posed
 * for all components. Output is taken at t = 0, .01, .02, .04,
 * ..., 10.24. Two cases are run -- with the Gram-Schmidt type
 * being Modified in the first case, and Classical in the second.
 * The second run uses IDAReInit and IDAReInitSpgmr.
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <idas/idas.h>
#include <idas/idas_spgmr.h>
#include <nvector/nvector_serial.h>
#include <sundials/sundials_types.h>

/* Problem Constants */

#define NOUT  11
#define MGRID 10
#define NEQ   MGRID*MGRID
#define ZERO  RCONST(0.0)
#define ONE   RCONST(1.0)
#define TWO   RCONST(2.0)
#define FOUR  RCONST(4.0)

/* User data type */

typedef struct {  
  long int mm;  /* number of grid points */
  realtype dx;
  realtype coeff;
  N_Vector pp;  /* vector of prec. diag. elements */
} *UserData;

/* Prototypes for functions called by IDA */

int resHeat(realtype tres, N_Vector uu, N_Vector up,
            N_Vector resval, void *user_data);

int PsetupHeat(realtype tt, 
               N_Vector uu, N_Vector up, N_Vector rr, 
               realtype c_j, void *user_data, 
               N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

int PsolveHeat(realtype tt, 
               N_Vector uu, N_Vector up, N_Vector rr, 
               N_Vector rvec, N_Vector zvec, 
               realtype c_j, realtype delta, void *user_data, 
               N_Vector tmp);

/* Prototypes for private functions */

static int SetInitialProfile(UserData data, N_Vector uu, N_Vector up, 
                             N_Vector res);
static void PrintHeader(realtype rtol, realtype atol);
static void PrintOutput(void *mem, realtype t, N_Vector uu);
static int check_flag(void *flagvalue, char *funcname, int opt);

/*
 *--------------------------------------------------------------------
 * MAIN PROGRAM
 *--------------------------------------------------------------------
 */

int main()
{
  void *mem;
  UserData data;
  N_Vector uu, up, constraints, res;
  int ier, iout;
  realtype rtol, atol, t0, t1, tout, tret;
  long int netf, ncfn, ncfl;

  mem = NULL;
  data = NULL;
  uu = up = constraints = res = NULL;

  /* Allocate N-vectors and the user data structure. */

  uu = N_VNew_Serial(NEQ);
  if(check_flag((void *)uu, "N_VNew_Serial", 0)) return(1);

  up = N_VNew_Serial(NEQ);
  if(check_flag((void *)up, "N_VNew_Serial", 0)) return(1);

  res = N_VNew_Serial(NEQ);
  if(check_flag((void *)res, "N_VNew_Serial", 0)) return(1);

  constraints = N_VNew_Serial(NEQ);
  if(check_flag((void *)constraints, "N_VNew_Serial", 0)) return(1);

  data = (UserData) malloc(sizeof *data);
  data->pp = NULL;
  if(check_flag((void *)data, "malloc", 2)) return(1);

  /* Assign parameters in the user data structure. */

  data->mm  = MGRID;
  data->dx = ONE/(MGRID-ONE);
  data->coeff = ONE/(data->dx * data->dx);
  data->pp = N_VNew_Serial(NEQ);
  if(check_flag((void *)data->pp, "N_VNew_Serial", 0)) return(1);

  /* Initialize uu, up. */

  SetInitialProfile(data, uu, up, res);

  /* Set constraints to all 1's for nonnegative solution values. */

  N_VConst(ONE, constraints);

  /* Assign various parameters. */

  t0   = ZERO;
  t1   = RCONST(0.01);
  rtol = ZERO;
  atol = RCONST(1.0e-3); 

  /* Call IDACreate and IDAMalloc to initialize solution */

  mem = IDACreate();
  if(check_flag((void *)mem, "IDACreate", 0)) return(1);

  ier = IDASetUserData(mem, data);
  if(check_flag(&ier, "IDASetUserData", 1)) return(1);

  ier = IDASetConstraints(mem, constraints);
  if(check_flag(&ier, "IDASetConstraints", 1)) return(1);
  N_VDestroy_Serial(constraints);

  ier = IDAInit(mem, resHeat, t0, uu, up);
  if(check_flag(&ier, "IDAInit", 1)) return(1);

  ier = IDASStolerances(mem, rtol, atol);
  if(check_flag(&ier, "IDASStolerances", 1)) return(1);

  /* Call IDASpgmr to specify the linear solver. */

  ier = IDASpgmr(mem, 0);
  if(check_flag(&ier, "IDASpgmr", 1)) return(1);

  ier = IDASpilsSetPreconditioner(mem, PsetupHeat, PsolveHeat);
  if(check_flag(&ier, "IDASpilsSetPreconditioner", 1)) return(1);

  /* Print output heading. */
  PrintHeader(rtol, atol);
  
  /* 
   * -------------------------------------------------------------------------
   * CASE I 
   * -------------------------------------------------------------------------
   */
  
  /* Print case number, output table heading, and initial line of table. */

  printf("\n\nCase 1: gsytpe = MODIFIED_GS\n");
  printf("\n   Output Summary (umax = max-norm of solution) \n\n");
  printf("  time     umax       k  nst  nni  nje   nre   nreLS    h      npe nps\n" );
  printf("----------------------------------------------------------------------\n");

  /* Loop over output times, call IDASolve, and print results. */

  for (tout = t1,iout = 1; iout <= NOUT ; iout++, tout *= TWO) {
    ier = IDASolve(mem, tout, &tret, uu, up, IDA_NORMAL);
    if(check_flag(&ier, "IDASolve", 1)) return(1);
    PrintOutput(mem, tret, uu);
  }

  /* Print remaining counters. */

  ier = IDAGetNumErrTestFails(mem, &netf);
  check_flag(&ier, "IDAGetNumErrTestFails", 1);

  ier = IDAGetNumNonlinSolvConvFails(mem, &ncfn);
  check_flag(&ier, "IDAGetNumNonlinSolvConvFails", 1);

  ier = IDASpilsGetNumConvFails(mem, &ncfl);
  check_flag(&ier, "IDASpilsGetNumConvFails", 1);

  printf("\nError test failures            = %ld\n", netf);
  printf("Nonlinear convergence failures = %ld\n", ncfn);
  printf("Linear convergence failures    = %ld\n", ncfl);

  /* 
   * -------------------------------------------------------------------------
   * CASE II
   * -------------------------------------------------------------------------
   */
  
  /* Re-initialize uu, up. */

  SetInitialProfile(data, uu, up, res);
  
  /* Re-initialize IDA and IDASPGMR */

  ier = IDAReInit(mem, t0, uu, up);
  if(check_flag(&ier, "IDAReInit", 1)) return(1);
  
  ier = IDASpilsSetGSType(mem, CLASSICAL_GS);
  if(check_flag(&ier, "IDASpilsSetGSType",1)) return(1); 
  
  /* Print case number, output table heading, and initial line of table. */

  printf("\n\nCase 2: gstype = CLASSICAL_GS\n");
  printf("\n   Output Summary (umax = max-norm of solution) \n\n");
  printf("  time     umax       k  nst  nni  nje   nre   nreLS    h      npe nps\n" );
  printf("----------------------------------------------------------------------\n");

  /* Loop over output times, call IDASolve, and print results. */

  for (tout = t1,iout = 1; iout <= NOUT ; iout++, tout *= TWO) {
    ier = IDASolve(mem, tout, &tret, uu, up, IDA_NORMAL);
    if(check_flag(&ier, "IDASolve", 1)) return(1);
    PrintOutput(mem, tret, uu);
  }

  /* Print remaining counters. */

  ier = IDAGetNumErrTestFails(mem, &netf);
  check_flag(&ier, "IDAGetNumErrTestFails", 1);

  ier = IDAGetNumNonlinSolvConvFails(mem, &ncfn);
  check_flag(&ier, "IDAGetNumNonlinSolvConvFails", 1);

  ier = IDASpilsGetNumConvFails(mem, &ncfl);
  check_flag(&ier, "IDASpilsGetNumConvFails", 1);

  printf("\nError test failures            = %ld\n", netf);
  printf("Nonlinear convergence failures = %ld\n", ncfn);
  printf("Linear convergence failures    = %ld\n", ncfl);

  /* Free Memory */

  IDAFree(&mem);

  N_VDestroy_Serial(uu);
  N_VDestroy_Serial(up);
  N_VDestroy_Serial(res);

  N_VDestroy_Serial(data->pp);
  free(data);

  return(0);
}

/*
 *--------------------------------------------------------------------
 * FUNCTIONS CALLED BY IDA
 *--------------------------------------------------------------------
 */

/*
 * resHeat: heat equation system residual function (user-supplied)      
 * This uses 5-point central differencing on the interior points, and   
 * includes algebraic equations for the boundary values.                
 * So for each interior point, the residual component has the form      
 *    res_i = u'_i - (central difference)_i                             
 * while for each boundary point, it is res_i = u_i.                     
 */

int resHeat(realtype tt, 
            N_Vector uu, N_Vector up, N_Vector rr, 
            void *user_data)
{
  long int i, j, offset, loc, mm;
  realtype *uu_data, *up_data, *rr_data, coeff, dif1, dif2;
  UserData data;
  
  uu_data = NV_DATA_S(uu); 
  up_data = NV_DATA_S(up); 
  rr_data = NV_DATA_S(rr);

  data = (UserData) user_data;
  
  coeff = data->coeff;
  mm    = data->mm;
  
  /* Initialize rr to uu, to take care of boundary equations. */
  N_VScale(ONE, uu, rr);
  
  /* Loop over interior points; set res = up - (central difference). */
  for (j = 1; j < MGRID-1; j++) {
    offset = mm*j;
    for (i = 1; i < mm-1; i++) {
      loc = offset + i;
      dif1 = uu_data[loc-1]  + uu_data[loc+1]  - TWO * uu_data[loc];
      dif2 = uu_data[loc-mm] + uu_data[loc+mm] - TWO * uu_data[loc];
      rr_data[loc]= up_data[loc] - coeff * ( dif1 + dif2 );
    }
  }

  return(0);
}

/*
 * PsetupHeat: setup for diagonal preconditioner.   
 *                                                                 
 * The optional user-supplied functions PsetupHeat and          
 * PsolveHeat together must define the left preconditoner        
 * matrix P approximating the system Jacobian matrix               
 *                   J = dF/du + cj*dF/du'                         
 * (where the DAE system is F(t,u,u') = 0), and solve the linear   
 * systems P z = r.   This is done in this case by keeping only    
 * the diagonal elements of the J matrix above, storing them as    
 * inverses in a vector pp, when computed in PsetupHeat, for    
 * subsequent use in PsolveHeat.                                 
 *                                                                 
 * In this instance, only cj and data (user data structure, with    
 * pp etc.) are used from the PsetupdHeat argument list.         
 */
  
int PsetupHeat(realtype tt, 
               N_Vector uu, N_Vector up, N_Vector rr, 
               realtype c_j, void *user_data, 
               N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  
  long int i, j, offset, loc, mm;
  realtype *ppv, pelinv;
  UserData data;
  
  data = (UserData) user_data;
  ppv = NV_DATA_S(data->pp);
  mm = data->mm;

  /* Initialize the entire vector to 1., then set the interior points to the
     correct value for preconditioning. */
  N_VConst(ONE,data->pp);
  
  /* Compute the inverse of the preconditioner diagonal elements. */
  pelinv = ONE/(c_j + FOUR*data->coeff); 
  
  for (j = 1; j < mm-1; j++) {
    offset = mm * j;
    for (i = 1; i < mm-1; i++) {
      loc = offset + i;
      ppv[loc] = pelinv;
    }
  }
  
  return(0);  
}

/*
 * PsolveHeat: solve preconditioner linear system.              
 * This routine multiplies the input vector rvec by the vector pp 
 * containing the inverse diagonal Jacobian elements (previously  
 * computed in PrecondHeateq), returning the result in zvec.      
 */

int PsolveHeat(realtype tt, 
               N_Vector uu, N_Vector up, N_Vector rr, 
               N_Vector rvec, N_Vector zvec, 
               realtype c_j, realtype delta, void *user_data, 
               N_Vector tmp)
{
  UserData data;
  data = (UserData) user_data;
  N_VProd(data->pp, rvec, zvec);
  return(0);
}

/*
 *--------------------------------------------------------------------
 * PRIVATE FUNCTIONS
 *--------------------------------------------------------------------
 */

/*
 * SetInitialProfile: routine to initialize u and up vectors.
 */

static int SetInitialProfile(UserData data, N_Vector uu, N_Vector up, 
                             N_Vector res)
{
  long int mm, mm1, i, j, offset, loc;
  realtype xfact, yfact, *udata, *updata;

  mm = data->mm;

  udata = NV_DATA_S(uu);
  updata = NV_DATA_S(up);

  /* Initialize uu on all grid points. */ 
  mm1 = mm - 1;
  for (j = 0; j < mm; j++) {
    yfact = data->dx * j;
    offset = mm*j;
    for (i = 0;i < mm; i++) {
      xfact = data->dx * i;
      loc = offset + i;
      udata[loc] = RCONST(16.0) * xfact * (ONE - xfact) * yfact * (ONE - yfact);
    }
  }
  
  /* Initialize up vector to 0. */
  N_VConst(ZERO, up);

  /* resHeat sets res to negative of ODE RHS values at interior points. */
  resHeat(ZERO, uu, up, res, data);

  /* Copy -res into up to get correct interior initial up values. */
  N_VScale(-ONE, res, up);

  /* Set up at boundary points to zero. */
  for (j = 0; j < mm; j++) {
    offset = mm*j;
    for (i = 0; i < mm; i++) {
      loc = offset + i;
      if (j == 0 || j == mm1 || i == 0 || i == mm1 ) updata[loc] = ZERO;
    }
  }
  
  return(0);
  }

/*
 * Print first lines of output (problem description)
 */

static void PrintHeader(realtype rtol, realtype atol)
{
  printf("\nidasHeat2D_kry: Heat equation, serial example problem for IDA \n");
  printf("                Discretized heat equation on 2D unit square. \n");
  printf("                Zero boundary conditions,");
  printf(" polynomial initial conditions.\n");
  printf("                Mesh dimensions: %d x %d", MGRID, MGRID);
  printf("     Total system size: %d\n\n", NEQ);
#if defined(SUNDIALS_EXTENDED_PRECISION) 
  printf("Tolerance parameters:  rtol = %Lg   atol = %Lg\n", rtol, atol);
#elif defined(SUNDIALS_DOUBLE_PRECISION) 
  printf("Tolerance parameters:  rtol = %lg   atol = %lg\n", rtol, atol);
#else
  printf("Tolerance parameters:  rtol = %g   atol = %g\n", rtol, atol);
#endif
  printf("Constraints set to force all solution components >= 0. \n");
  printf("Linear solver: IDASPGMR, preconditioner using diagonal elements. \n");
}

/*
 * PrintOutput: print max norm of solution and current solver statistics
 */

static void PrintOutput(void *mem, realtype t, N_Vector uu)
{
  realtype hused, umax;
  long int nst, nni, nje, nre, nreLS, nli, npe, nps;
  int kused, ier;
  
  umax = N_VMaxNorm(uu);

  ier = IDAGetLastOrder(mem, &kused);
  check_flag(&ier, "IDAGetLastOrder", 1);
  ier = IDAGetNumSteps(mem, &nst);
  check_flag(&ier, "IDAGetNumSteps", 1);
  ier = IDAGetNumNonlinSolvIters(mem, &nni);
  check_flag(&ier, "IDAGetNumNonlinSolvIters", 1);
  ier = IDAGetNumResEvals(mem, &nre);
  check_flag(&ier, "IDAGetNumResEvals", 1);
  ier = IDAGetLastStep(mem, &hused);
  check_flag(&ier, "IDAGetLastStep", 1);
  ier = IDASpilsGetNumJtimesEvals(mem, &nje);
  check_flag(&ier, "IDASpilsGetNumJtimesEvals", 1);
  ier = IDASpilsGetNumLinIters(mem, &nli);
  check_flag(&ier, "IDASpilsGetNumLinIters", 1);
  ier = IDASpilsGetNumResEvals(mem, &nreLS);
  check_flag(&ier, "IDASpilsGetNumResEvals", 1);
  ier = IDASpilsGetNumPrecEvals(mem, &npe);
  check_flag(&ier, "IDASpilsGetPrecEvals", 1);
  ier = IDASpilsGetNumPrecSolves(mem, &nps);
  check_flag(&ier, "IDASpilsGetNumPrecSolves", 1);

#if defined(SUNDIALS_EXTENDED_PRECISION) 
  printf(" %5.2Lf %13.5Le  %d  %3ld  %3ld  %3ld  %4ld  %4ld  %9.2Le  %3ld %3ld\n",
         t, umax, kused, nst, nni, nje, nre, nreLS, hused, npe, nps);
#elif defined(SUNDIALS_DOUBLE_PRECISION) 
  printf(" %5.2f %13.5le  %d  %3ld  %3ld  %3ld  %4ld  %4ld  %9.2le  %3ld %3ld\n",
         t, umax, kused, nst, nni, nje, nre, nreLS, hused, npe, nps);
#else
  printf(" %5.2f %13.5e  %d  %3ld  %3ld  %3ld  %4ld  %4ld  %9.2e  %3ld %3ld\n",
         t, umax, kused, nst, nni, nje, nre, nreLS, hused, npe, nps);
#endif
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns a flag so check if
 *            flag >= 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer 
 */

static int check_flag(void *flagvalue, char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, 
            "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n", 
            funcname);
    return(1);
  } else if (opt == 1) {
    /* Check if flag < 0 */
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, 
              "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n", 
              funcname, *errflag);
      return(1); 
    }
  } else if (opt == 2 && flagvalue == NULL) {
    /* Check if function returned NULL pointer - no memory allocated */
    fprintf(stderr, 
            "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n", 
            funcname);
    return(1);
  }

  return(0);
}