This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/tests/test_triangulation.py is in python3-matplotlib 2.0.0+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
from nose.tools import assert_equal, assert_raises, assert_true, assert_false
from numpy.testing import assert_array_equal, assert_array_almost_equal,\
    assert_array_less
import numpy.ma.testutils as matest
from matplotlib.testing.decorators import cleanup, image_comparison
import matplotlib.cm as cm
from matplotlib.path import Path


def test_delaunay():
    # No duplicate points, regular grid.
    nx = 5
    ny = 4
    x, y = np.meshgrid(np.linspace(0.0, 1.0, nx), np.linspace(0.0, 1.0, ny))
    x = x.ravel()
    y = y.ravel()
    npoints = nx*ny
    ntriangles = 2 * (nx-1) * (ny-1)
    nedges = 3*nx*ny - 2*nx - 2*ny + 1

    # Create delaunay triangulation.
    triang = mtri.Triangulation(x, y)

    # The tests in the remainder of this function should be passed by any
    # triangulation that does not contain duplicate points.

    # Points - floating point.
    assert_array_almost_equal(triang.x, x)
    assert_array_almost_equal(triang.y, y)

    # Triangles - integers.
    assert_equal(len(triang.triangles), ntriangles)
    assert_equal(np.min(triang.triangles), 0)
    assert_equal(np.max(triang.triangles), npoints-1)

    # Edges - integers.
    assert_equal(len(triang.edges), nedges)
    assert_equal(np.min(triang.edges), 0)
    assert_equal(np.max(triang.edges), npoints-1)

    # Neighbors - integers.
    # Check that neighbors calculated by C++ triangulation class are the same
    # as those returned from delaunay routine.
    neighbors = triang.neighbors
    triang._neighbors = None
    assert_array_equal(triang.neighbors, neighbors)

    # Is each point used in at least one triangle?
    assert_array_equal(np.unique(triang.triangles), np.arange(npoints))


def test_delaunay_duplicate_points():
    # x[duplicate] == x[duplicate_of]
    # y[duplicate] == y[duplicate_of]
    npoints = 10
    duplicate = 7
    duplicate_of = 3

    np.random.seed(23)
    x = np.random.random((npoints))
    y = np.random.random((npoints))
    x[duplicate] = x[duplicate_of]
    y[duplicate] = y[duplicate_of]

    # Create delaunay triangulation.
    triang = mtri.Triangulation(x, y)

    # Duplicate points should be ignored, so the index of the duplicate points
    # should not appear in any triangle.
    assert_array_equal(np.unique(triang.triangles),
                       np.delete(np.arange(npoints), duplicate))


def test_delaunay_points_in_line():
    # Cannot triangulate points that are all in a straight line, but check
    # that delaunay code fails gracefully.
    x = np.linspace(0.0, 10.0, 11)
    y = np.linspace(0.0, 10.0, 11)
    assert_raises(RuntimeError, mtri.Triangulation, x, y)

    # Add an extra point not on the line and the triangulation is OK.
    x = np.append(x, 2.0)
    y = np.append(y, 8.0)
    triang = mtri.Triangulation(x, y)


def test_delaunay_insufficient_points():
    # Triangulation should raise a ValueError if passed less than 3 points.
    assert_raises(ValueError, mtri.Triangulation, [], [])
    assert_raises(ValueError, mtri.Triangulation, [1], [5])
    assert_raises(ValueError, mtri.Triangulation, [1, 2], [5, 6])

    # Triangulation should also raise a ValueError if passed duplicate points
    # such that there are less than 3 unique points.
    assert_raises(ValueError, mtri.Triangulation, [1, 2, 1], [5, 6, 5])
    assert_raises(ValueError, mtri.Triangulation, [1, 2, 2], [5, 6, 6])
    assert_raises(ValueError, mtri.Triangulation, [1, 1, 1, 2, 1, 2],
                  [5, 5, 5, 6, 5, 6])


def test_delaunay_robust():
    # Fails when mtri.Triangulation uses matplotlib.delaunay, works when using
    # qhull.
    tri_points = np.array([
        [0.8660254037844384, -0.5000000000000004],
        [0.7577722283113836, -0.5000000000000004],
        [0.6495190528383288, -0.5000000000000003],
        [0.5412658773652739, -0.5000000000000003],
        [0.811898816047911, -0.40625000000000044],
        [0.7036456405748561, -0.4062500000000004],
        [0.5953924651018013, -0.40625000000000033]])
    test_points = np.asarray([
        [0.58, -0.46],
        [0.65, -0.46],
        [0.65, -0.42],
        [0.7, -0.48],
        [0.7, -0.44],
        [0.75, -0.44],
        [0.8, -0.48]])

    # Utility function that indicates if a triangle defined by 3 points
    # (xtri, ytri) contains the test point xy.  Avoid calling with a point that
    # lies on or very near to an edge of the triangle.
    def tri_contains_point(xtri, ytri, xy):
        tri_points = np.vstack((xtri, ytri)).T
        return Path(tri_points).contains_point(xy)

    # Utility function that returns how many triangles of the specified
    # triangulation contain the test point xy.  Avoid calling with a point that
    # lies on or very near to an edge of any triangle in the triangulation.
    def tris_contain_point(triang, xy):
        count = 0
        for tri in triang.triangles:
            if tri_contains_point(triang.x[tri], triang.y[tri], xy):
                count += 1
        return count

    # Using matplotlib.delaunay, an invalid triangulation is created with
    # overlapping triangles; qhull is OK.
    triang = mtri.Triangulation(tri_points[:, 0], tri_points[:, 1])
    for test_point in test_points:
        assert_equal(tris_contain_point(triang, test_point), 1)

    # If ignore the first point of tri_points, matplotlib.delaunay throws a
    # KeyError when calculating the convex hull; qhull is OK.
    triang = mtri.Triangulation(tri_points[1:, 0], tri_points[1:, 1])


@image_comparison(baseline_images=['tripcolor1'], extensions=['png'])
def test_tripcolor():
    x = np.asarray([0, 0.5, 1, 0,   0.5, 1,   0, 0.5, 1, 0.75])
    y = np.asarray([0, 0,   0, 0.5, 0.5, 0.5, 1, 1,   1, 0.75])
    triangles = np.asarray([
        [0, 1, 3], [1, 4, 3],
        [1, 2, 4], [2, 5, 4],
        [3, 4, 6], [4, 7, 6],
        [4, 5, 9], [7, 4, 9], [8, 7, 9], [5, 8, 9]])

    # Triangulation with same number of points and triangles.
    triang = mtri.Triangulation(x, y, triangles)

    Cpoints = x + 0.5*y

    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    Cfaces = 0.5*xmid + ymid

    plt.subplot(121)
    plt.tripcolor(triang, Cpoints, edgecolors='k')
    plt.title('point colors')

    plt.subplot(122)
    plt.tripcolor(triang, facecolors=Cfaces, edgecolors='k')
    plt.title('facecolors')


def test_no_modify():
    # Test that Triangulation does not modify triangles array passed to it.
    triangles = np.array([[3, 2, 0], [3, 1, 0]], dtype=np.int32)
    points = np.array([(0, 0), (0, 1.1), (1, 0), (1, 1)])

    old_triangles = triangles.copy()
    tri = mtri.Triangulation(points[:, 0], points[:, 1], triangles)
    edges = tri.edges
    assert_array_equal(old_triangles, triangles)


def test_trifinder():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    trifinder = triang.get_trifinder()

    xs = [0.25, 1.25, 2.25, 3.25]
    ys = [0.25, 1.25, 2.25, 3.25]
    xs, ys = np.meshgrid(xs, ys)
    xs = xs.ravel()
    ys = ys.ravel()
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, -1, 6, -1, 10, -1,
                              12, 14, 16, -1, -1, -1, -1, -1])
    tris = trifinder(xs-0.5, ys-0.5)
    assert_array_equal(tris, [-1, -1, -1, -1, -1, 1, 3, 5,
                              -1, 7, -1, 11, -1, 13, 15, 17])

    # Test points exactly on boundary edges of masked triangulation.
    xs = [0.5, 1.5, 2.5, 0.5, 1.5, 2.5, 1.5, 1.5, 0.0, 1.0, 2.0, 3.0]
    ys = [0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 1.0, 2.0, 1.5, 1.5, 1.5, 1.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 2, 4, 13, 15, 17, 3, 14, 6, 7, 10, 11])

    # Test points exactly on boundary corners of masked triangulation.
    xs = [0.0, 3.0]
    ys = [0.0, 3.0]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [0, 17])

    # Test triangles with horizontal colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    delta = 0.0  # If +ve, triangulation is OK, if -ve triangulation invalid,
                 # if zero have colinear points but should pass tests anyway.
    x = [1.5, 0,  1,  2, 3, 1.5,   1.5]
    y = [-1,  0,  0,  0, 0, delta, 1]
    triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                 [3, 4, 5], [1, 5, 6], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    ys = [-0.1, 0.1]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, 0, 0, 1, 1, 2, -1],
                              [-1, 6, 6, 6, 7, 7, -1]])

    # Test triangles with vertical colinear points.  These are not valid
    # triangulations, but we try to deal with the simplest violations.
    delta = 0.0  # If +ve, triangulation is OK, if -ve triangulation invalid,
                # if zero have colinear points but should pass tests anyway.
    x = [-1, -delta, 0,  0,  0, 0, 1]
    y = [1.5, 1.5,   0,  1,  2, 3, 1.5]
    triangles = [[0, 1, 2], [0, 1, 5], [1, 2, 3], [1, 3, 4], [1, 4, 5],
                 [2, 6, 3], [3, 6, 4], [4, 6, 5]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.1, 0.1]
    ys = [-0.1, 0.4, 0.9, 1.4, 1.9, 2.4, 2.9]
    xs, ys = np.meshgrid(xs, ys)
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [[-1, -1], [0, 5], [0, 5], [0, 6], [1, 6], [1, 7],
                              [-1, -1]])

    # Test that changing triangulation by setting a mask causes the trifinder
    # to be reinitialised.
    x = [0, 1, 0, 1]
    y = [0, 0, 1, 1]
    triangles = [[0, 1, 2], [1, 3, 2]]
    triang = mtri.Triangulation(x, y, triangles)
    trifinder = triang.get_trifinder()

    xs = [-0.2, 0.2, 0.8, 1.2]
    ys = [ 0.5, 0.5, 0.5, 0.5]
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, 0, 1, -1])

    triang.set_mask([1, 0])
    assert_equal(trifinder, triang.get_trifinder())
    tris = trifinder(xs, ys)
    assert_array_equal(tris, [-1, -1, 1, -1])


def test_triinterp():
    # Test points within triangles of masked triangulation.
    x, y = np.meshgrid(np.arange(4), np.arange(4))
    x = x.ravel()
    y = y.ravel()
    z = 1.23*x - 4.79*y
    triangles = [[0, 1, 4], [1, 5, 4], [1, 2, 5], [2, 6, 5], [2, 3, 6],
                 [3, 7, 6], [4, 5, 8], [5, 9, 8], [5, 6, 9], [6, 10, 9],
                 [6, 7, 10], [7, 11, 10], [8, 9, 12], [9, 13, 12], [9, 10, 13],
                 [10, 14, 13], [10, 11, 14], [11, 15, 14]]
    mask = np.zeros(len(triangles))
    mask[8:10] = 1
    triang = mtri.Triangulation(x, y, triangles, mask)
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

    xs = np.linspace(0.25, 2.75, 6)
    ys = [0.25, 0.75, 2.25, 2.75]
    xs, ys = np.meshgrid(xs, ys)  # Testing arrays with array.ndim = 2
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))

    # Test points outside triangulation.
    xs = [-0.25, 1.25, 1.75, 3.25]
    ys = xs
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = linear_interp(xs, ys)
        assert_array_equal(zs.mask, [[True]*4]*4)

    # Test mixed configuration (outside / inside).
    xs = np.linspace(0.25, 1.75, 6)
    ys = [0.25, 0.75, 1.25, 1.75]
    xs, ys = np.meshgrid(xs, ys)
    for interp in (linear_interp, cubic_min_E, cubic_geom):
        zs = interp(xs, ys)
        matest.assert_array_almost_equal(zs, (1.23*xs - 4.79*ys))
        mask = (xs >= 1) * (xs <= 2) * (ys >= 1) * (ys <= 2)
        assert_array_equal(zs.mask, mask)

    # 2nd order patch test: on a grid with an 'arbitrary shaped' triangle,
    # patch test shall be exact for quadratic functions and cubic
    # interpolator if *kind* = user
    (a, b, c) = (1.23, -4.79, 0.6)

    def quad(x, y):
        return a*(x-0.5)**2 + b*(y-0.5)**2 + c*x*y

    def gradient_quad(x, y):
        return (2*a*(x-0.5) + c*y, 2*b*(y-0.5) + c*x)

    x = np.array([0.2, 0.33367, 0.669, 0., 1., 1., 0.])
    y = np.array([0.3, 0.80755, 0.4335, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)
    z = quad(x, y)
    dz = gradient_quad(x, y)
    # test points for 2nd order patch test
    xs = np.linspace(0., 1., 5)
    ys = np.linspace(0., 1., 5)
    xs, ys = np.meshgrid(xs, ys)
    cubic_user = mtri.CubicTriInterpolator(triang, z, kind='user', dz=dz)
    interp_zs = cubic_user(xs, ys)
    assert_array_almost_equal(interp_zs, quad(xs, ys))
    (interp_dzsdx, interp_dzsdy) = cubic_user.gradient(x, y)
    (dzsdx, dzsdy) = gradient_quad(x, y)
    assert_array_almost_equal(interp_dzsdx, dzsdx)
    assert_array_almost_equal(interp_dzsdy, dzsdy)

    # Cubic improvement: cubic interpolation shall perform better than linear
    # on a sufficiently dense mesh for a quadratic function.
    n = 11
    x, y = np.meshgrid(np.linspace(0., 1., n+1), np.linspace(0., 1., n+1))
    x = x.ravel()
    y = y.ravel()
    z = quad(x, y)
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    xs, ys = np.meshgrid(np.linspace(0.1, 0.9, 5), np.linspace(0.1, 0.9, 5))
    xs = xs.ravel()
    ys = ys.ravel()
    linear_interp = mtri.LinearTriInterpolator(triang, z)
    cubic_min_E = mtri.CubicTriInterpolator(triang, z)
    cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
    zs = quad(xs, ys)
    diff_lin = np.abs(linear_interp(xs, ys) - zs)
    for interp in (cubic_min_E, cubic_geom):
        diff_cubic = np.abs(interp(xs, ys) - zs)
        assert(np.max(diff_lin) >= 10.*np.max(diff_cubic))
        assert(np.dot(diff_lin, diff_lin) >=
               100.*np.dot(diff_cubic, diff_cubic))


def test_triinterpcubic_C1_continuity():
    # Below the 4 tests which demonstrate C1 continuity of the
    # TriCubicInterpolator (testing the cubic shape functions on arbitrary
    # triangle):
    #
    # 1) Testing continuity of function & derivatives at corner for all 9
    #    shape functions. Testing also function values at same location.
    # 2) Testing C1 continuity along each edge (as gradient is polynomial of
    #    2nd order, it is sufficient to test at the middle).
    # 3) Testing C1 continuity at triangle barycenter (where the 3 subtriangles
    #    meet)
    # 4) Testing C1 continuity at median 1/3 points (midside between 2
    #    subtriangles)

    # Utility test function check_continuity
    def check_continuity(interpolator, loc, values=None):
        """
        Checks the continuity of interpolator (and its derivatives) near
        location loc. Can check the value at loc itself if *values* is
        provided.

        *interpolator* TriInterpolator
        *loc* location to test (x0, y0)
        *values* (optional) array [z0, dzx0, dzy0] to check the value at *loc*
        """
        n_star = 24       # Number of continuity points in a boundary of loc
        epsilon = 1.e-10  # Distance for loc boundary
        k = 100.          # Continuity coefficient
        (loc_x, loc_y) = loc
        star_x = loc_x + epsilon*np.cos(np.linspace(0., 2*np.pi, n_star))
        star_y = loc_y + epsilon*np.sin(np.linspace(0., 2*np.pi, n_star))
        z = interpolator([loc_x], [loc_y])[0]
        (dzx, dzy) = interpolator.gradient([loc_x], [loc_y])
        if values is not None:
            assert_array_almost_equal(z, values[0])
            assert_array_almost_equal(dzx[0], values[1])
            assert_array_almost_equal(dzy[0], values[2])
        diff_z = interpolator(star_x, star_y) - z
        (tab_dzx, tab_dzy) = interpolator.gradient(star_x, star_y)
        diff_dzx = tab_dzx - dzx
        diff_dzy = tab_dzy - dzy
        assert_array_less(diff_z, epsilon*k)
        assert_array_less(diff_dzx, epsilon*k)
        assert_array_less(diff_dzy, epsilon*k)

    # Drawing arbitrary triangle (a, b, c) inside a unit square.
    (ax, ay) = (0.2, 0.3)
    (bx, by) = (0.33367, 0.80755)
    (cx, cy) = (0.669, 0.4335)
    x = np.array([ax, bx, cx, 0., 1., 1., 0.])
    y = np.array([ay, by, cy, 0., 0., 1., 1.])
    triangles = np.array([[0, 1, 2], [3, 0, 4], [4, 0, 2], [4, 2, 5],
                          [1, 5, 2], [6, 5, 1], [6, 1, 0], [6, 0, 3]])
    triang = mtri.Triangulation(x, y, triangles)

    for idof in range(9):
        z = np.zeros(7, dtype=np.float64)
        dzx = np.zeros(7, dtype=np.float64)
        dzy = np.zeros(7, dtype=np.float64)
        values = np.zeros([3, 3], dtype=np.float64)
        case = idof//3
        values[case, idof % 3] = 1.0
        if case == 0:
            z[idof] = 1.0
        elif case == 1:
            dzx[idof % 3] = 1.0
        elif case == 2:
            dzy[idof % 3] = 1.0
        interp = mtri.CubicTriInterpolator(triang, z, kind='user',
                                           dz=(dzx, dzy))
        # Test 1) Checking values and continuity at nodes
        check_continuity(interp, (ax, ay), values[:, 0])
        check_continuity(interp, (bx, by), values[:, 1])
        check_continuity(interp, (cx, cy), values[:, 2])
        # Test 2) Checking continuity at midside nodes
        check_continuity(interp, ((ax+bx)*0.5, (ay+by)*0.5))
        check_continuity(interp, ((ax+cx)*0.5, (ay+cy)*0.5))
        check_continuity(interp, ((cx+bx)*0.5, (cy+by)*0.5))
        # Test 3) Checking continuity at barycenter
        check_continuity(interp, ((ax+bx+cx)/3., (ay+by+cy)/3.))
        # Test 4) Checking continuity at median 1/3-point
        check_continuity(interp, ((4.*ax+bx+cx)/6., (4.*ay+by+cy)/6.))
        check_continuity(interp, ((ax+4.*bx+cx)/6., (ay+4.*by+cy)/6.))
        check_continuity(interp, ((ax+bx+4.*cx)/6., (ay+by+4.*cy)/6.))


def test_triinterpcubic_cg_solver():
    # Now 3 basic tests of the Sparse CG solver, used for
    # TriCubicInterpolator with *kind* = 'min_E'
    # 1) A commonly used test involves a 2d Poisson matrix.
    def poisson_sparse_matrix(n, m):
        """
        Sparse Poisson matrix.

        Returns the sparse matrix in coo format resulting from the
        discretisation of the 2-dimensional Poisson equation according to a
        finite difference numerical scheme on a uniform (n, m) grid.
        Size of the matrix: (n*m, n*m)
        """
        l = m*n
        rows = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(l-1, dtype=np.int32), np.arange(1, l, dtype=np.int32),
            np.arange(l-n, dtype=np.int32), np.arange(n, l, dtype=np.int32)])
        cols = np.concatenate([
            np.arange(l, dtype=np.int32),
            np.arange(1, l, dtype=np.int32), np.arange(l-1, dtype=np.int32),
            np.arange(n, l, dtype=np.int32), np.arange(l-n, dtype=np.int32)])
        vals = np.concatenate([
            4*np.ones(l, dtype=np.float64),
            -np.ones(l-1, dtype=np.float64), -np.ones(l-1, dtype=np.float64),
            -np.ones(l-n, dtype=np.float64), -np.ones(l-n, dtype=np.float64)])
        # In fact +1 and -1 diags have some zeros
        vals[l:2*l-1][m-1::m] = 0.
        vals[2*l-1:3*l-2][m-1::m] = 0.
        return vals, rows, cols, (n*m, n*m)

    # Instantiating a sparse Poisson matrix of size 48 x 48:
    (n, m) = (12, 4)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(*poisson_sparse_matrix(n, m))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 48 basis vector
    for itest in range(n*m):
        b = np.zeros(n*m, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.zeros(n*m),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 2) Same matrix with inserting 2 rows - cols with null diag terms
    # (but still linked with the rest of the matrix by extra-diag terms)
    (i_zero, j_zero) = (12, 49)
    vals, rows, cols, _ = poisson_sparse_matrix(n, m)
    rows = rows + 1*(rows >= i_zero) + 1*(rows >= j_zero)
    cols = cols + 1*(cols >= i_zero) + 1*(cols >= j_zero)
    # adding extra-diag terms
    rows = np.concatenate([rows, [i_zero, i_zero-1, j_zero, j_zero-1]])
    cols = np.concatenate([cols, [i_zero-1, i_zero, j_zero-1, j_zero]])
    vals = np.concatenate([vals, [1., 1., 1., 1.]])
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols,
                                                 (n*m + 2, n*m + 2))
    mat.compress_csc()
    mat_dense = mat.to_dense()
    # Testing a sparse solve for all 50 basis vec
    for itest in range(n*m + 2):
        b = np.zeros(n*m + 2, dtype=np.float64)
        b[itest] = 1.
        x, _ = mtri.triinterpolate._cg(A=mat, b=b, x0=np.ones(n*m + 2),
                                       tol=1.e-10)
        assert_array_almost_equal(np.dot(mat_dense, x), b)

    # 3) Now a simple test that summation of duplicate (i.e. with same rows,
    # same cols) entries occurs when compressed.
    vals = np.ones(17, dtype=np.float64)
    rows = np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1],
                    dtype=np.int32)
    cols = np.array([0, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
                    dtype=np.int32)
    dim = (3, 3)
    mat = mtri.triinterpolate._Sparse_Matrix_coo(vals, rows, cols, dim)
    mat.compress_csc()
    mat_dense = mat.to_dense()
    assert_array_almost_equal(mat_dense, np.array([
        [1., 2., 0.], [2., 1., 5.], [0., 5., 1.]], dtype=np.float64))


def test_triinterpcubic_geom_weights():
    # Tests to check computation of weights for _DOF_estimator_geom:
    # The weight sum per triangle can be 1. (in case all angles < 90 degrees)
    # or (2*w_i) where w_i = 1-alpha_i/np.pi is the weight of apex i ; alpha_i
    # is the apex angle > 90 degrees.
    (ax, ay) = (0., 1.687)
    x = np.array([ax, 0.5*ax, 0., 1.])
    y = np.array([ay, -ay, 0., 0.])
    z = np.zeros(4, dtype=np.float64)
    triangles = [[0, 2, 3], [1, 3, 2]]
    sum_w = np.zeros([4, 2])  # 4 possibilities ; 2 triangles
    for theta in np.linspace(0., 2*np.pi, 14):  # rotating the figure...
        x_rot = np.cos(theta)*x + np.sin(theta)*y
        y_rot = -np.sin(theta)*x + np.cos(theta)*y
        triang = mtri.Triangulation(x_rot, y_rot, triangles)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
        dof_estimator = mtri.triinterpolate._DOF_estimator_geom(cubic_geom)
        weights = dof_estimator.compute_geom_weights()
        # Testing for the 4 possibilities...
        sum_w[0, :] = np.sum(weights, 1) - 1
        for itri in range(3):
            sum_w[itri+1, :] = np.sum(weights, 1) - 2*weights[:, itri]
        assert_array_almost_equal(np.min(np.abs(sum_w), axis=0),
                                  np.array([0., 0.], dtype=np.float64))


def test_triinterp_colinear():
    # Tests interpolating inside a triangulation with horizontal colinear
    # points (refer also to the tests :func:`test_trifinder` ).
    #
    # These are not valid triangulations, but we try to deal with the
    # simplest violations (i. e. those handled by default TriFinder).
    #
    # Note that the LinearTriInterpolator and the CubicTriInterpolator with
    # kind='min_E' or 'geom' still pass a linear patch test.
    # We also test interpolation inside a  flat triangle, by forcing
    # *tri_index* in a call to :meth:`_interpolate_multikeys`.

    delta = 0.  # If +ve, triangulation is OK, if -ve triangulation invalid,
                # if zero have colinear points but should pass tests anyway.
    x0 = np.array([1.5, 0,  1,  2, 3, 1.5,   1.5])
    y0 = np.array([-1,  0,  0,  0, 0, delta, 1])

    # We test different affine transformations of the initial figure ; to
    # avoid issues related to round-off errors we only use integer
    # coefficients (otherwise the Triangulation might become invalid even with
    # delta == 0).
    transformations = [[1, 0], [0, 1], [1, 1], [1, 2], [-2, -1], [-2, 1]]
    for transformation in transformations:
        x_rot = transformation[0]*x0 + transformation[1]*y0
        y_rot = -transformation[1]*x0 + transformation[0]*y0
        (x, y) = (x_rot, y_rot)
        z = 1.23*x - 4.79*y
        triangles = [[0, 2, 1], [0, 3, 2], [0, 4, 3], [1, 2, 5], [2, 3, 5],
                     [3, 4, 5], [1, 5, 6], [4, 6, 5]]
        triang = mtri.Triangulation(x, y, triangles)
        xs = np.linspace(np.min(triang.x), np.max(triang.x), 20)
        ys = np.linspace(np.min(triang.y), np.max(triang.y), 20)
        xs, ys = np.meshgrid(xs, ys)
        xs = xs.ravel()
        ys = ys.ravel()
        mask_out = (triang.get_trifinder()(xs, ys) == -1)
        zs_target = np.ma.array(1.23*xs - 4.79*ys, mask=mask_out)

        linear_interp = mtri.LinearTriInterpolator(triang, z)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z)
        cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')

        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs = interp(xs, ys)
            assert_array_almost_equal(zs_target, zs)

        # Testing interpolation inside the flat triangle number 4: [2, 3, 5]
        # by imposing *tri_index* in a call to :meth:`_interpolate_multikeys`
        itri = 4
        pt1 = triang.triangles[itri, 0]
        pt2 = triang.triangles[itri, 1]
        xs = np.linspace(triang.x[pt1], triang.x[pt2], 10)
        ys = np.linspace(triang.y[pt1], triang.y[pt2], 10)
        zs_target = 1.23*xs - 4.79*ys
        for interp in (linear_interp, cubic_min_E, cubic_geom):
            zs, = interp._interpolate_multikeys(
                xs, ys, tri_index=itri*np.ones(10, dtype=np.int32))
            assert_array_almost_equal(zs_target, zs)


def test_triinterp_transformations():
    # 1) Testing that the interpolation scheme is invariant by rotation of the
    # whole figure.
    # Note: This test is non-trivial for a CubicTriInterpolator with
    # kind='min_E'. It does fail for a non-isotropic stiffness matrix E of
    # :class:`_ReducedHCT_Element` (tested with E=np.diag([1., 1., 1.])), and
    # provides a good test for :meth:`get_Kff_and_Ff`of the same class.
    #
    # 2) Also testing that the interpolation scheme is invariant by expansion
    # of the whole figure along one axis.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.sqrt((0.5-x)**2 + (0.5-y)**2)
        theta1 = np.arctan2(0.5-x, 0.5-y)
        r2 = np.sqrt((-x-0.2)**2 + (-y-0.2)**2)
        theta2 = np.arctan2(-x-0.2, -y-0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)

    # Then create the test points
    xs0 = np.linspace(-1., 1., 23)
    ys0 = np.linspace(-1., 1., 23)
    xs0, ys0 = np.meshgrid(xs0, ys0)
    xs0 = xs0.ravel()
    ys0 = ys0.ravel()

    interp_z0 = {}
    for i_angle in range(2):
        # Rotating everything
        theta = 2*np.pi / n_angles * i_angle
        x = np.cos(theta)*x0 + np.sin(theta)*y0
        y = -np.sin(theta)*x0 + np.cos(theta)*y0
        xs = np.cos(theta)*xs0 + np.sin(theta)*ys0
        ys = -np.sin(theta)*xs0 + np.cos(theta)*ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Testing that the interpolation is invariant by rotation...
        for interp_key in ['lin', 'min_E', 'geom']:
            interp = dic_interp[interp_key]
            if i_angle == 0:
                interp_z0[interp_key] = interp(xs0, ys0)  # storage
            else:
                interpz = interp(xs, ys)
                matest.assert_array_almost_equal(interpz,
                                                 interp_z0[interp_key])

    scale_factor = 987654.3210
    for scaled_axis in ('x', 'y'):
        # Scaling everything (expansion along scaled_axis)
        if scaled_axis == 'x':
            x = scale_factor * x0
            y = y0
            xs = scale_factor * xs0
            ys = ys0
        else:
            x = x0
            y = scale_factor * y0
            xs = xs0
            ys = scale_factor * ys0
        triang = mtri.Triangulation(x, y, triang0.triangles)
        linear_interp = mtri.LinearTriInterpolator(triang, z0)
        cubic_min_E = mtri.CubicTriInterpolator(triang, z0)
        cubic_geom = mtri.CubicTriInterpolator(triang, z0, kind='geom')
        dic_interp = {'lin': linear_interp,
                      'min_E': cubic_min_E,
                      'geom': cubic_geom}
        # Testing that the interpolation is invariant by expansion along
        # 1 axis...
        for interp_key in ['lin', 'min_E', 'geom']:
            interpz = dic_interp[interp_key](xs, ys)
            matest.assert_array_almost_equal(interpz, interp_z0[interp_key])


@image_comparison(baseline_images=['tri_smooth_contouring'],
                  extensions=['png'], remove_text=True)
def test_tri_smooth_contouring():
    # Image comparison based on example tricontour_smooth_user.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.sqrt((0.5-x)**2 + (0.5-y)**2)
        theta1 = np.arctan2(0.5-x, 0.5-y)
        r2 = np.sqrt((-x-0.2)**2 + (-y-0.2)**2)
        theta2 = np.arctan2(-x-0.2, -y-0.2)
        z = -(2*(np.exp((r1/10)**2)-1)*30. * np.cos(7.*theta1) +
              (np.exp((r2/10)**2)-1)*30. * np.cos(11.*theta2) +
              0.7*(x**2 + y**2))
        return (np.max(z)-z)/(np.max(z)-np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2*np.pi + n_angles,
                         n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x0 = (radii*np.cos(angles)).flatten()
    y0 = (radii*np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)
    xmid = x0[triang0.triangles].mean(axis=1)
    ymid = y0[triang0.triangles].mean(axis=1)
    mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
    triang0.set_mask(mask)

    # Then the plot
    refiner = mtri.UniformTriRefiner(triang0)
    tri_refi, z_test_refi = refiner.refine_field(z0, subdiv=4)
    levels = np.arange(0., 1., 0.025)
    plt.triplot(triang0, lw=0.5, color='0.5')
    plt.tricontour(tri_refi, z_test_refi, levels=levels, colors="black")


@image_comparison(baseline_images=['tri_smooth_gradient'],
                  extensions=['png'], remove_text=True)
def test_tri_smooth_gradient():
    # Image comparison based on example trigradient_demo.

    def dipole_potential(x, y):
        """ An electric dipole potential V """
        r_sq = x**2 + y**2
        theta = np.arctan2(y, x)
        z = np.cos(theta)/r_sq
        return (np.max(z)-z) / (np.max(z)-np.min(z))

    # Creating a Triangulation
    n_angles = 30
    n_radii = 10
    min_radius = 0.2
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi/n_angles
    x = (radii*np.cos(angles)).flatten()
    y = (radii*np.sin(angles)).flatten()
    V = dipole_potential(x, y)
    triang = mtri.Triangulation(x, y)
    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
    triang.set_mask(mask)

    # Refine data - interpolates the electrical potential V
    refiner = mtri.UniformTriRefiner(triang)
    tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

    # Computes the electrical field (Ex, Ey) as gradient of -V
    tci = mtri.CubicTriInterpolator(triang, -V)
    (Ex, Ey) = tci.gradient(triang.x, triang.y)
    E_norm = np.sqrt(Ex**2 + Ey**2)

    # Plot the triangulation, the potential iso-contours and the vector field
    plt.figure()
    plt.gca().set_aspect('equal')
    plt.triplot(triang, color='0.8')

    levels = np.arange(0., 1., 0.01)
    cmap = cm.get_cmap(name='hot', lut=None)
    plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
                   linewidths=[2.0, 1.0, 1.0, 1.0])
    # Plots direction of the electrical vector field
    plt.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,
               units='xy', scale=10., zorder=3, color='blue',
               width=0.007, headwidth=3., headlength=4.)
    # We are leaving ax.use_sticky_margins as True, so the
    # view limits are the contour data limits.


def test_tritools():
    # Tests TriAnalyzer.scale_factors on masked triangulation
    # Tests circle_ratios on equilateral and right-angled triangle.
    x = np.array([0., 1., 0.5, 0., 2.])
    y = np.array([0., 0., 0.5*np.sqrt(3.), -1., 1.])
    triangles = np.array([[0, 1, 2], [0, 1, 3], [1, 2, 4]], dtype=np.int32)
    mask = np.array([False, False, True], dtype=np.bool)
    triang = mtri.Triangulation(x, y, triangles, mask=mask)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.scale_factors,
                              np.array([1., 1./(1.+0.5*np.sqrt(3.))]))
    assert_array_almost_equal(
        analyser.circle_ratios(rescale=False),
        np.ma.masked_array([0.5, 1./(1.+np.sqrt(2.)), np.nan], mask))

    # Tests circle ratio of a flat triangle
    x = np.array([0., 1., 2.])
    y = np.array([1., 1.+3., 1.+6.])
    triangles = np.array([[0, 1, 2]], dtype=np.int32)
    triang = mtri.Triangulation(x, y, triangles)
    analyser = mtri.TriAnalyzer(triang)
    assert_array_almost_equal(analyser.circle_ratios(), np.array([0.]))

    # Tests TriAnalyzer.get_flat_tri_mask
    # Creates a triangulation of [-1, 1] x [-1, 1] with contiguous groups of
    # 'flat' triangles at the 4 corners and at the center. Checks that only
    # those at the borders are eliminated by TriAnalyzer.get_flat_tri_mask
    n = 9

    def power(x, a):
        return np.abs(x)**a*np.sign(x)

    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(power(x, 2.), power(x, 0.25))
    x = x.ravel()
    y = y.ravel()

    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1))
    analyser = mtri.TriAnalyzer(triang)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    verif_mask = np.zeros(162, dtype=np.bool)
    corners_index = [0, 1, 2, 3, 14, 15, 16, 17, 18, 19, 34, 35, 126, 127,
                     142, 143, 144, 145, 146, 147, 158, 159, 160, 161]
    verif_mask[corners_index] = True
    assert_array_equal(mask_flat, verif_mask)

    # Now including a hole (masked triangle) at the center. The center also
    # shall be eliminated by get_flat_tri_mask.
    mask = np.zeros(162, dtype=np.bool)
    mask[80] = True
    triang.set_mask(mask)
    mask_flat = analyser.get_flat_tri_mask(0.2)
    center_index = [44, 45, 62, 63, 78, 79, 80, 81, 82, 83, 98, 99, 116, 117]
    verif_mask[center_index] = True
    assert_array_equal(mask_flat, verif_mask)


def test_trirefine():
    # Testing subdiv=2 refinement
    n = 3
    subdiv = 2
    x = np.linspace(-1., 1., n+1)
    x, y = np.meshgrid(x, x)
    x = x.ravel()
    y = y.ravel()
    mask = np.zeros(2*n**2, dtype=np.bool)
    mask[n**2:] = True
    triang = mtri.Triangulation(x, y, triangles=meshgrid_triangles(n+1),
                                mask=mask)
    refiner = mtri.UniformTriRefiner(triang)
    refi_triang = refiner.refine_triangulation(subdiv=subdiv)
    x_refi = refi_triang.x
    y_refi = refi_triang.y

    n_refi = n * subdiv**2
    x_verif = np.linspace(-1., 1., n_refi+1)
    x_verif, y_verif = np.meshgrid(x_verif, x_verif)
    x_verif = x_verif.ravel()
    y_verif = y_verif.ravel()
    ind1d = np.in1d(np.around(x_verif*(2.5+y_verif), 8),
                    np.around(x_refi*(2.5+y_refi), 8))
    assert_array_equal(ind1d, True)

    # Testing the mask of the refined triangulation
    refi_mask = refi_triang.mask
    refi_tri_barycenter_x = np.sum(refi_triang.x[refi_triang.triangles],
                                   axis=1) / 3.
    refi_tri_barycenter_y = np.sum(refi_triang.y[refi_triang.triangles],
                                   axis=1) / 3.
    tri_finder = triang.get_trifinder()
    refi_tri_indices = tri_finder(refi_tri_barycenter_x,
                                  refi_tri_barycenter_y)
    refi_tri_mask = triang.mask[refi_tri_indices]
    assert_array_equal(refi_mask, refi_tri_mask)

    # Testing that the numbering of triangles does not change the
    # interpolation result.
    x = np.asarray([0.0, 1.0, 0.0, 1.0])
    y = np.asarray([0.0, 0.0, 1.0, 1.0])
    triang = [mtri.Triangulation(x, y, [[0, 1, 3], [3, 2, 0]]),
              mtri.Triangulation(x, y, [[0, 1, 3], [2, 0, 3]])]
    z = np.sqrt((x-0.3)*(x-0.3) + (y-0.4)*(y-0.4))
    # Refining the 2 triangulations and reordering the points
    xyz_data = []
    for i in range(2):
        refiner = mtri.UniformTriRefiner(triang[i])
        refined_triang, refined_z = refiner.refine_field(z, subdiv=1)
        xyz = np.dstack((refined_triang.x, refined_triang.y, refined_z))[0]
        xyz = xyz[np.lexsort((xyz[:, 1], xyz[:, 0]))]
        xyz_data += [xyz]
    assert_array_almost_equal(xyz_data[0], xyz_data[1])


def meshgrid_triangles(n):
    """
    Utility function.
    Returns triangles to mesh a np.meshgrid of n x n points
    """
    tri = []
    for i in range(n-1):
        for j in range(n-1):
            a = i + j*(n)
            b = (i+1) + j*n
            c = i + (j+1)*n
            d = (i+1) + (j+1)*n
            tri += [[a, b, d], [a, d, c]]
    return np.array(tri, dtype=np.int32)


def test_triplot_return():
    # Check that triplot returns the artists it adds
    from matplotlib.figure import Figure
    ax = Figure().add_axes([0.1, 0.1, 0.7, 0.7])
    triang = mtri.Triangulation(
        [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0],
        triangles=[[0, 1, 3], [3, 2, 0]])
    if ax.triplot(triang, "b-") is None:
        raise AssertionError("triplot should return the artist it adds")


def test_trirefiner_fortran_contiguous_triangles():
    # github issue 4180.  Test requires two arrays of triangles that are
    # identical except that one is C-contiguous and one is fortran-contiguous.
    triangles1 = np.array([[2, 0, 3], [2, 1, 0]])
    assert_false(np.isfortran(triangles1))

    triangles2 = np.array(triangles1, copy=True, order='F')
    assert_true(np.isfortran(triangles2))

    x = np.array([0.39, 0.59, 0.43, 0.32])
    y = np.array([33.99, 34.01, 34.19, 34.18])
    triang1 = mtri.Triangulation(x, y, triangles1)
    triang2 = mtri.Triangulation(x, y, triangles2)

    refiner1 = mtri.UniformTriRefiner(triang1)
    refiner2 = mtri.UniformTriRefiner(triang2)

    fine_triang1 = refiner1.refine_triangulation(subdiv=1)
    fine_triang2 = refiner2.refine_triangulation(subdiv=1)

    assert_array_equal(fine_triang1.triangles, fine_triang2.triangles)


def test_qhull_triangle_orientation():
    # github issue 4437.
    xi = np.linspace(-2, 2, 100)
    x, y = map(np.ravel, np.meshgrid(xi, xi))
    w = np.logical_and(x > y - 1, np.logical_and(x < -1.95, y > -1.2))
    x, y = x[w], y[w]
    theta = np.radians(25)
    x1 = x*np.cos(theta) - y*np.sin(theta)
    y1 = x*np.sin(theta) + y*np.cos(theta)

    # Calculate Delaunay triangulation using Qhull.
    triang = mtri.Triangulation(x1, y1)

    # Neighbors returned by Qhull.
    qhull_neighbors = triang.neighbors

    # Obtain neighbors using own C++ calculation.
    triang._neighbors = None
    own_neighbors = triang.neighbors

    assert_array_equal(qhull_neighbors, own_neighbors)


def test_trianalyzer_mismatched_indices():
    # github issue 4999.
    x = np.array([0., 1., 0.5, 0., 2.])
    y = np.array([0., 0., 0.5*np.sqrt(3.), -1., 1.])
    triangles = np.array([[0, 1, 2], [0, 1, 3], [1, 2, 4]], dtype=np.int32)
    mask = np.array([False, False, True], dtype=np.bool)
    triang = mtri.Triangulation(x, y, triangles, mask=mask)
    analyser = mtri.TriAnalyzer(triang)
    # numpy >= 1.10 raises a VisibleDeprecationWarning in the following line
    # prior to the fix.
    triang2 = analyser._get_compressed_triangulation()


@cleanup
def test_tricontourf_decreasing_levels():
    # github issue 5477.
    x = [0.0, 1.0, 1.0]
    y = [0.0, 0.0, 1.0]
    z = [0.2, 0.4, 0.6]
    plt.figure()
    assert_raises(ValueError, plt.tricontourf, x, y, z, [1.0, 0.0])


if __name__ == '__main__':
    import nose
    nose.runmodule(argv=['-s', '--with-doctest'], exit=False)