This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin/multistage/multistagescheme.py is in python-dolfin 2016.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# -*- coding: utf-8 -*-
"""This module defines different MultiStageScheme classes which can be
passed to a RKSolver or PointIntegralSolver"""

# Copyright (C) 2013-2015 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Patrick Farrell, 2013
# Modified by Martin Sandve Alnæs, 2015

import numpy as np
import functools

# Import SWIG-generated extension module (DOLFIN C++)
import dolfin.cpp as cpp

# Import ufl
import ufl

# Import classes from dolfin python layer
from dolfin.functions.constant import Constant
from dolfin.functions.expression import Expression
from dolfin.functions.function import Function, TestFunction
from dolfin.fem.formmanipulations import derivative, adjoint
from dolfin.multistage.factorize import extract_tested_expressions
from ufl import action as ufl_action
from dolfin.fem.form import Form
import ufl.algorithms
from ufl.algorithms import expand_derivatives

# FIXME: Add support for algebraic parts (at least for implicit)
# FIXME: Add support for implicit/explicit split ala IMEX schemes


def safe_adjoint(x):
    return adjoint(x, reordered_arguments=x.arguments())


def safe_action(x, y):
    x = expand_derivatives(x)
    if x.integrals() == ():
        return x # form is empty, return anyway
    else:
        return ufl_action(x, y)


def _check_abc(a, b, c):
    if not (isinstance(a, np.ndarray) and (len(a) == 1 or \
            (len(a.shape)==2 and a.shape[0] == a.shape[1]))):
        raise TypeError("Expected an m x m numpy array as the first argument")
    if not (isinstance(b, np.ndarray) and len(b.shape) in [1,2]):
        raise TypeError("Expected a 1 or 2 dimensional numpy array as the second argument")
    if not (isinstance(c, np.ndarray) and len(c.shape) == 1):
        raise TypeError("Expected a 1 dimensional numpy array as the third argument")

    # Make sure a is a "matrix"
    if len(a) == 1:
        a.shape = (1, 1)

    # Get size of system
    size = a.shape[0]

    # If b is a matrix we expect it to have two rows
    if len(b.shape) == 2:
        if not (b.shape[0] == 2 and b.shape[1] == size):
            raise ValueError("Expected a 2 row matrix with the same number "\
                             "of collumns as the first dimension of the a matrix.")
    elif len(b) != size:
        raise ValueError("Expected the length of the b vector to have the "\
                         "same size as the first dimension of the a matrix.")

    if len(c) != size:
        raise ValueError("Expected the length of the c vector to have the "\
                         "same size as the first dimension of the a matrix.")

    # Check if the method is singly diagonally implicit
    sigma = -1
    for i in range(size):
        # If implicit
        if a[i,i] != 0:
            if sigma == -1:
                sigma = a[i,i]
            elif sigma != a[i,i]:
                raise ValueError("Expected only singly diagonally implicit "
                                 "schemes. (Same value on the diagonal of 'a'.)")

    # Check if tableau is fully implicit
    for i in range(size):
        for j in range(i):
            if a[j, i] != 0:
                raise ValueError("Does not support fully implicit Butcher tableau.")

    return a


def _check_form(rhs_form):
    if not isinstance(rhs_form, ufl.Form):
        raise TypeError("Expected a ufl.Form as the 5th argument.")

    # Check if form contains a cell or point integral
    if rhs_form.integrals_by_type("cell"):
        DX = ufl.dx
    elif rhs_form.integrals_by_type("vertex"):
        DX = ufl.dP
    else:
        raise ValueError("Expected either a cell or vertex integral in the form.")

    if len(rhs_form.integrals()) != 1:
        raise ValueError("Expected only one integral in form.")

    arguments = rhs_form.arguments()
    if len(arguments) != 1:
        raise ValueError("Expected the form to have rank 1")

    return DX


def _time_dependent_expressions(rhs_form, time):
    """
    Return a list of expressions which uses the present time as a parameter
    """
    # FIXME: Add extraction of time dependant expressions from bcs too
    time_dependent_expressions = dict()

    for coefficient in rhs_form.coefficients():
        if hasattr(coefficient, "user_parameters"):
            for c_name, c in list(coefficient.user_parameters.items()):
                if isinstance(c, cpp.GenericFunction) and time.id() == c.id():
                    if coefficient not in time_dependent_expressions:
                        time_dependent_expressions[coefficient] = [c_name]
                    else:
                        time_dependent_expressions[coefficient].append(c_name)

    return time_dependent_expressions


def _replace_dict_time_dependent_expression(time_dep_expressions, time, dt, c):
    assert(isinstance(c, float))
    replace_dict = {}
    if c == 0.0 or not time_dep_expressions:
        return replace_dict
    new_time = Expression("time + c*dt", time=time, c=c, dt=dt, degree=0)
    for expr, c_names in list(time_dep_expressions.items()):
        assert(isinstance(expr, Expression))
        kwargs = dict(name=expr.name(), label=expr.label(),
                      element=expr.ufl_element(), **expr.user_parameters)
        for c_name in c_names:
            kwargs[c_name] = new_time
        replace_dict[expr] = Expression(expr.cppcode, **kwargs)

    return replace_dict


def _butcher_scheme_generator(a, b, c, time, solution, rhs_form):
    """
    Generates a list of forms and solutions for a given Butcher tableau

    *Arguments*
        a (2 dimensional numpy array)
            The a matrix of the Butcher tableau.
        b (1-2 dimensional numpy array)
            The b vector of the Butcher tableau. If b is 2 dimensional the
            scheme includes an error estimator and can be used in adaptive
            solvers.
        c (1 dimensional numpy array)
            The c vector the Butcher tableau.
        time (_Constant_)
            A Constant holding the time at the start of the time step
        solution (_Function_)
            The prognostic variable
        rhs_form (ufl.Form)
            A UFL form representing the rhs for a time differentiated equation
    """

    a = _check_abc(a, b, c)
    size = a.shape[0]

    DX = _check_form(rhs_form)

    # Get test function
    arguments = rhs_form.arguments()
    coefficients = rhs_form.coefficients()
    v = arguments[0]

    # Create time step
    dt = Constant(0.1)

    # rhs forms
    dolfin_stage_forms = []
    ufl_stage_forms = []

    # Stage solutions
    k = [Function(solution.function_space(), name="k_%d"%i) for i in range(size)]

    jacobian_indices = []

    # Create the stage forms
    y_ = solution
    time_ = time
    time_dep_expressions = _time_dependent_expressions(rhs_form, time)
    zero_ = ufl.zero(*y_.ufl_shape)
    for i, ki in enumerate(k):

        # Check whether the stage is explicit
        explicit = a[i,i] == 0

        # Evaluation arguments for the ith stage
        evalargs = y_ + dt * sum([float(a[i,j]) * k[j] \
                                  for j in range(i+1)], zero_)
        time = time_ + dt*c[i]

        replace_dict = _replace_dict_time_dependent_expression(time_dep_expressions,
                                                               time_, dt, c[i])

        replace_dict[y_] = evalargs
        replace_dict[time_] = time
        stage_form = ufl.replace(rhs_form, replace_dict)

        if explicit:
            stage_forms = [stage_form]
            jacobian_indices.append(-1)
        else:
            # Create a F=0 form and differentiate it
            stage_form -= ufl.inner(ki, v)*DX
            stage_forms = [stage_form, derivative(stage_form, ki)]
            jacobian_indices.append(0)
        ufl_stage_forms.append(stage_forms)

        dolfin_stage_forms.append([Form(form) for form in stage_forms])

    # Only one last stage
    if len(b.shape) == 1:
        last_stage = Form(ufl.inner(y_+sum([dt*float(bi)*ki for bi, ki in \
                                            zip(b, k)], zero_), v)*DX)
    else:
        # FIXME: Add support for adaptivity in RKSolver and MultiStageScheme

        last_stage = [Form(ufl.inner(y_+sum([dt*float(bi)*ki for bi, ki in \
                                             zip(b[0,:], k)], zero_), v)*DX),
                      Form(ufl.inner(y_+sum([dt*float(bi)*ki for bi, ki in \
                                             zip(b[1,:], k)], zero_), v)*DX)]

    # Create the Function holding the solution at end of time step
    #k.append(solution.copy())

    # Generate human form of MultiStageScheme
    human_form = []
    for i in range(size):
        kterm = " + ".join("%sh*k_%s" % ("" if a[i,j] == 1.0 else \
                                         "%s*"% a[i,j], j) \
                           for j in range(size) if a[i,j] != 0)
        if c[i] in [0.0, 1.0]:
            cih = " + h" if c[i] == 1.0 else ""
        else:
            cih = " + %s*h" % c[i]

        if len(kterm) == 0:
            human_form.append("k_%(i)s = f(t_n%(cih)s, y_n)" % {"i": i, "cih": cih})
        else:
            human_form.append("k_%(i)s = f(t_n%(cih)s, y_n + %(kterm)s)" % \
                          {"i": i, "cih": cih, "kterm": kterm})

    parentheses = "(%s)" if np.sum(b>0) > 1 else "%s"
    human_form.append("y_{n+1} = y_n + h*" + parentheses % (" + ".join(\
        "%sk_%s" % ("" if b[i] == 1.0 else "%s*" % b[i], i) \
        for i in range(size) if b[i] > 0)))

    human_form = "\n".join(human_form)

    return ufl_stage_forms, dolfin_stage_forms, jacobian_indices, last_stage, \
           k, dt, human_form, None


def _butcher_scheme_generator_tlm(a, b, c, time, solution, rhs_form, perturbation):
    """
    Generates a list of forms and solutions for a given Butcher tableau

    *Arguments*
        a (2 dimensional numpy array)
            The a matrix of the Butcher tableau.
        b (1-2 dimensional numpy array)
            The b vector of the Butcher tableau. If b is 2 dimensional the
            scheme includes an error estimator and can be used in adaptive
            solvers.
        c (1 dimensional numpy array)
            The c vector the Butcher tableau.
        time (_Constant_)
            A Constant holding the time at the start of the time step
        solution (_Function_)
            The prognostic variable
        rhs_form (ufl.Form)
            A UFL form representing the rhs for a time differentiated equation
        perturbation (_Function_)
            The perturbation in the initial condition of the solution
    """

    a = _check_abc(a, b, c)
    size = a.shape[0]

    DX = _check_form(rhs_form)

    # Get test function
    arguments = rhs_form.arguments()
    coefficients = rhs_form.coefficients()
    v = arguments[0]

    # Create time step
    dt = Constant(0.1)

    # rhs forms
    dolfin_stage_forms = []
    ufl_stage_forms = []

    # Stage solutions
    k = [Function(solution.function_space(), name="k_%d"%i) for i in range(size)]
    kdot = [Function(solution.function_space(), name="kdot_%d"%i) \
            for i in range(size)]

    # Create the stage forms
    y_ = solution
    time_ = time
    time_dep_expressions = _time_dependent_expressions(rhs_form, time)
    zero_ = ufl.zero(*y_.ufl_shape)
    forward_forms = []
    stage_solutions = []
    jacobian_indices = []

    for i, ki in enumerate(k):

        # Check whether the stage is explicit
        explicit = a[i,i] == 0

        # Evaluation arguments for the ith stage
        evalargs = y_ + dt * sum([float(a[i,j]) * k[j] \
                                  for j in range(i+1)], zero_)
        time = time_ + dt*c[i]

        replace_dict = _replace_dict_time_dependent_expression(time_dep_expressions,
                                                               time_, dt, c[i])

        replace_dict[y_] = evalargs
        replace_dict[time_] = time
        stage_form = ufl.replace(rhs_form, replace_dict)

        forward_forms.append(stage_form)

        # The recomputation of the forward run:

        if explicit:
            stage_forms = [stage_form]
            jacobian_indices.append(-1)
        else:
            # Create a F=0 form and differentiate it
            stage_form_implicit = stage_form - ufl.inner(ki, v)*DX
            stage_forms = [stage_form_implicit, derivative(stage_form_implicit, ki)]
            jacobian_indices.append(0)

        ufl_stage_forms.append(stage_forms)
        dolfin_stage_forms.append([Form(form) for form in stage_forms])
        stage_solutions.append(ki)

        # And now the tangent linearisation:
        stage_form_tlm = safe_action(derivative(stage_form, y_), perturbation) + \
                         sum([dt*float(a[i,j]) * safe_action(derivative(\
            forward_forms[j], y_), kdot[j]) for j in range(i+1)])
        if explicit:
            stage_forms_tlm = [stage_form_tlm]
            jacobian_indices.append(-1)
        else:
            # Create a F=0 form and differentiate it
            stage_form_tlm -= ufl.inner(kdot[i], v)*DX
            stage_forms_tlm = [stage_form_tlm, derivative(stage_form_tlm, kdot[i])]
            jacobian_indices.append(1)

        ufl_stage_forms.append(stage_forms_tlm)
        dolfin_stage_forms.append([Form(form) for form in stage_forms_tlm])
        stage_solutions.append(kdot[i])

    # Only one last stage
    if len(b.shape) == 1:
        last_stage = Form(ufl.inner(perturbation + sum(\
            [dt*float(bi)*kdoti for bi, kdoti in zip(b, kdot)], zero_), v)*DX)
    else:
        raise Exception("Not sure what to do here")

    human_form = []
    for i in range(size):
        kterm = " + ".join("%sh*k_%s" % ("" if a[i,j] == 1.0 else \
                                         "%s*"% a[i,j], j) \
                           for j in range(size) if a[i,j] != 0)
        if c[i] in [0.0, 1.0]:
            cih = " + h" if c[i] == 1.0 else ""
        else:
            cih = " + %s*h" % c[i]

        kdotterm = " + ".join("%(a)sh*action(derivative(f(t_n%(cih)s, y_n + "\
                              "%(kterm)s), kdot_%(i)s" % \
                              {"a": ("" if a[i,j] == 1.0 else "%s*"% a[i,j], j),
                               "i": i,
                               "cih": cih,
                               "kterm": kterm} \
                              for j in range(size) if a[i,j] != 0)

        if len(kterm) == 0:
            human_form.append("k_%(i)s = f(t_n%(cih)s, y_n)" % {"i": i, "cih": cih})
            human_form.append("kdot_%(i)s = action(derivative("\
                              "f(t_n%(cih)s, y_n), y_n), ydot_n)" % \
                              {"i": i, "cih": cih})
        else:
            human_form.append("k_%(i)s = f(t_n%(cih)s, y_n + %(kterm)s)" % \
                          {"i": i, "cih": cih, "kterm": kterm})
            human_form.append("kdot_%(i)s = action(derivative(f(t_n%(cih)s, "\
                              "y_n + %(kterm)s), y_n) + %(kdotterm)s" % \
                          {"i": i, "cih": cih, "kterm": kterm, "kdotterm": kdotterm})

    parentheses = "(%s)" if np.sum(b>0) > 1 else "%s"
    human_form.append("ydot_{n+1} = ydot_n + h*" + parentheses % (" + ".join(\
        "%skdot_%s" % ("" if b[i] == 1.0 else "%s*" % b[i], i) \
        for i in range(size) if b[i] > 0)))

    human_form = "\n".join(human_form)

    return ufl_stage_forms, dolfin_stage_forms, jacobian_indices, last_stage, \
        stage_solutions, dt, human_form, perturbation


def _butcher_scheme_generator_adm(a, b, c, time, solution, rhs_form, adj):
    """
    Generates a list of forms and solutions for a given Butcher tableau

    *Arguments*
        a (2 dimensional numpy array)
            The a matrix of the Butcher tableau.
        b (1-2 dimensional numpy array)
            The b vector of the Butcher tableau. If b is 2 dimensional the
            scheme includes an error estimator and can be used in adaptive
            solvers.
        c (1 dimensional numpy array)
            The c vector the Butcher tableau.
        time (_Constant_)
            A Constant holding the time at the start of the time step
        solution (_Function_)
            The prognostic variable
        rhs_form (ufl.Form)
            A UFL form representing the rhs for a time differentiated equation
        adj (_Function_)
            The derivative of the functional with respect to y_n+1
    """

    a = _check_abc(a, b, c)
    size = a.shape[0]

    DX = _check_form(rhs_form)

    # Get test function
    arguments = rhs_form.arguments()
    coefficients = rhs_form.coefficients()
    v = arguments[0]

    # Create time step
    dt = Constant(0.1)

    # rhs forms
    dolfin_stage_forms = []
    ufl_stage_forms = []

    # Stage solutions
    k = [Function(solution.function_space(), name="k_%d"%i) for i in range(size)]
    kbar = [Function(solution.function_space(), name="kbar_%d"%i) \
            for i in range(size)]

    # Create the stage forms
    y_ = solution
    time_ = time
    time_dep_expressions = _time_dependent_expressions(rhs_form, time)
    zero_ = ufl.zero(*y_.ufl_shape)
    forward_forms = []
    stage_solutions = []
    jacobian_indices = []

    # The recomputation of the forward run:
    for i, ki in enumerate(k):

        # Check whether the stage is explicit
        explicit = a[i,i] == 0

        # Evaluation arguments for the ith stage
        evalargs = y_ + dt * sum([float(a[i,j]) * k[j] \
                                  for j in range(i+1)], zero_)
        time = time_ + dt*c[i]

        replace_dict = _replace_dict_time_dependent_expression(\
            time_dep_expressions, time_, dt, c[i])

        replace_dict[y_] = evalargs
        replace_dict[time_] = time
        stage_form = ufl.replace(rhs_form, replace_dict)

        forward_forms.append(stage_form)

        if explicit:
            stage_forms = [stage_form]
            jacobian_indices.append(-1)
        else:
            # Create a F=0 form and differentiate it
            stage_form_implicit = stage_form - ufl.inner(ki, v)*DX
            stage_forms = [stage_form_implicit, derivative(\
                stage_form_implicit, ki)]
            jacobian_indices.append(0)

        ufl_stage_forms.append(stage_forms)
        dolfin_stage_forms.append([Form(form) for form in stage_forms])
        stage_solutions.append(ki)

    for i, kbari in reversed(list(enumerate(kbar))):

        # Check whether the stage is explicit
        explicit = a[i,i] == 0

        # And now the adjoint linearisation:
        stage_form_adm = ufl.inner(dt * b[i] * adj, v)*DX  + sum(\
            [dt * float(a[j,i]) * safe_action(safe_adjoint(derivative(\
                forward_forms[j], y_)), kbar[j]) for j in range(i, size)])
        if explicit:
            stage_forms_adm = [stage_form_adm]
            jacobian_indices.append(-1)
        else:
            # Create a F=0 form and differentiate it
            stage_form_adm -= ufl.inner(kbar[i], v)*DX
            stage_forms_adm = [stage_form_adm, derivative(stage_form_adm, kbari)]
            jacobian_indices.append(1)

        ufl_stage_forms.append(stage_forms_adm)
        dolfin_stage_forms.append([Form(form) for form in stage_forms_adm])
        stage_solutions.append(kbari)

    # Only one last stage
    if len(b.shape) == 1:
        last_stage = Form(ufl.inner(adj, v)*DX + sum(\
            [safe_action(safe_adjoint(derivative(forward_forms[i], y_)), kbar[i]) \
             for i in range(size)]))
    else:
        raise Exception("Not sure what to do here")

    human_form = "unimplemented"

    return ufl_stage_forms, dolfin_stage_forms, jacobian_indices, last_stage,\
           stage_solutions, dt, human_form, adj

class MultiStageScheme(cpp.MultiStageScheme):
    """
    Base class for all MultiStageSchemes
    """
    def __init__(self, rhs_form, ufl_stage_forms,
                 dolfin_stage_forms, last_stage, stage_solutions,
                 solution, time, dt, dt_stage_offsets, jacobian_indices, order,
                 name, human_form, bcs, contraction=None):

        # Store Python data
        self._rhs_form = rhs_form
        self._ufl_stage_forms = ufl_stage_forms
        self._dolfin_stage_forms = dolfin_stage_forms
        self._t = time
        self._bcs = bcs
        self._dt = dt
        self._last_stage = last_stage
        self._solution = solution
        self._stage_solutions = stage_solutions
        self._order = order
        self.jacobian_indices = jacobian_indices
        self.contraction = contraction

        # Pass args to C++ constructor
        cpp.MultiStageScheme.__init__(self, dolfin_stage_forms, last_stage,
                                      stage_solutions, solution, time, dt,
                                      dt_stage_offsets, jacobian_indices, order,
                                      self.__class__.__name__,
                                      human_form, bcs)

    def rhs_form(self):
        "Return the original rhs form"
        return self._rhs_form

    def ufl_stage_forms(self):
        "Return the ufl stage forms"
        return self._ufl_stage_forms

    def dolfin_stage_forms(self):
        "Return the dolfin stage forms"
        return self._dolfin_stage_forms

    def t(self):
        "Return the Constant used to describe time in the MultiStageScheme"
        return self._t

    def dt(self):
        "Return the Constant used to describe time in the MultiStageScheme"
        return self._dt

    def solution(self):
        "Return the solution Function"
        return self._solution

    def last_stage(self):
        "Return the form describing the last stage"
        return self._last_stage

    def stage_solutions(self):
        "Return the stage solutions"
        return self._stage_solutions
    def to_tlm(self, perturbation):
        raise NotImplementedError("'to_tlm:' implement in derived classes")

    def to_adm(self, perturbation):
        raise NotImplementedError("'to_adm:' implement in derived classes")


class ButcherMultiStageScheme(MultiStageScheme):
    """
    Base class for all MultiStageSchemes
    """
    def __init__(self, rhs_form, solution, time, bcs, a, b, c, order,
                 generator=_butcher_scheme_generator):
        bcs = bcs or []
        time = time or Constant(0.0)
        ufl_stage_forms, dolfin_stage_forms, jacobian_indices, last_stage, \
                         stage_solutions, dt, human_form, contraction = \
                         generator(a, b, c, time, solution, rhs_form)

        # Store data
        self.a = a
        self.b = b
        self.c = c

        MultiStageScheme.__init__(self, rhs_form, ufl_stage_forms,
                                  dolfin_stage_forms, last_stage,
                                  stage_solutions, solution, time, dt,
                                  c, jacobian_indices, order,\
                                  self.__class__.__name__, human_form,
                                  bcs, contraction)

    def to_tlm(self, perturbation):
        r"""
        Return another MultiStageScheme that implements the tangent
        linearisation of the ODE solver.

        This takes \dot{y_n} (the derivative of y_n with respect to a
        parameter) and computes \dot{y_n+1} (the derivative of y_n+1
        with respect to that parameter).
        """

        generator = functools.partial(_butcher_scheme_generator_tlm,
                                      perturbation=perturbation)
        new_solution = self._solution.copy()
        new_form = ufl.replace(self._rhs_form, {self._solution: new_solution})
        return ButcherMultiStageScheme(new_form, new_solution, self._t, self._bcs,
                                       self.a, self.b, self.c, self._order,
                                       generator=generator)

    def to_adm(self, adj):
        r"""
        Return another MultiStageScheme that implements the adjoint
        linearisation of the ODE solver.

        This takes \bar{y_n+1} (the derivative of a functional J with
        respect to y_n+1) and computes \bar{y_n} (the derivative of J
        with respect to y_n).
        """

        generator = functools.partial(_butcher_scheme_generator_adm, adj=adj)
        new_solution = self._solution.copy()
        new_form = ufl.replace(self._rhs_form, {self._solution: new_solution})
        return ButcherMultiStageScheme(new_form, new_solution, self._t, self._bcs,
                                       self.a, self.b, self.c, self._order,
                                       generator=generator)


class ERK1(ButcherMultiStageScheme):
    """
    Explicit first order Scheme
    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([0.])
        b = np.array([1.])
        c = np.array([0.])
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 1)


class BDF1(ButcherMultiStageScheme):
    """
    Implicit first order scheme
    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([1.])
        b = np.array([1.])
        c = np.array([1.])
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 1)


class ExplicitMidPoint(ButcherMultiStageScheme):
    """
    Explicit 2nd order scheme
    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):

        a = np.array([[0, 0],[0.5, 0.0]])
        b = np.array([0., 1])
        c = np.array([0, 0.5])
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 2)


class CN2(ButcherMultiStageScheme):
    """
    Semi-implicit 2nd order scheme
    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([[0, 0],[0.5, 0.5]])
        b = np.array([0.5, 0.5])
        c = np.array([0, 1.0])

        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 2)


class ERK4(ButcherMultiStageScheme):
    """
    Explicit 4th order scheme
    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([[0, 0, 0, 0],
                      [0.5, 0, 0, 0],
                      [0, 0.5, 0, 0],
                      [0, 0, 1, 0]])
        b = np.array([1./6, 1./3, 1./3, 1./6])
        c = np.array([0, 0.5, 0.5, 1])
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 4)


class ESDIRK3(ButcherMultiStageScheme):
    """Explicit implicit 3rd order scheme

    See also "Singly diagonally implicit Runge–Kutta methods with an
    explicit first stage" by A Kværnø - BIT Numerical Mathematics,
    2004 (p.497)

    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([[0,                   0,                   0,                   0 ],
                      [0.435866521500000,   0.435866521500000,   0,                   0 ],
                      [0.490563388419108,   0.073570090080892,   0.435866521500000,   0 ],
                      [0.308809969973036,   1.490563388254108,  -1.235239879727145,   0.435866521500000 ]])
        b = a[-1,:].copy()
        c = a.sum(1)
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 3)


class ESDIRK4(ButcherMultiStageScheme):
    """
    Explicit implicit 4rd order scheme

    See also "Singly diagonally implicit Runge–Kutta methods with an
    explicit first stage" by A Kværnø - BIT Numerical Mathematics,
    2004 (p.498)

    """
    def __init__(self, rhs_form, solution, t=None, bcs=None):
        a = np.array([[0,                  0,                 0,                  0,                   0],
                      [0.435866521500000,  0.4358665215,      0,                  0,                   0                   ],
                      [0.140737774731968, -0.108365551378832, 0.435866521500000,  0,                   0                   ],
                      [0.102399400616089, -0.376878452267324, 0.838612530151233,  0.435866521500000,   0                   ],
                      [0.157024897860995,  0.117330441357768, 0.616678030391680, -0.326899891110444,   0.435866521500000   ]])

        b = a[-1,:].copy()
        c = a.sum(1)
        ButcherMultiStageScheme.__init__(self, rhs_form, solution, t, bcs, a, b, c, 4)


# Aliases
CrankNicolson = CN2
ExplicitEuler = ERK1
ForwardEuler = ERK1
ImplicitEuler = BDF1
BackwardEuler = BDF1
ERK = ERK1
RK4 = ERK4

__all__ = [name for name, attr in list(globals().items()) \
           if isinstance(attr, type) and issubclass(attr, MultiStageScheme)]

__all__.append("MultiStageScheme")