This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/colors.py is in python3-matplotlib 2.0.0+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
"""
A module for converting numbers or color arguments to *RGB* or *RGBA*

*RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the
range 0-1.

This module includes functions and classes for color specification
conversions, and for mapping numbers to colors in a 1-D array of colors called
a colormap. Colormapping typically involves two steps: a data array is first
mapped onto the range 0-1 using an instance of :class:`Normalize` or of a
subclass; then this number in the 0-1 range is mapped to a color using an
instance of a subclass of :class:`Colormap`.  Two are provided here:
:class:`LinearSegmentedColormap`, which is used to generate all the built-in
colormap instances, but is also useful for making custom colormaps, and
:class:`ListedColormap`, which is used for generating a custom colormap from a
list of color specifications.

The module also provides functions for checking whether an object can be
interpreted as a color (:func:`is_color_like`), for converting such an object
to an RGBA tuple (:func:`to_rgba`) or to an HTML-like hex string in the
`#rrggbb` format (:func:`to_hex`), and a sequence of colors to an `(n, 4)`
RGBA array (:func:`to_rgba_array`).  Caching is used for efficiency.

Commands which take color arguments can use several formats to specify
the colors.  For the basic built-in colors, you can use a single letter

    - `b`: blue
    - `g`: green
    - `r`: red
    - `c`: cyan
    - `m`: magenta
    - `y`: yellow
    - `k`: black
    - `w`: white

To use the colors that are part of the active color cycle in the current style,
use `C` followed by a digit.  For example:

    - `C0`: The first color in the cycle
    - `C1`: The second color in the cycle

Gray shades can be given as a string encoding a float in the 0-1 range, e.g.::

    color = '0.75'

For a greater range of colors, you have two options.  You can specify the
color using an html hex string, as in::

    color = '#eeefff'

(possibly specifying an alpha value as well), or you can pass an `(r, g, b)`
or `(r, g, b, a)` tuple, where each of `r`, `g`, `b` and `a` are in the range
[0,1].

Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse'
are supported.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import re
import six
from six.moves import zip
import warnings

import numpy as np
from numpy import ma
import matplotlib.cbook as cbook
from ._color_data import BASE_COLORS, TABLEAU_COLORS, CSS4_COLORS, XKCD_COLORS


class _ColorMapping(dict):
    def __init__(self, mapping):
        super(_ColorMapping, self).__init__(mapping)
        self.cache = {}

    def __setitem__(self, key, value):
        super(_ColorMapping, self).__setitem__(key, value)
        self.cache.clear()

    def __delitem__(self, key, value):
        super(_ColorMapping, self).__delitem__(key, value)
        self.cache.clear()


_colors_full_map = {}
# Set by reverse priority order.
_colors_full_map.update(XKCD_COLORS)
_colors_full_map.update({k.replace('grey', 'gray'): v
                         for k, v in XKCD_COLORS.items()
                         if 'grey' in k})
_colors_full_map.update(CSS4_COLORS)
_colors_full_map.update(TABLEAU_COLORS)
_colors_full_map.update({k.replace('gray', 'grey'): v
                         for k, v in TABLEAU_COLORS.items()
                         if 'gray' in k})
_colors_full_map.update(BASE_COLORS)
_colors_full_map = _ColorMapping(_colors_full_map)


def get_named_colors_mapping():
    """Return the global mapping of names to named colors.
    """
    return _colors_full_map


def _is_nth_color(c):
    """Return whether `c` can be interpreted as an item in the color cycle.
    """
    return isinstance(c, six.string_types) and re.match(r"\AC[0-9]\Z", c)


def is_color_like(c):
    """Return whether `c` can be interpreted as an RGB(A) color.
    """
    # Special-case nth color syntax because it cannot be parsed during
    # setup.
    if _is_nth_color(c):
        return True
    try:
        to_rgba(c)
    except ValueError:
        return False
    else:
        return True


def to_rgba(c, alpha=None):
    """Convert `c` to an RGBA color.

    If `alpha` is not `None`, it forces the alpha value, except if `c` is
    "none" (case-insensitive), which always maps to `(0, 0, 0, 0)`.
    """
    # Special-case nth color syntax because it should not be cached.
    if _is_nth_color(c):
        from matplotlib import rcParams
        prop_cycler = rcParams['axes.prop_cycle']
        colors = prop_cycler.by_key().get('color', ['k'])
        c = colors[int(c[1]) % len(colors)]
    try:
        rgba = _colors_full_map.cache[c, alpha]
    except (KeyError, TypeError):  # Not in cache, or unhashable.
        rgba = _to_rgba_no_colorcycle(c, alpha)
        try:
            _colors_full_map.cache[c, alpha] = rgba
        except TypeError:
            pass
    return rgba


def _to_rgba_no_colorcycle(c, alpha=None):
    """Convert `c` to an RGBA color, with no support for color-cycle syntax.

    If `alpha` is not `None`, it forces the alpha value, except if `c` is
    "none" (case-insensitive), which always maps to `(0, 0, 0, 0)`.
    """
    orig_c = c
    if isinstance(c, six.string_types):
        if c.lower() == "none":
            return (0., 0., 0., 0.)
        # Named color.
        try:
            # This may turn c into a non-string, so we check again below.
            c = _colors_full_map[c.lower()]
        except KeyError:
            pass
    if isinstance(c, six.string_types):
        # hex color with no alpha.
        match = re.match(r"\A#[a-fA-F0-9]{6}\Z", c)
        if match:
            return (tuple(int(n, 16) / 255
                          for n in [c[1:3], c[3:5], c[5:7]])
                    + (alpha if alpha is not None else 1.,))
        # hex color with alpha.
        match = re.match(r"\A#[a-fA-F0-9]{8}\Z", c)
        if match:
            color = [int(n, 16) / 255
                     for n in [c[1:3], c[3:5], c[5:7], c[7:9]]]
            if alpha is not None:
                color[-1] = alpha
            return tuple(color)
        # string gray.
        try:
            return (float(c),) * 3 + (alpha if alpha is not None else 1.,)
        except ValueError:
            pass
        raise ValueError("Invalid RGBA argument: {!r}".format(orig_c))
    # tuple color.
    # Python 2.7 / numpy 1.6 apparently require this to return builtin floats,
    # not numpy floats.
    try:
        c = tuple(map(float, c))
    except TypeError:
        raise ValueError("Invalid RGBA argument: {!r}".format(orig_c))
    if len(c) not in [3, 4]:
        raise ValueError("RGBA sequence should have length 3 or 4")
    if len(c) == 3 and alpha is None:
        alpha = 1
    if alpha is not None:
        c = c[:3] + (alpha,)
    if any(elem < 0 or elem > 1 for elem in c):
        raise ValueError("RGBA values should be within 0-1 range")
    return c


def to_rgba_array(c, alpha=None):
    """Convert `c` to a (n, 4) array of RGBA colors.

    If `alpha` is not `None`, it forces the alpha value.  If `c` is "none"
    (case-insensitive) or an empty list, an empty array is returned.
    """
    # Single value?
    if isinstance(c, six.string_types) and c.lower() == "none":
        return np.zeros((0, 4), float)
    try:
        return np.array([to_rgba(c, alpha)], float)
    except (ValueError, TypeError):
        pass
    # Special-case inputs that are already arrays, for performance.  (If the
    # array has the wrong kind or shape, raise the error during one-at-a-time
    # conversion.)
    if (isinstance(c, np.ndarray) and c.dtype.kind in "if"
            and c.ndim == 2 and c.shape[1] in [3, 4]):
        if c.shape[1] == 3:
            result = np.column_stack([c, np.zeros(len(c))])
            result[:, -1] = alpha if alpha is not None else 1.
        elif c.shape[1] == 4:
            result = c.copy()
            if alpha is not None:
                result[:, -1] = alpha
        if np.any((result < 0) | (result > 1)):
            raise ValueError("RGBA values should be within 0-1 range")
        return result
    # Convert one at a time.
    result = np.empty((len(c), 4), float)
    for i, cc in enumerate(c):
        result[i] = to_rgba(cc, alpha)
    return result


def to_rgb(c):
    """Convert `c` to an RGB color, silently dropping the alpha channel.
    """
    return to_rgba(c)[:3]


def to_hex(c, keep_alpha=False):
    """Convert `c` to a hex color.

    Uses the #rrggbb format if `keep_alpha` is False (the default), `#rrggbbaa`
    otherwise.
    """
    c = to_rgba(c)
    if not keep_alpha:
        c = c[:3]
    return "#" + "".join(format(int(np.round(val * 255)), "02x")
                         for val in c)


### Backwards-compatible color-conversion API

cnames = CSS4_COLORS
hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z")


def rgb2hex(c):
    'Given an rgb or rgba sequence of 0-1 floats, return the hex string'
    return to_hex(c)


def hex2color(c):
    """
    Take a hex string *s* and return the corresponding rgb 3-tuple
    Example: #efefef -> (0.93725, 0.93725, 0.93725)
    """
    return ColorConverter.to_rgb(c)


class ColorConverter(object):
    """
    Provides methods for converting color specifications to *RGB* or *RGBA*

    Caching is used for more efficient conversion upon repeated calls
    with the same argument.

    Ordinarily only the single instance instantiated in this module,
    *colorConverter*, is needed.
    """

    colors = _colors_full_map
    cache = _colors_full_map.cache

    @staticmethod
    def to_rgb(arg):
        """
        Returns an *RGB* tuple of three floats from 0-1.

        *arg* can be an *RGB* or *RGBA* sequence or a string in any of
        several forms:

            1) a letter from the set 'rgbcmykw'
            2) a hex color string, like '#00FFFF'
            3) a standard name, like 'aqua'
            4) a string representation of a float, like '0.4',
               indicating gray on a 0-1 scale

        if *arg* is *RGBA*, the *A* will simply be discarded.
        """
        return to_rgb(arg)

    @staticmethod
    def to_rgba(arg, alpha=None):
        """
        Returns an *RGBA* tuple of four floats from 0-1.

        For acceptable values of *arg*, see :meth:`to_rgb`.
        In addition, if *arg* is "none" (case-insensitive),
        then (0,0,0,0) will be returned.
        If *arg* is an *RGBA* sequence and *alpha* is not *None*,
        *alpha* will replace the original *A*.
        """
        return to_rgba(arg, alpha)

    @staticmethod
    def to_rgba_array(arg, alpha=None):
        """
        Returns a numpy array of *RGBA* tuples.

        Accepts a single mpl color spec or a sequence of specs.

        Special case to handle "no color": if *c* is "none" (case-insensitive),
        then an empty array will be returned.  Same for an empty list.
        """
        return to_rgba_array(arg, alpha)


colorConverter = ColorConverter()

### End of backwards-compatible color-conversion API


def makeMappingArray(N, data, gamma=1.0):
    """Create an *N* -element 1-d lookup table

    *data* represented by a list of x,y0,y1 mapping correspondences.
    Each element in this list represents how a value between 0 and 1
    (inclusive) represented by x is mapped to a corresponding value
    between 0 and 1 (inclusive). The two values of y are to allow
    for discontinuous mapping functions (say as might be found in a
    sawtooth) where y0 represents the value of y for values of x
    <= to that given, and y1 is the value to be used for x > than
    that given). The list must start with x=0, end with x=1, and
    all values of x must be in increasing order. Values between
    the given mapping points are determined by simple linear interpolation.

    Alternatively, data can be a function mapping values between 0 - 1
    to 0 - 1.

    The function returns an array "result" where ``result[x*(N-1)]``
    gives the closest value for values of x between 0 and 1.
    """

    if six.callable(data):
        xind = np.linspace(0, 1, N) ** gamma
        lut = np.clip(np.array(data(xind), dtype=np.float), 0, 1)
        return lut

    try:
        adata = np.array(data)
    except:
        raise TypeError("data must be convertable to an array")
    shape = adata.shape
    if len(shape) != 2 or shape[1] != 3:
        raise ValueError("data must be nx3 format")

    x = adata[:, 0]
    y0 = adata[:, 1]
    y1 = adata[:, 2]

    if x[0] != 0. or x[-1] != 1.0:
        raise ValueError(
            "data mapping points must start with x=0. and end with x=1")
    if np.sometrue(np.sort(x) - x):
        raise ValueError(
            "data mapping points must have x in increasing order")
    # begin generation of lookup table
    x = x * (N - 1)
    lut = np.zeros((N,), np.float)
    xind = (N - 1) * np.linspace(0, 1, N) ** gamma
    ind = np.searchsorted(x, xind)[1:-1]

    distance = (xind[1:-1] - x[ind - 1]) / (x[ind] - x[ind - 1])
    lut[1:-1] = distance * (y0[ind] - y1[ind - 1]) + y1[ind - 1]
    lut[0] = y1[0]
    lut[-1] = y0[-1]
    # ensure that the lut is confined to values between 0 and 1 by clipping it
    return np.clip(lut, 0.0, 1.0)


class Colormap(object):
    """
    Baseclass for all scalar to RGBA mappings.

    Typically Colormap instances are used to convert data values (floats) from
    the interval ``[0, 1]`` to the RGBA color that the respective Colormap
    represents. For scaling of data into the ``[0, 1]`` interval see
    :class:`matplotlib.colors.Normalize`. It is worth noting that
    :class:`matplotlib.cm.ScalarMappable` subclasses make heavy use of this
    ``data->normalize->map-to-color`` processing chain.

    """
    def __init__(self, name, N=256):
        """
        Parameters
        ----------
        name : str
            The name of the colormap.
        N : int
            The number of rgb quantization levels.

        """
        self.name = name
        self.N = int(N)  # ensure that N is always int
        self._rgba_bad = (0.0, 0.0, 0.0, 0.0)  # If bad, don't paint anything.
        self._rgba_under = None
        self._rgba_over = None
        self._i_under = self.N
        self._i_over = self.N + 1
        self._i_bad = self.N + 2
        self._isinit = False

        #: When this colormap exists on a scalar mappable and colorbar_extend
        #: is not False, colorbar creation will pick up ``colorbar_extend`` as
        #: the default value for the ``extend`` keyword in the
        #: :class:`matplotlib.colorbar.Colorbar` constructor.
        self.colorbar_extend = False

    def __call__(self, X, alpha=None, bytes=False):
        """
        Parameters
        ----------
        X : scalar, ndarray
            The data value(s) to convert to RGBA.
            For floats, X should be in the interval ``[0.0, 1.0]`` to
            return the RGBA values ``X*100`` percent along the Colormap line.
            For integers, X should be in the interval ``[0, Colormap.N)`` to
            return RGBA values *indexed* from the Colormap with index ``X``.
        alpha : float, None
            Alpha must be a scalar between 0 and 1, or None.
        bytes : bool
            If False (default), the returned RGBA values will be floats in the
            interval ``[0, 1]`` otherwise they will be uint8s in the interval
            ``[0, 255]``.

        Returns
        -------
        Tuple of RGBA values if X is scalar, othewise an array of
        RGBA values with a shape of ``X.shape + (4, )``.

        """
        # See class docstring for arg/kwarg documentation.
        if not self._isinit:
            self._init()
        mask_bad = None
        if not cbook.iterable(X):
            vtype = 'scalar'
            xa = np.array([X])
        else:
            vtype = 'array'
            xma = ma.array(X, copy=True)  # Copy here to avoid side effects.
            mask_bad = xma.mask           # Mask will be used below.
            xa = xma.filled()             # Fill to avoid infs, etc.
            del xma

        # Calculations with native byteorder are faster, and avoid a
        # bug that otherwise can occur with putmask when the last
        # argument is a numpy scalar.
        if not xa.dtype.isnative:
            xa = xa.byteswap().newbyteorder()

        if xa.dtype.kind == "f":
            # Treat 1.0 as slightly less than 1.
            vals = np.array([1, 0], dtype=xa.dtype)
            almost_one = np.nextafter(*vals)
            cbook._putmask(xa, xa == 1.0, almost_one)
            # The following clip is fast, and prevents possible
            # conversion of large positive values to negative integers.

            xa *= self.N
            np.clip(xa, -1, self.N, out=xa)

            # ensure that all 'under' values will still have negative
            # value after casting to int
            cbook._putmask(xa, xa < 0.0, -1)
            xa = xa.astype(int)
        # Set the over-range indices before the under-range;
        # otherwise the under-range values get converted to over-range.
        cbook._putmask(xa, xa > self.N - 1, self._i_over)
        cbook._putmask(xa, xa < 0, self._i_under)
        if mask_bad is not None:
            if mask_bad.shape == xa.shape:
                cbook._putmask(xa, mask_bad, self._i_bad)
            elif mask_bad:
                xa.fill(self._i_bad)
        if bytes:
            lut = (self._lut * 255).astype(np.uint8)
        else:
            lut = self._lut.copy()  # Don't let alpha modify original _lut.

        if alpha is not None:
            alpha = min(alpha, 1.0)  # alpha must be between 0 and 1
            alpha = max(alpha, 0.0)
            if bytes:
                alpha = int(alpha * 255)
            if (lut[-1] == 0).all():
                lut[:-1, -1] = alpha
                # All zeros is taken as a flag for the default bad
                # color, which is no color--fully transparent.  We
                # don't want to override this.
            else:
                lut[:, -1] = alpha
                # If the bad value is set to have a color, then we
                # override its alpha just as for any other value.

        rgba = np.empty(shape=xa.shape + (4,), dtype=lut.dtype)
        lut.take(xa, axis=0, mode='clip', out=rgba)
        if vtype == 'scalar':
            rgba = tuple(rgba[0, :])
        return rgba

    def set_bad(self, color='k', alpha=None):
        """Set color to be used for masked values.
        """
        self._rgba_bad = colorConverter.to_rgba(color, alpha)
        if self._isinit:
            self._set_extremes()

    def set_under(self, color='k', alpha=None):
        """Set color to be used for low out-of-range values.
           Requires norm.clip = False
        """
        self._rgba_under = colorConverter.to_rgba(color, alpha)
        if self._isinit:
            self._set_extremes()

    def set_over(self, color='k', alpha=None):
        """Set color to be used for high out-of-range values.
           Requires norm.clip = False
        """
        self._rgba_over = colorConverter.to_rgba(color, alpha)
        if self._isinit:
            self._set_extremes()

    def _set_extremes(self):
        if self._rgba_under:
            self._lut[self._i_under] = self._rgba_under
        else:
            self._lut[self._i_under] = self._lut[0]
        if self._rgba_over:
            self._lut[self._i_over] = self._rgba_over
        else:
            self._lut[self._i_over] = self._lut[self.N - 1]
        self._lut[self._i_bad] = self._rgba_bad

    def _init(self):
        """Generate the lookup table, self._lut"""
        raise NotImplementedError("Abstract class only")

    def is_gray(self):
        if not self._isinit:
            self._init()
        return (np.alltrue(self._lut[:, 0] == self._lut[:, 1]) and
                np.alltrue(self._lut[:, 0] == self._lut[:, 2]))

    def _resample(self, lutsize):
        """
        Return a new color map with *lutsize* entries.
        """
        raise NotImplementedError()


class LinearSegmentedColormap(Colormap):
    """Colormap objects based on lookup tables using linear segments.

    The lookup table is generated using linear interpolation for each
    primary color, with the 0-1 domain divided into any number of
    segments.
    """
    def __init__(self, name, segmentdata, N=256, gamma=1.0):
        """Create color map from linear mapping segments

        segmentdata argument is a dictionary with a red, green and blue
        entries. Each entry should be a list of *x*, *y0*, *y1* tuples,
        forming rows in a table. Entries for alpha are optional.

        Example: suppose you want red to increase from 0 to 1 over
        the bottom half, green to do the same over the middle half,
        and blue over the top half.  Then you would use::

            cdict = {'red':   [(0.0,  0.0, 0.0),
                               (0.5,  1.0, 1.0),
                               (1.0,  1.0, 1.0)],

                     'green': [(0.0,  0.0, 0.0),
                               (0.25, 0.0, 0.0),
                               (0.75, 1.0, 1.0),
                               (1.0,  1.0, 1.0)],

                     'blue':  [(0.0,  0.0, 0.0),
                               (0.5,  0.0, 0.0),
                               (1.0,  1.0, 1.0)]}

        Each row in the table for a given color is a sequence of
        *x*, *y0*, *y1* tuples.  In each sequence, *x* must increase
        monotonically from 0 to 1.  For any input value *z* falling
        between *x[i]* and *x[i+1]*, the output value of a given color
        will be linearly interpolated between *y1[i]* and *y0[i+1]*::

            row i:   x  y0  y1
                           /
                          /
            row i+1: x  y0  y1

        Hence y0 in the first row and y1 in the last row are never used.


        .. seealso::

               :meth:`LinearSegmentedColormap.from_list`
               Static method; factory function for generating a
               smoothly-varying LinearSegmentedColormap.

               :func:`makeMappingArray`
               For information about making a mapping array.
        """
        # True only if all colors in map are identical; needed for contouring.
        self.monochrome = False
        Colormap.__init__(self, name, N)
        self._segmentdata = segmentdata
        self._gamma = gamma

    def _init(self):
        self._lut = np.ones((self.N + 3, 4), np.float)
        self._lut[:-3, 0] = makeMappingArray(
            self.N, self._segmentdata['red'], self._gamma)
        self._lut[:-3, 1] = makeMappingArray(
            self.N, self._segmentdata['green'], self._gamma)
        self._lut[:-3, 2] = makeMappingArray(
            self.N, self._segmentdata['blue'], self._gamma)
        if 'alpha' in self._segmentdata:
            self._lut[:-3, 3] = makeMappingArray(
                self.N, self._segmentdata['alpha'], 1)
        self._isinit = True
        self._set_extremes()

    def set_gamma(self, gamma):
        """
        Set a new gamma value and regenerate color map.
        """
        self._gamma = gamma
        self._init()

    @staticmethod
    def from_list(name, colors, N=256, gamma=1.0):
        """
        Make a linear segmented colormap with *name* from a sequence
        of *colors* which evenly transitions from colors[0] at val=0
        to colors[-1] at val=1.  *N* is the number of rgb quantization
        levels.
        Alternatively, a list of (value, color) tuples can be given
        to divide the range unevenly.
        """

        if not cbook.iterable(colors):
            raise ValueError('colors must be iterable')

        if cbook.iterable(colors[0]) and len(colors[0]) == 2 and \
                not cbook.is_string_like(colors[0]):
            # List of value, color pairs
            vals, colors = list(zip(*colors))
        else:
            vals = np.linspace(0., 1., len(colors))

        cdict = dict(red=[], green=[], blue=[], alpha=[])
        for val, color in zip(vals, colors):
            r, g, b, a = colorConverter.to_rgba(color)
            cdict['red'].append((val, r, r))
            cdict['green'].append((val, g, g))
            cdict['blue'].append((val, b, b))
            cdict['alpha'].append((val, a, a))

        return LinearSegmentedColormap(name, cdict, N, gamma)

    def _resample(self, lutsize):
        """
        Return a new color map with *lutsize* entries.
        """
        return LinearSegmentedColormap(self.name, self._segmentdata, lutsize)


class ListedColormap(Colormap):
    """Colormap object generated from a list of colors.

    This may be most useful when indexing directly into a colormap,
    but it can also be used to generate special colormaps for ordinary
    mapping.
    """
    def __init__(self, colors, name='from_list', N=None):
        """
        Make a colormap from a list of colors.

        *colors*
            a list of matplotlib color specifications,
            or an equivalent Nx3 or Nx4 floating point array
            (*N* rgb or rgba values)
        *name*
            a string to identify the colormap
        *N*
            the number of entries in the map.  The default is *None*,
            in which case there is one colormap entry for each
            element in the list of colors.  If::

                N < len(colors)

            the list will be truncated at *N*.  If::

                N > len(colors)

            the list will be extended by repetition.
        """
        self.colors = colors
        self.monochrome = False  # True only if all colors in map are
                                 # identical; needed for contouring.
        if N is None:
            N = len(self.colors)
        else:
            if (cbook.is_string_like(self.colors) and
                    cbook.is_hashable(self.colors)):
                self.colors = [self.colors] * N
                self.monochrome = True
            elif cbook.iterable(self.colors):
                self.colors = list(self.colors)  # in case it was a tuple
                if len(self.colors) == 1:
                    self.monochrome = True
                if len(self.colors) < N:
                    self.colors = list(self.colors) * N
                del(self.colors[N:])
            else:
                try:
                    gray = float(self.colors)
                except TypeError:
                    pass
                else:
                    self.colors = [gray] * N
                self.monochrome = True
        Colormap.__init__(self, name, N)

    def _init(self):
        rgba = colorConverter.to_rgba_array(self.colors)
        self._lut = np.zeros((self.N + 3, 4), np.float)
        self._lut[:-3] = rgba
        self._isinit = True
        self._set_extremes()

    def _resample(self, lutsize):
        """
        Return a new color map with *lutsize* entries.
        """
        colors = self(np.linspace(0, 1, lutsize))
        return ListedColormap(colors, name=self.name)


class Normalize(object):
    """
    A class which, when called, can normalize data into
    the ``[0.0, 1.0]`` interval.

    """
    def __init__(self, vmin=None, vmax=None, clip=False):
        """
        If *vmin* or *vmax* is not given, they are initialized from the
        minimum and maximum value respectively of the first input
        processed.  That is, *__call__(A)* calls *autoscale_None(A)*.
        If *clip* is *True* and the given value falls outside the range,
        the returned value will be 0 or 1, whichever is closer.
        Returns 0 if::

            vmin==vmax

        Works with scalars or arrays, including masked arrays.  If
        *clip* is *True*, masked values are set to 1; otherwise they
        remain masked.  Clipping silently defeats the purpose of setting
        the over, under, and masked colors in the colormap, so it is
        likely to lead to surprises; therefore the default is
        *clip* = *False*.
        """
        self.vmin = vmin
        self.vmax = vmax
        self.clip = clip

    @staticmethod
    def process_value(value):
        """
        Homogenize the input *value* for easy and efficient normalization.

        *value* can be a scalar or sequence.

        Returns *result*, *is_scalar*, where *result* is a
        masked array matching *value*.  Float dtypes are preserved;
        integer types with two bytes or smaller are converted to
        np.float32, and larger types are converted to np.float.
        Preserving float32 when possible, and using in-place operations,
        can greatly improve speed for large arrays.

        Experimental; we may want to add an option to force the
        use of float32.
        """
        is_scalar = not cbook.iterable(value)
        if is_scalar:
            value = [value]
        dtype = np.min_scalar_type(value)
        if np.issubdtype(dtype, np.integer) or dtype.type is np.bool_:
            # bool_/int8/int16 -> float32; int32/int64 -> float64
            dtype = np.promote_types(dtype, np.float32)
        result = np.ma.array(value, dtype=dtype, copy=True)
        return result, is_scalar

    def __call__(self, value, clip=None):
        """
        Normalize *value* data in the ``[vmin, vmax]`` interval into
        the ``[0.0, 1.0]`` interval and return it.  *clip* defaults
        to *self.clip* (which defaults to *False*).  If not already
        initialized, *vmin* and *vmax* are initialized using
        *autoscale_None(value)*.
        """
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        self.autoscale_None(result)
        # Convert at least to float, without losing precision.
        (vmin,), _ = self.process_value(self.vmin)
        (vmax,), _ = self.process_value(self.vmax)
        if vmin == vmax:
            result.fill(0)   # Or should it be all masked?  Or 0.5?
        elif vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        else:
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # ma division is very slow; we can take a shortcut
            # use np.asarray so data passed in as an ndarray subclass are
            # interpreted as an ndarray. See issue #6622.
            resdat = np.asarray(result.data)
            resdat -= vmin
            resdat /= (vmax - vmin)
            result = np.ma.array(resdat, mask=result.mask, copy=False)
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        (vmin,), _ = self.process_value(self.vmin)
        (vmax,), _ = self.process_value(self.vmax)

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin + val * (vmax - vmin)
        else:
            return vmin + value * (vmax - vmin)

    def autoscale(self, A):
        """
        Set *vmin*, *vmax* to min, max of *A*.
        """
        self.vmin = ma.min(A)
        self.vmax = ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is None and np.size(A) > 0:
            self.vmin = ma.min(A)
        if self.vmax is None and np.size(A) > 0:
            self.vmax = ma.max(A)

    def scaled(self):
        'return true if vmin and vmax set'
        return (self.vmin is not None and self.vmax is not None)


class LogNorm(Normalize):
    """
    Normalize a given value to the 0-1 range on a log scale
    """
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        result = ma.masked_less_equal(result, 0, copy=False)

        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin <= 0:
            raise ValueError("values must all be positive")
        elif vmin == vmax:
            result.fill(0)
        else:
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # in-place equivalent of above can be much faster
            resdat = result.data
            mask = result.mask
            if mask is np.ma.nomask:
                mask = (resdat <= 0)
            else:
                mask |= resdat <= 0
            cbook._putmask(resdat, mask, 1)
            np.log(resdat, resdat)
            resdat -= np.log(vmin)
            resdat /= (np.log(vmax) - np.log(vmin))
            result = np.ma.array(resdat, mask=mask, copy=False)
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = self.vmin, self.vmax

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin * ma.power((vmax / vmin), val)
        else:
            return vmin * pow((vmax / vmin), value)

    def autoscale(self, A):
        """
        Set *vmin*, *vmax* to min, max of *A*.
        """
        A = ma.masked_less_equal(A, 0, copy=False)
        self.vmin = ma.min(A)
        self.vmax = ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is not None and self.vmax is not None:
            return
        A = ma.masked_less_equal(A, 0, copy=False)
        if self.vmin is None:
            self.vmin = ma.min(A)
        if self.vmax is None:
            self.vmax = ma.max(A)


class SymLogNorm(Normalize):
    """
    The symmetrical logarithmic scale is logarithmic in both the
    positive and negative directions from the origin.

    Since the values close to zero tend toward infinity, there is a
    need to have a range around zero that is linear.  The parameter
    *linthresh* allows the user to specify the size of this range
    (-*linthresh*, *linthresh*).
    """
    def __init__(self,  linthresh, linscale=1.0,
                 vmin=None, vmax=None, clip=False):
        """
        *linthresh*:
        The range within which the plot is linear (to
        avoid having the plot go to infinity around zero).

        *linscale*:
        This allows the linear range (-*linthresh* to *linthresh*)
        to be stretched relative to the logarithmic range.  Its
        value is the number of decades to use for each half of the
        linear range.  For example, when *linscale* == 1.0 (the
        default), the space used for the positive and negative
        halves of the linear range will be equal to one decade in
        the logarithmic range. Defaults to 1.
        """
        Normalize.__init__(self, vmin, vmax, clip)
        self.linthresh = float(linthresh)
        self._linscale_adj = (linscale / (1.0 - np.e ** -1))
        if vmin is not None and vmax is not None:
            self._transform_vmin_vmax()

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)
        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax

        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            result.fill(0)
        else:
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # in-place equivalent of above can be much faster
            resdat = self._transform(result.data)
            resdat -= self._lower
            resdat /= (self._upper - self._lower)

        if is_scalar:
            result = result[0]
        return result

    def _transform(self, a):
        """
        Inplace transformation.
        """
        masked = np.abs(a) > self.linthresh
        sign = np.sign(a[masked])
        log = (self._linscale_adj + np.log(np.abs(a[masked]) / self.linthresh))
        log *= sign * self.linthresh
        a[masked] = log
        a[~masked] *= self._linscale_adj
        return a

    def _inv_transform(self, a):
        """
        Inverse inplace Transformation.
        """
        masked = np.abs(a) > (self.linthresh * self._linscale_adj)
        sign = np.sign(a[masked])
        exp = np.exp(sign * a[masked] / self.linthresh - self._linscale_adj)
        exp *= sign * self.linthresh
        a[masked] = exp
        a[~masked] /= self._linscale_adj
        return a

    def _transform_vmin_vmax(self):
        """
        Calculates vmin and vmax in the transformed system.
        """
        vmin, vmax = self.vmin, self.vmax
        arr = np.array([vmax, vmin]).astype(np.float)
        self._upper, self._lower = self._transform(arr)

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        val = ma.asarray(value)
        val = val * (self._upper - self._lower) + self._lower
        return self._inv_transform(val)

    def autoscale(self, A):
        """
        Set *vmin*, *vmax* to min, max of *A*.
        """
        self.vmin = ma.min(A)
        self.vmax = ma.max(A)
        self._transform_vmin_vmax()

    def autoscale_None(self, A):
        """ autoscale only None-valued vmin or vmax """
        if self.vmin is not None and self.vmax is not None:
            pass
        if self.vmin is None:
            self.vmin = ma.min(A)
        if self.vmax is None:
            self.vmax = ma.max(A)
        self._transform_vmin_vmax()


class PowerNorm(Normalize):
    """
    Normalize a given value to the ``[0, 1]`` interval with a power-law
    scaling. This will clip any negative data points to 0.
    """
    def __init__(self, gamma, vmin=None, vmax=None, clip=False):
        Normalize.__init__(self, vmin, vmax, clip)
        self.gamma = gamma

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        self.autoscale_None(result)
        gamma = self.gamma
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            result.fill(0)
        else:
            res_mask = result.data < 0
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            resdat = result.data
            resdat -= vmin
            np.power(resdat, gamma, resdat)
            resdat /= (vmax - vmin) ** gamma

            result = np.ma.array(resdat, mask=result.mask, copy=False)
            result[res_mask] = 0
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        gamma = self.gamma
        vmin, vmax = self.vmin, self.vmax

        if cbook.iterable(value):
            val = ma.asarray(value)
            return ma.power(val, 1. / gamma) * (vmax - vmin) + vmin
        else:
            return pow(value, 1. / gamma) * (vmax - vmin) + vmin

    def autoscale(self, A):
        """
        Set *vmin*, *vmax* to min, max of *A*.
        """
        self.vmin = ma.min(A)
        if self.vmin < 0:
            self.vmin = 0
            warnings.warn("Power-law scaling on negative values is "
                          "ill-defined, clamping to 0.")

        self.vmax = ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is None and np.size(A) > 0:
            self.vmin = ma.min(A)
            if self.vmin < 0:
                self.vmin = 0
                warnings.warn("Power-law scaling on negative values is "
                              "ill-defined, clamping to 0.")

        if self.vmax is None and np.size(A) > 0:
            self.vmax = ma.max(A)


class BoundaryNorm(Normalize):
    """
    Generate a colormap index based on discrete intervals.

    Unlike :class:`Normalize` or :class:`LogNorm`,
    :class:`BoundaryNorm` maps values to integers instead of to the
    interval 0-1.

    Mapping to the 0-1 interval could have been done via
    piece-wise linear interpolation, but using integers seems
    simpler, and reduces the number of conversions back and forth
    between integer and floating point.
    """
    def __init__(self, boundaries, ncolors, clip=False):
        """
        *boundaries*
            a monotonically increasing sequence
        *ncolors*
            number of colors in the colormap to be used

        If::

            b[i] <= v < b[i+1]

        then v is mapped to color j;
        as i varies from 0 to len(boundaries)-2,
        j goes from 0 to ncolors-1.

        Out-of-range values are mapped
        to -1 if low and ncolors if high; these are converted
        to valid indices by
        :meth:`Colormap.__call__` .
        If clip == True, out-of-range values
        are mapped to 0 if low and ncolors-1 if high.
        """
        self.clip = clip
        self.vmin = boundaries[0]
        self.vmax = boundaries[-1]
        self.boundaries = np.asarray(boundaries)
        self.N = len(self.boundaries)
        self.Ncmap = ncolors
        if self.N - 1 == self.Ncmap:
            self._interp = False
        else:
            self._interp = True

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        xx, is_scalar = self.process_value(value)
        mask = ma.getmaskarray(xx)
        xx = np.atleast_1d(xx.filled(self.vmax + 1))
        if clip:
            np.clip(xx, self.vmin, self.vmax, out=xx)
            max_col = self.Ncmap - 1
        else:
            max_col = self.Ncmap
        iret = np.zeros(xx.shape, dtype=np.int16)
        for i, b in enumerate(self.boundaries):
            iret[xx >= b] = i
        if self._interp:
            scalefac = float(self.Ncmap - 1) / (self.N - 2)
            iret = (iret * scalefac).astype(np.int16)
        iret[xx < self.vmin] = -1
        iret[xx >= self.vmax] = max_col
        ret = ma.array(iret, mask=mask)
        if is_scalar:
            ret = int(ret[0])  # assume python scalar
        return ret

    def inverse(self, value):
        return ValueError("BoundaryNorm is not invertible")


class NoNorm(Normalize):
    """
    Dummy replacement for Normalize, for the case where we
    want to use indices directly in a
    :class:`~matplotlib.cm.ScalarMappable` .
    """
    def __call__(self, value, clip=None):
        return value

    def inverse(self, value):
        return value


def rgb_to_hsv(arr):
    """
    convert float rgb values (in the range [0, 1]), in a numpy array to hsv
    values.

    Parameters
    ----------
    arr : (..., 3) array-like
       All values must be in the range [0, 1]

    Returns
    -------
    hsv : (..., 3) ndarray
       Colors converted to hsv values in range [0, 1]
    """
    # make sure it is an ndarray
    arr = np.asarray(arr)

    # check length of the last dimension, should be _some_ sort of rgb
    if arr.shape[-1] != 3:
        raise ValueError("Last dimension of input array must be 3; "
                         "shape {shp} was found.".format(shp=arr.shape))

    in_ndim = arr.ndim
    if arr.ndim == 1:
        arr = np.array(arr, ndmin=2)

    # make sure we don't have an int image
    if arr.dtype.kind in ('iu'):
        arr = arr.astype(np.float32)

    out = np.zeros_like(arr)
    arr_max = arr.max(-1)
    ipos = arr_max > 0
    delta = arr.ptp(-1)
    s = np.zeros_like(delta)
    s[ipos] = delta[ipos] / arr_max[ipos]
    ipos = delta > 0
    # red is max
    idx = (arr[..., 0] == arr_max) & ipos
    out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx]
    # green is max
    idx = (arr[..., 1] == arr_max) & ipos
    out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx]
    # blue is max
    idx = (arr[..., 2] == arr_max) & ipos
    out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx]

    out[..., 0] = (out[..., 0] / 6.0) % 1.0
    out[..., 1] = s
    out[..., 2] = arr_max

    if in_ndim == 1:
        out.shape = (3,)

    return out


def hsv_to_rgb(hsv):
    """
    convert hsv values in a numpy array to rgb values
    all values assumed to be in range [0, 1]

    Parameters
    ----------
    hsv : (..., 3) array-like
       All values assumed to be in range [0, 1]

    Returns
    -------
    rgb : (..., 3) ndarray
       Colors converted to RGB values in range [0, 1]
    """
    hsv = np.asarray(hsv)

    # check length of the last dimension, should be _some_ sort of rgb
    if hsv.shape[-1] != 3:
        raise ValueError("Last dimension of input array must be 3; "
                         "shape {shp} was found.".format(shp=hsv.shape))

    # if we got pased a 1D array, try to treat as
    # a single color and reshape as needed
    in_ndim = hsv.ndim
    if in_ndim == 1:
        hsv = np.array(hsv, ndmin=2)

    # make sure we don't have an int image
    if hsv.dtype.kind in ('iu'):
        hsv = hsv.astype(np.float32)

    h = hsv[..., 0]
    s = hsv[..., 1]
    v = hsv[..., 2]

    r = np.empty_like(h)
    g = np.empty_like(h)
    b = np.empty_like(h)

    i = (h * 6.0).astype(np.int)
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))

    idx = i % 6 == 0
    r[idx] = v[idx]
    g[idx] = t[idx]
    b[idx] = p[idx]

    idx = i == 1
    r[idx] = q[idx]
    g[idx] = v[idx]
    b[idx] = p[idx]

    idx = i == 2
    r[idx] = p[idx]
    g[idx] = v[idx]
    b[idx] = t[idx]

    idx = i == 3
    r[idx] = p[idx]
    g[idx] = q[idx]
    b[idx] = v[idx]

    idx = i == 4
    r[idx] = t[idx]
    g[idx] = p[idx]
    b[idx] = v[idx]

    idx = i == 5
    r[idx] = v[idx]
    g[idx] = p[idx]
    b[idx] = q[idx]

    idx = s == 0
    r[idx] = v[idx]
    g[idx] = v[idx]
    b[idx] = v[idx]

    rgb = np.empty_like(hsv)
    rgb[..., 0] = r
    rgb[..., 1] = g
    rgb[..., 2] = b

    if in_ndim == 1:
        rgb.shape = (3, )

    return rgb


class LightSource(object):
    """
    Create a light source coming from the specified azimuth and elevation.
    Angles are in degrees, with the azimuth measured
    clockwise from north and elevation up from the zero plane of the surface.

    The :meth:`shade` is used to produce "shaded" rgb values for a data array.
    :meth:`shade_rgb` can be used to combine an rgb image with
    The :meth:`shade_rgb`
    The :meth:`hillshade` produces an illumination map of a surface.
    """
    def __init__(self, azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1,
                 hsv_min_sat=1, hsv_max_sat=0):
        """
        Specify the azimuth (measured clockwise from south) and altitude
        (measured up from the plane of the surface) of the light source
        in degrees.

        Parameters
        ----------
        azdeg : number, optional
            The azimuth (0-360, degrees clockwise from North) of the light
            source. Defaults to 315 degrees (from the northwest).
        altdeg : number, optional
            The altitude (0-90, degrees up from horizontal) of the light
            source.  Defaults to 45 degrees from horizontal.

        Notes
        -----
        For backwards compatibility, the parameters *hsv_min_val*,
        *hsv_max_val*, *hsv_min_sat*, and *hsv_max_sat* may be supplied at
        initialization as well.  However, these parameters will only be used if
        "blend_mode='hsv'" is passed into :meth:`shade` or :meth:`shade_rgb`.
        See the documentation for :meth:`blend_hsv` for more details.
        """
        self.azdeg = azdeg
        self.altdeg = altdeg
        self.hsv_min_val = hsv_min_val
        self.hsv_max_val = hsv_max_val
        self.hsv_min_sat = hsv_min_sat
        self.hsv_max_sat = hsv_max_sat

    def hillshade(self, elevation, vert_exag=1, dx=1, dy=1, fraction=1.):
        """
        Calculates the illumination intensity for a surface using the defined
        azimuth and elevation for the light source.

        Imagine an artificial sun placed at infinity in some azimuth and
        elevation position illuminating our surface. The parts of the surface
        that slope toward the sun should brighten while those sides facing away
        should become darker.

        Parameters
        ----------
        elevation : array-like
            A 2d array (or equivalent) of the height values used to generate an
            illumination map
        vert_exag : number, optional
            The amount to exaggerate the elevation values by when calculating
            illumination. This can be used either to correct for differences in
            units between the x-y coordinate system and the elevation
            coordinate system (e.g. decimal degrees vs meters) or to exaggerate
            or de-emphasize topographic effects.
        dx : number, optional
            The x-spacing (columns) of the input *elevation* grid.
        dy : number, optional
            The y-spacing (rows) of the input *elevation* grid.
        fraction : number, optional
            Increases or decreases the contrast of the hillshade.  Values
            greater than one will cause intermediate values to move closer to
            full illumination or shadow (and clipping any values that move
            beyond 0 or 1). Note that this is not visually or mathematically
            the same as vertical exaggeration.
        Returns
        -------
        intensity : ndarray
            A 2d array of illumination values between 0-1, where 0 is
            completely in shadow and 1 is completely illuminated.
        """
        # Azimuth is in degrees clockwise from North. Convert to radians
        # counterclockwise from East (mathematical notation).
        az = np.radians(90 - self.azdeg)
        alt = np.radians(self.altdeg)

        # Because most image and raster GIS data has the first row in the array
        # as the "top" of the image, dy is implicitly negative.  This is
        # consistent to what `imshow` assumes, as well.
        dy = -dy

        # Calculate the intensity from the illumination angle
        dy, dx = np.gradient(vert_exag * elevation, dy, dx)
        # The aspect is defined by the _downhill_ direction, thus the negative
        aspect = np.arctan2(-dy, -dx)
        slope = 0.5 * np.pi - np.arctan(np.hypot(dx, dy))
        intensity = (np.sin(alt) * np.sin(slope) +
                     np.cos(alt) * np.cos(slope) * np.cos(az - aspect))

        # Apply contrast stretch
        imin, imax = intensity.min(), intensity.max()
        intensity *= fraction

        # Rescale to 0-1, keeping range before contrast stretch
        # If constant slope, keep relative scaling (i.e. flat should be 0.5,
        # fully occluded 0, etc.)
        if (imax - imin) > 1e-6:
            # Strictly speaking, this is incorrect. Negative values should be
            # clipped to 0 because they're fully occluded. However, rescaling
            # in this manner is consistent with the previous implementation and
            # visually appears better than a "hard" clip.
            intensity -= imin
            intensity /= (imax - imin)
        intensity = np.clip(intensity, 0, 1, intensity)

        return intensity

    def shade(self, data, cmap, norm=None, blend_mode='overlay', vmin=None,
              vmax=None, vert_exag=1, dx=1, dy=1, fraction=1, **kwargs):
        """
        Combine colormapped data values with an illumination intensity map
        (a.k.a.  "hillshade") of the values.

        Parameters
        ----------
        data : array-like
            A 2d array (or equivalent) of the height values used to generate a
            shaded map.
        cmap : `~matplotlib.colors.Colormap` instance
            The colormap used to color the *data* array. Note that this must be
            a `~matplotlib.colors.Colormap` instance.  For example, rather than
            passing in `cmap='gist_earth'`, use
            `cmap=plt.get_cmap('gist_earth')` instead.
        norm : `~matplotlib.colors.Normalize` instance, optional
            The normalization used to scale values before colormapping. If
            None, the input will be linearly scaled between its min and max.
        blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional
            The type of blending used to combine the colormapped data
            values with the illumination intensity.  Default is
            "overlay".  Note that for most topographic surfaces,
            "overlay" or "soft" appear more visually realistic. If a
            user-defined function is supplied, it is expected to
            combine an MxNx3 RGB array of floats (ranging 0 to 1) with
            an MxNx1 hillshade array (also 0 to 1).  (Call signature
            `func(rgb, illum, **kwargs)`) Additional kwargs supplied
            to this function will be passed on to the *blend_mode*
            function.
        vmin : scalar or None, optional
            The minimum value used in colormapping *data*. If *None* the
            minimum value in *data* is used. If *norm* is specified, then this
            argument will be ignored.
        vmax : scalar or None, optional
            The maximum value used in colormapping *data*. If *None* the
            maximum value in *data* is used. If *norm* is specified, then this
            argument will be ignored.
        vert_exag : number, optional
            The amount to exaggerate the elevation values by when calculating
            illumination. This can be used either to correct for differences in
            units between the x-y coordinate system and the elevation
            coordinate system (e.g. decimal degrees vs meters) or to exaggerate
            or de-emphasize topography.
        dx : number, optional
            The x-spacing (columns) of the input *elevation* grid.
        dy : number, optional
            The y-spacing (rows) of the input *elevation* grid.
        fraction : number, optional
            Increases or decreases the contrast of the hillshade.  Values
            greater than one will cause intermediate values to move closer to
            full illumination or shadow (and clipping any values that move
            beyond 0 or 1). Note that this is not visually or mathematically
            the same as vertical exaggeration.
        Additional kwargs are passed on to the *blend_mode* function.

        Returns
        -------
        rgba : ndarray
            An MxNx4 array of floats ranging between 0-1.
        """
        if vmin is None:
            vmin = data.min()
        if vmax is None:
            vmax = data.max()
        if norm is None:
            norm = Normalize(vmin=vmin, vmax=vmax)

        rgb0 = cmap(norm(data))
        rgb1 = self.shade_rgb(rgb0, elevation=data, blend_mode=blend_mode,
                              vert_exag=vert_exag, dx=dx, dy=dy,
                              fraction=fraction, **kwargs)
        # Don't overwrite the alpha channel, if present.
        rgb0[..., :3] = rgb1[..., :3]
        return rgb0

    def shade_rgb(self, rgb, elevation, fraction=1., blend_mode='hsv',
                  vert_exag=1, dx=1, dy=1, **kwargs):
        """
        Take the input RGB array (ny*nx*3) adjust their color values
        to given the impression of a shaded relief map with a
        specified light source using the elevation (ny*nx).
        A new RGB array ((ny*nx*3)) is returned.

        Parameters
        ----------
        rgb : array-like
            An MxNx3 RGB array, assumed to be in the range of 0 to 1.
        elevation : array-like
            A 2d array (or equivalent) of the height values used to generate a
            shaded map.
        fraction : number
            Increases or decreases the contrast of the hillshade.  Values
            greater than one will cause intermediate values to move closer to
            full illumination or shadow (and clipping any values that move
            beyond 0 or 1). Note that this is not visually or mathematically
            the same as vertical exaggeration.
        blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional
            The type of blending used to combine the colormapped data values
            with the illumination intensity.  For backwards compatibility, this
            defaults to "hsv". Note that for most topographic surfaces,
            "overlay" or "soft" appear more visually realistic. If a
            user-defined function is supplied, it is expected to combine an
            MxNx3 RGB array of floats (ranging 0 to 1) with an MxNx1 hillshade
            array (also 0 to 1).  (Call signature `func(rgb, illum, **kwargs)`)
            Additional kwargs supplied to this function will be passed on to
            the *blend_mode* function.
        vert_exag : number, optional
            The amount to exaggerate the elevation values by when calculating
            illumination. This can be used either to correct for differences in
            units between the x-y coordinate system and the elevation
            coordinate system (e.g. decimal degrees vs meters) or to exaggerate
            or de-emphasize topography.
        dx : number, optional
            The x-spacing (columns) of the input *elevation* grid.
        dy : number, optional
            The y-spacing (rows) of the input *elevation* grid.
        Additional kwargs are passed on to the *blend_mode* function.

        Returns
        -------
        shaded_rgb : ndarray
            An MxNx3 array of floats ranging between 0-1.
        """
        # Calculate the "hillshade" intensity.
        intensity = self.hillshade(elevation, vert_exag, dx, dy, fraction)
        intensity = intensity[..., np.newaxis]

        # Blend the hillshade and rgb data using the specified mode
        lookup = {
                'hsv': self.blend_hsv,
                'soft': self.blend_soft_light,
                'overlay': self.blend_overlay,
                }
        if blend_mode in lookup:
            blend = lookup[blend_mode](rgb, intensity, **kwargs)
        else:
            try:
                blend = blend_mode(rgb, intensity, **kwargs)
            except TypeError:
                msg = '"blend_mode" must be callable or one of {0}'
                raise ValueError(msg.format(lookup.keys))

        # Only apply result where hillshade intensity isn't masked
        if hasattr(intensity, 'mask'):
            mask = intensity.mask[..., 0]
            for i in range(3):
                blend[..., i][mask] = rgb[..., i][mask]

        return blend

    def blend_hsv(self, rgb, intensity, hsv_max_sat=None, hsv_max_val=None,
                  hsv_min_val=None, hsv_min_sat=None):
        """
        Take the input data array, convert to HSV values in the given colormap,
        then adjust those color values to give the impression of a shaded
        relief map with a specified light source.  RGBA values are returned,
        which can then be used to plot the shaded image with imshow.

        The color of the resulting image will be darkened by moving the (s,v)
        values (in hsv colorspace) toward (hsv_min_sat, hsv_min_val) in the
        shaded regions, or lightened by sliding (s,v) toward (hsv_max_sat
        hsv_max_val) in regions that are illuminated.  The default extremes are
        chose so that completely shaded points are nearly black (s = 1, v = 0)
        and completely illuminated points are nearly white (s = 0, v = 1).

        Parameters
        ----------
        rgb : ndarray
            An MxNx3 RGB array of floats ranging from 0 to 1 (color image).
        intensity : ndarray
            An MxNx1 array of floats ranging from 0 to 1 (grayscale image).
        hsv_max_sat : number, optional
            The maximum saturation value that the *intensity* map can shift the
            output image to. Defaults to 1.
        hsv_min_sat : number, optional
            The minimum saturation value that the *intensity* map can shift the
            output image to. Defaults to 0.
        hsv_max_val : number, optional
            The maximum value ("v" in "hsv") that the *intensity* map can shift
            the output image to. Defaults to 1.
        hsv_min_val: number, optional
            The minimum value ("v" in "hsv") that the *intensity* map can shift
            the output image to. Defaults to 0.

        Returns
        -------
        rgb : ndarray
            An MxNx3 RGB array representing the combined images.
        """
        # Backward compatibility...
        if hsv_max_sat is None:
            hsv_max_sat = self.hsv_max_sat
        if hsv_max_val is None:
            hsv_max_val = self.hsv_max_val
        if hsv_min_sat is None:
            hsv_min_sat = self.hsv_min_sat
        if hsv_min_val is None:
            hsv_min_val = self.hsv_min_val

        # Expects a 2D intensity array scaled between -1 to 1...
        intensity = intensity[..., 0]
        intensity = 2 * intensity - 1

        # convert to rgb, then rgb to hsv
        hsv = rgb_to_hsv(rgb[:, :, 0:3])

        # modify hsv values to simulate illumination.
        hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10,
                                               intensity > 0),
                                ((1. - intensity) * hsv[:, :, 1] +
                                 intensity * hsv_max_sat),
                                hsv[:, :, 1])

        hsv[:, :, 2] = np.where(intensity > 0,
                                ((1. - intensity) * hsv[:, :, 2] +
                                 intensity * hsv_max_val),
                                hsv[:, :, 2])

        hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10,
                                               intensity < 0),
                                ((1. + intensity) * hsv[:, :, 1] -
                                 intensity * hsv_min_sat),
                                hsv[:, :, 1])
        hsv[:, :, 2] = np.where(intensity < 0,
                                ((1. + intensity) * hsv[:, :, 2] -
                                 intensity * hsv_min_val),
                                hsv[:, :, 2])
        hsv[:, :, 1:] = np.where(hsv[:, :, 1:] < 0., 0, hsv[:, :, 1:])
        hsv[:, :, 1:] = np.where(hsv[:, :, 1:] > 1., 1, hsv[:, :, 1:])
        # convert modified hsv back to rgb.
        return hsv_to_rgb(hsv)

    def blend_soft_light(self, rgb, intensity):
        """
        Combines an rgb image with an intensity map using "soft light"
        blending.  Uses the "pegtop" formula.

        Parameters
        ----------
        rgb : ndarray
            An MxNx3 RGB array of floats ranging from 0 to 1 (color image).
        intensity : ndarray
            An MxNx1 array of floats ranging from 0 to 1 (grayscale image).

        Returns
        -------
        rgb : ndarray
            An MxNx3 RGB array representing the combined images.
        """
        return 2 * intensity * rgb + (1 - 2 * intensity) * rgb**2

    def blend_overlay(self, rgb, intensity):
        """
        Combines an rgb image with an intensity map using "overlay" blending.

        Parameters
        ----------
        rgb : ndarray
            An MxNx3 RGB array of floats ranging from 0 to 1 (color image).
        intensity : ndarray
            An MxNx1 array of floats ranging from 0 to 1 (grayscale image).

        Returns
        -------
        rgb : ndarray
            An MxNx3 RGB array representing the combined images.
        """
        low = 2 * intensity * rgb
        high = 1 - 2 * (1 - intensity) * (1 - rgb)
        return np.where(rgb <= 0.5, low, high)


def from_levels_and_colors(levels, colors, extend='neither'):
    """
    A helper routine to generate a cmap and a norm instance which
    behave similar to contourf's levels and colors arguments.

    Parameters
    ----------
    levels : sequence of numbers
        The quantization levels used to construct the :class:`BoundaryNorm`.
        Values ``v`` are quantizized to level ``i`` if
        ``lev[i] <= v < lev[i+1]``.
    colors : sequence of colors
        The fill color to use for each level. If `extend` is "neither" there
        must be ``n_level - 1`` colors. For an `extend` of "min" or "max" add
        one extra color, and for an `extend` of "both" add two colors.
    extend : {'neither', 'min', 'max', 'both'}, optional
        The behaviour when a value falls out of range of the given levels.
        See :func:`~matplotlib.pyplot.contourf` for details.

    Returns
    -------
    (cmap, norm) : tuple containing a :class:`Colormap` and a \
                   :class:`Normalize` instance
    """
    colors_i0 = 0
    colors_i1 = None

    if extend == 'both':
        colors_i0 = 1
        colors_i1 = -1
        extra_colors = 2
    elif extend == 'min':
        colors_i0 = 1
        extra_colors = 1
    elif extend == 'max':
        colors_i1 = -1
        extra_colors = 1
    elif extend == 'neither':
        extra_colors = 0
    else:
        raise ValueError('Unexpected value for extend: {0!r}'.format(extend))

    n_data_colors = len(levels) - 1
    n_expected_colors = n_data_colors + extra_colors
    if len(colors) != n_expected_colors:
        raise ValueError('With extend == {0!r} and n_levels == {1!r} expected'
                         ' n_colors == {2!r}. Got {3!r}.'
                         ''.format(extend, len(levels), n_expected_colors,
                                   len(colors)))

    cmap = ListedColormap(colors[colors_i0:colors_i1], N=n_data_colors)

    if extend in ['min', 'both']:
        cmap.set_under(colors[0])
    else:
        cmap.set_under('none')

    if extend in ['max', 'both']:
        cmap.set_over(colors[-1])
    else:
        cmap.set_over('none')

    cmap.colorbar_extend = extend

    norm = BoundaryNorm(levels, ncolors=n_data_colors)
    return cmap, norm