This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/tests/test_delaunay.py is in python3-matplotlib 2.0.0+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
from six.moves import xrange
import warnings

import numpy as np
from matplotlib.testing.decorators import image_comparison, knownfailureif
from matplotlib.cbook import MatplotlibDeprecationWarning

with warnings.catch_warnings():
    # the module is deprecated. The tests should be removed when the module is.
    warnings.simplefilter('ignore', MatplotlibDeprecationWarning)
    from matplotlib.delaunay.triangulate import Triangulation
from matplotlib import pyplot as plt
import matplotlib as mpl

def constant(x, y):
    return np.ones(x.shape, x.dtype)
constant.title = 'Constant'

def xramp(x, y):
    return x
xramp.title = 'X Ramp'

def yramp(x, y):
    return y
yramp.title = 'Y Ramp'

def exponential(x, y):
    x = x*9
    y = y*9
    x1 = x+1.0
    x2 = x-2.0
    x4 = x-4.0
    x7 = x-7.0
    y1 = x+1.0
    y2 = y-2.0
    y3 = y-3.0
    y7 = y-7.0
    f = (0.75 * np.exp(-(x2*x2+y2*y2)/4.0) +
         0.75 * np.exp(-x1*x1/49.0 - y1/10.0) +
         0.5 * np.exp(-(x7*x7 + y3*y3)/4.0) -
         0.2 * np.exp(-x4*x4 -y7*y7))
    return f
exponential.title = 'Exponential and Some Gaussians'

def cliff(x, y):
    f = np.tanh(9.0*(y-x) + 1.0)/9.0
    return f
cliff.title = 'Cliff'

def saddle(x, y):
    f = (1.25 + np.cos(5.4*y))/(6.0 + 6.0*(3*x-1.0)**2)
    return f
saddle.title = 'Saddle'

def gentle(x, y):
    f = np.exp(-5.0625*((x-0.5)**2+(y-0.5)**2))/3.0
    return f
gentle.title = 'Gentle Peak'

def steep(x, y):
    f = np.exp(-20.25*((x-0.5)**2+(y-0.5)**2))/3.0
    return f
steep.title = 'Steep Peak'

def sphere(x, y):
    circle = 64-81*((x-0.5)**2 + (y-0.5)**2)
    f = np.where(circle >= 0, np.sqrt(np.clip(circle,0,100)) - 0.5, 0.0)
    return f
sphere.title = 'Sphere'

def trig(x, y):
    f = 2.0*np.cos(10.0*x)*np.sin(10.0*y) + np.sin(10.0*x*y)
    return f
trig.title = 'Cosines and Sines'

def gauss(x, y):
    x = 5.0-10.0*x
    y = 5.0-10.0*y
    g1 = np.exp(-x*x/2)
    g2 = np.exp(-y*y/2)
    f = g1 + 0.75*g2*(1 + g1)
    return f
gauss.title = 'Gaussian Peak and Gaussian Ridges'

def cloverleaf(x, y):
    ex = np.exp((10.0-20.0*x)/3.0)
    ey = np.exp((10.0-20.0*y)/3.0)
    logitx = 1.0/(1.0+ex)
    logity = 1.0/(1.0+ey)
    f = (((20.0/3.0)**3 * ex*ey)**2 * (logitx*logity)**5 *
        (ex-2.0*logitx)*(ey-2.0*logity))
    return f
cloverleaf.title = 'Cloverleaf'

def cosine_peak(x, y):
    circle = np.hypot(80*x-40.0, 90*y-45.)
    f = np.exp(-0.04*circle) * np.cos(0.15*circle)
    return f
cosine_peak.title = 'Cosine Peak'

allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak]


class LinearTester(object):
    name = 'Linear'
    def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250):
        self.xrange = xrange
        self.yrange = yrange
        self.nrange = nrange
        self.npoints = npoints

        rng = np.random.RandomState(1234567890)
        self.x = rng.uniform(xrange[0], xrange[1], size=npoints)
        self.y = rng.uniform(yrange[0], yrange[1], size=npoints)
        self.tri = Triangulation(self.x, self.y)

    def replace_data(self, dataset):
        self.x = dataset.x
        self.y = dataset.y
        self.tri = Triangulation(self.x, self.y)

    def interpolator(self, func):
        z = func(self.x, self.y)
        return self.tri.linear_extrapolator(z, bbox=self.xrange+self.yrange)

    def plot(self, func, interp=True, plotter='imshow'):
        if interp:
            lpi = self.interpolator(func)
            z = lpi[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                    self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
        else:
            y, x = np.mgrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                            self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
            z = func(x, y)

        z = np.where(np.isinf(z), 0.0, z)

        extent = (self.xrange[0], self.xrange[1],
            self.yrange[0], self.yrange[1])
        fig = plt.figure()
        plt.hot() # Some like it hot
        if plotter == 'imshow':
            plt.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower')
        elif plotter == 'contour':
            Y, X = np.ogrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
            plt.contour(np.ravel(X), np.ravel(Y), z, 20)
        x = self.x
        y = self.y
        lc = mpl.collections.LineCollection(np.array([((x[i], y[i]), (x[j], y[j]))
            for i, j in self.tri.edge_db]), colors=[(0,0,0,0.2)])
        ax = plt.gca()
        ax.add_collection(lc)

        if interp:
            title = '%s Interpolant' % self.name
        else:
            title = 'Reference'
        if hasattr(func, 'title'):
            plt.title('%s: %s' % (func.title, title))
        else:
            plt.title(title)

class NNTester(LinearTester):
    name = 'Natural Neighbors'
    def interpolator(self, func):
        z = func(self.x, self.y)
        return self.tri.nn_extrapolator(z, bbox=self.xrange+self.yrange)

def make_all_2d_testfuncs(allfuncs=allfuncs):
    def make_test(func):
        filenames = [
            '%s-%s' % (func.__name__, x) for x in
            ['ref-img', 'nn-img', 'lin-img', 'ref-con', 'nn-con', 'lin-con']]

        # We only generate PNGs to save disk space -- we just assume
        # that any backend differences are caught by other tests.
        @image_comparison(filenames, extensions=['png'],
                          freetype_version=('2.4.5', '2.4.9'),
                          remove_text=True)
        def reference_test():
            nnt.plot(func, interp=False, plotter='imshow')
            nnt.plot(func, interp=True, plotter='imshow')
            lpt.plot(func, interp=True, plotter='imshow')
            nnt.plot(func, interp=False, plotter='contour')
            nnt.plot(func, interp=True, plotter='contour')
            lpt.plot(func, interp=True, plotter='contour')

        tester = reference_test
        tester.__name__ = str('test_%s' % func.__name__)
        return tester

    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        globals()['test_%s' % func.__name__] = make_test(func)

make_all_2d_testfuncs()

# 1d and 0d grid tests

ref_interpolator = Triangulation([0,10,10,0],
                                 [0,0,10,10]).linear_interpolator([1,10,5,2.0])

def test_1d_grid():
    res = ref_interpolator[3:6:2j,1:1:1j]
    assert np.allclose(res, [[1.6],[1.9]], rtol=0)

def test_0d_grid():
    res = ref_interpolator[3:3:1j,1:1:1j]
    assert np.allclose(res, [[1.6]], rtol=0)

@image_comparison(baseline_images=['delaunay-1d-interp'], extensions=['png'])
def test_1d_plots():
    x_range = slice(0.25,9.75,20j)
    x = np.mgrid[x_range]
    ax = plt.gca()
    for y in xrange(2,10,2):
        plt.plot(x, ref_interpolator[x_range,y:y:1j])
    ax.set_xticks([])
    ax.set_yticks([])