This file is indexed.

/usr/share/acl2-4.3/books/cowles/acl2-agp.lisp is in acl2-books-source 4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#| This is the .lisp file for the Abelian Group book.

   John Cowles, University of Wyoming, Summer 1993
     Last modified 29 July 1994.

   Modified A. Flatau  2-Nov-1994
     Added a :verify-guards t hint to PRED for Acl2 1.8.

   To use this book at the University of Wyoming:

   1. Set the Connected Book Directory to a directory containing this book.
      At one time, the argument to the following set-cbd named such a
      directory.  
           
           (set-cbd "/meru0/cowles/acl2-libs/ver1.6/")

   2. Execute the event:

      (include-book
       "acl2-agp")

    ========================================================
    The following were used for certification of this book
    at the University of Wyoming.

(set-cbd "/meru0/cowles/acl2-libs/ver1.6/")

(defpkg 
  "ACL2-ASG"
  (set-difference-equal
   (union-eq *acl2-exports*
             *common-lisp-symbols-from-main-lisp-package*)
   '(zero)))

(defpkg 
  "ACL2-AGP"
  (set-difference-equal
   (union-eq *acl2-exports*
             *common-lisp-symbols-from-main-lisp-package*)
   '(zero)))


(certify-book
  "acl2-agp"
  2
  nil)

   ============================================
   The following documentation is from the file
   /meru0/cowles/acl2-libs/ver1.6/libs.doc

(deflabel 
  abelian-groups
  :doc
  ":Doc-Section Libraries

   Axiomatization of an associative and commutative binary operation
               with an identity and an unary inverse operation.~/
         
   Axiomatization by J. Cowles, University of Wyoming, Summer 1993.
     Last modified 29 July 1994.

   See :DOC ~/

   Theory of Abelian Groups.

    ACL2-AGP::op is an associative and commutative binary operation on the
    set (of equivalence classes formed by the equivalence relation,
    ACL2-AGP::equiv, on the set) GP = { x | (ACL2-AGP::pred x) not equal
    nil }.

    ACL2-AGP::id is a constant in the set GP which acts as an unit for
    ACL2-AGP::op in GP.

    ACL2-AGP::inv is an unary operation on the set (of equivalence classes
    formed by the equivalence relation, ACL2-AGP::equiv, on the set) GP
    which acts as an ACL2-AGP::op-inverse for ACL2-AGP:: id.

    For example, let ACL2-AGP::pred = Booleanp,
                     ACL2-AGP::op   = exclusive-or, 
                     ACL2-AGP::id   = nil, and 
                     ACL2-AGP::inv  = identity function.

    Axioms of the theory of Abelian Groups.
      Do :PE on the following events to see the details.

      [Note. The actual names of these events are obtained by 
       adding the prefix ACL2-AGP:: to each name listed below.]

      Equiv-is-an-equivalence
      Equiv-1-implies-equiv-op
      Equiv-2-implies-equiv-op

      Closure-of-op-for-pred
      Closure-of-id-for-pred
      Closure-of-inv-for-pred

      Commutativity-of-op
      Associativity-of-op

      Left-unicity-of-id-for-op
      Right-inverse-of-inv-for-op

    Theorems of the theory of Abelian Groups.
      Do :PE on the following events to see the details.

      [Note. The actual names of these events are obtained by 
       adding the prefix ACL2-AGP:: to each name listed below.]

      Commutativity-2-of-op
      Right-unicity-of-id-for-op
      Left-inverse-of-inv-for-op
      Right-cancellation-for-op
      Left-cancellation-for-op
      Uniqueness-of-id-as-op-idempotent
      Uniqueness-of-op-inverses
      Uniqueness-of-op-inverses-1
      Involution-of-inv
      Distributivity-of-inv-over-op
      Id-is-its-own-invese
      Inv-cancellation-on-right
      Inv-cancellation-on-left~/

   :cite libraries-location")
|#

(in-package "ACL2-AGP")

(include-book "acl2-asg" :load-compiled-file nil)

(encapsulate
  ((equiv ( x y ) t)
   (pred ( x ) t)
   (op ( x y ) t)
   (id ( ) t)
   (inv ( x ) t))

  (local
    (defun
      equiv ( x y )
      (equal x y)))

  (local
    (defun
      pred ( x )
      (declare (xargs :verify-guards t))
      (or (equal x t)
          (equal x nil))))

  (local
    (defun
      op ( x y )
      (declare (xargs :guard (and (pred x)
                                  (pred y))))
      (and (or x y)
           (not (and x y)))))

  (local
    (defun 
      id ( )
      nil))

  (local
    (defun
      inv ( x )
      (declare (xargs :guard (pred x)))
      x))

  (defthm
    Equiv-is-an-equivalence
    (and (acl2::booleanp (equiv x y))
         (equiv x x)
         (implies (equiv x y) 
                  (equiv y x))
         (implies (and (equiv x y)
                       (equiv y z))
                  (equiv x z)))
    :rule-classes (:EQUIVALENCE
                   (:TYPE-PRESCRIPTION
                    :COROLLARY
                    (or (equal (equiv x y) t)
                        (equal (equiv x y) nil)))))

  (defthm
    Equiv-1-implies-equiv-op
    (implies (equiv x1 x2)
             (equiv (op x1 y)
                    (op x2 y)))
    :rule-classes :CONGRUENCE)

  (defthm
    Equiv-2-implies-equiv-op
    (implies (equiv y1 y2)
             (equiv (op x y1)
                    (op x y2)))
    :rule-classes :CONGRUENCE)

  (defthm 
    Closure-of-op-for-pred
    (implies (and (pred x)
                  (pred y))
             (pred (op x y))))

  (defthm
    Closure-of-id-for-pred
    (pred (id)))

  (defthm
    Closure-of-inv-for-pred
    (implies (pred x)
             (pred (inv x))))
  
  (defthm
    Commutativity-of-op
    (implies (and (pred x)
                  (pred y))
             (equiv (op x y)
                    (op y x))))

  (defthm 
    Associativity-of-op
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (equiv (op (op x y) z)
                    (op x (op y z)))))

  (defthm
    Left-unicity-of-id-for-op
    (implies (pred x)
             (equiv (op (id) x)
                    x)))

  (defthm
    Right-inverse-of-inv-for-op
    (implies (pred x)
             (equiv (op x (inv x))
                    (id)))))

(acl2-asg::add-commutativity-2 equiv
                               pred
                               op
                               commutativity-of-op
                               commutativity-2-of-op)

(defthm
  Right-unicity-of-id-for-op
  (implies (pred x)
           (equiv (op x (id))
                  x)))

(defthm
  Left-inverse-of-inv-for-op
  (implies (pred x)
           (equiv (op (inv x) x)
                  (id))))

(local
  (defthm
    Right-cancellation-for-op-iff
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (iff (equiv (op x z)
                         (op y z))
                  (equiv x y)))
    :rule-classes nil
    :hints (("Subgoal 1"
             :in-theory (disable Equiv-1-implies-equiv-op)
             :use (:instance 
                   Equiv-1-implies-equiv-op
                   (x1 (op x z))
                   (x2 (op y z))
                   (y  (inv z)))))))

(defthm
  Right-cancellation-for-op
  (implies (and (pred x)
                (pred y)
                (pred z))
           (equal (equiv (op x z)
                         (op y z))
                  (equiv x y)))
  :rule-classes nil
  :hints (("Goal"
           :use Right-cancellation-for-op-iff)))

(local
  (defthm
    Left-cancellation-for-op-iff
    (implies (and (pred x)
                  (pred y)
                  (pred z))
             (iff (equiv (op x y)
                         (op x z))                       
                  (equiv z y)))
    :rule-classes nil
    :hints (("Goal"
             :use ((:instance 
                    Right-cancellation-for-op
                    (x z)
                    (z x)))))))

(defthm
  Left-cancellation-for-op
  (implies (and (pred x)
                (pred y)
                (pred z))
           (equal (equiv (op x y)
                         (op x z))
                  (equiv y z)))
  ;rule-classes nil
  :hints (("Goal"
           :use Left-cancellation-for-op-iff)))

(defthm
  Uniqueness-of-id-as-op-idempotent
  (implies (and (pred x)
                (equiv (op x x)
                       x))
           (equiv x (id)))
  :rule-classes nil
  :hints (("Goal"
           :use (:instance
                 Right-cancellation-for-op
                 (y (id))
                 (z x)))))

(defthm
  Uniqueness-of-op-inverses
  (implies (and (pred x)
                (pred y)
                (equiv (op x y)
                       (id)))
           (equiv y (inv x)))
  :rule-classes nil 
  :hints (("Goal"
           :use (:instance
                 Right-cancellation-for-op
                 (x y)
                 (y (inv x))
                 (z x)))))

(defthm
  Involution-of-inv
  (implies (pred x)
           (equiv (inv (inv x))
                  x))
  :hints (("Goal"
           :use (:instance
                 Uniqueness-of-op-inverses
                 (x (inv x))
                 (y x)))))

(defthm
  Uniqueness-of-op-inverses-1
  (implies (and (pred x)
                (pred y)
                (equiv (op x (inv y))
                       (id)))
           (equiv x y))
  :rule-classes nil
  :hints (("Goal"
           :use (:instance
                 Uniqueness-of-op-inverses
                 (y x)
                 (x (inv y))))))

(defthm
  Distributivity-of-inv-over-op
  (implies (and (pred x)
                (pred y))
           (equiv (inv (op x y))
                  (op (inv x)
                      (inv y))))
  :hints (("Goal"
           :use (:instance
                 Uniqueness-of-op-inverses
                 (x (op x y))
                 (y (op (inv x)(inv y)))))))

(defthm
  id-is-its-own-invese
  (equiv (inv (id))
         (id))
  :hints (("Goal"
           :use (:instance
                 Uniqueness-of-op-inverses
                 (x (id))
                 (y (id))))))

(local
  (defthm
    obvious-inv-cancellation
    (implies (and (pred x)
                  (pred y))
             (equiv (op (op x (inv x)) y) y))
    :rule-classes nil))

(defthm
  inv-cancellation-on-right
  (implies (and (pred x)
                (pred y))
           (equiv (op x (op y (inv x)))
                  y))
  :hints (("Goal"
           :use obvious-inv-cancellation
           :in-theory (acl2::disable 
                       right-inverse-of-inv-for-op))))

(defthm
  inv-cancellation-on-left
  (implies (and (pred x)
                (pred y))
           (equiv (op x (op (inv x) y))
                  y)))