This file is indexed.

/usr/share/acl2-4.3/books/misc/symbol-btree.lisp is in acl2-books-source 4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
;; Original author: ???
;; Updated June 29, 2008 by Jared Davis to bring everything into logic mode.

;; A symbol-btree is a data structure of the form (symbol value left . right)
;; where left and right are symbol-btrees.

;; Example use:
#|
ACL2 !>(assign btree (symbol-alist-to-btree '((c . 3) (a . 1) (b . 2) (d . 4))))
(C 3 (B 2 (A 1 NIL)) D 4)
ACL2 !>(symbol-btree-lookup 'd (@ btree))
4
ACL2 !>(symbol-btree-lookup 'e (@ btree))
NIL
ACL2 !>(symbol-btree-lookup 'c (@ btree))
3
ACL2 !>
|#

;; This book is not very complete.  There are tons of obvious theorems to prove,
;; like lookup of update, etc., and the equivalence of lookups after
;; rebalancing.  But I (Jared) am too lazy to do this, and only wanted to bring
;; these functions into :logic mode.  Also, I tried to maintain total
;; compatibility with the previous version, except for local events and the new
;; :logic mode functions.

(in-package "ACL2")

(local (include-book "ihs/quotient-remainder-lemmas" :dir :system))
(local (in-theory (disable floor)))

(local (defthm len-evens-<
         (implies (consp (cdr x))
                  (< (len (evens x))
                     (len x)))
         :hints (("Goal" :induct (evens x)))
         :rule-classes :linear))

(local (defthm len-evens-<=
         (<= (len (evens x))
             (len x))
         :hints (("Goal" :induct (evens x)))
         :rule-classes :linear))

(local (defthm alistp-of-cdr
         (implies (alistp x)
                  (alistp (cdr x)))))

(local (defthm true-listp-when-alistp
         (implies (alistp x)
                  (true-listp x))))

(local (defthmd consp-under-iff-when-true-listp
         (implies (true-listp x)
                  (iff (consp x)
                       x))))

(local (defthm consp-of-car-when-alistp
         (implies (alistp x)
                  (equal (consp (car x))
                         (consp x)))))

(local (defthm symbol-alistp-of-append
         (implies (and (symbol-alistp x)
                       (symbol-alistp y))
                  (symbol-alistp (append x y)))))

(local (defthm alistp-when-symbol-alistp
         (implies (symbol-alistp x)
                  (alistp x))))



(defun symbol-btreep (x)
  (declare (xargs :guard t))
  (or (not x)
      (and (true-listp x)
           (symbolp (car x))
           (or (null (caddr x))
               (and (symbol-btreep (caddr x))
                    (symbol-< (car (caddr x))
                              (car x))))
           (or (null (cdddr x))
               (and (symbol-btreep (cdddr x))
                    (symbol-< (car x)
                              (car (cdddr x))))))))

(defun symbol-btree-lookup (key btree)
  (declare (xargs :guard (and (symbolp key)
                              (symbol-btreep btree))))
  (cond ((atom btree)
         nil)
        ((eq key (car btree))
         (cadr btree))
        ((symbol-< key (car btree))
         (symbol-btree-lookup key (caddr btree)))
        (t
         (symbol-btree-lookup key (cdddr btree)))))

(defun merge-symbol-alist-< (l1 l2 acc)
  (declare (xargs :guard (and (symbol-alistp l1)
                              (symbol-alistp l2)
                              (true-listp acc))
                  :measure (+ (len l1) (len l2))))
  (cond ((endp l1) (revappend acc l2))
        ((endp l2) (revappend acc l1))
        ((symbol-< (caar l1) (caar l2))
         (merge-symbol-alist-< (cdr l1) l2 (cons (car l1) acc)))
        (t (merge-symbol-alist-< l1 (cdr l2) (cons (car l2) acc)))))

(defun merge-sort-symbol-alist-< (l)
  (declare (xargs :guard (symbol-alistp l)
                  :verify-guards nil
                  :measure (len l)))
  (cond ((endp (cdr l)) l)
        (t (merge-symbol-alist-< (merge-sort-symbol-alist-< (evens l))
                                 (merge-sort-symbol-alist-< (odds l))
                                 nil))))

(defthm symbol-alistp-merge-symbol-alist-<
  (implies (and (symbol-alistp x)
                (symbol-alistp y)
                (symbol-alistp acc))
           (symbol-alistp (merge-symbol-alist-< x y acc))))

(defthm symbol-alistp-evens
  (implies (symbol-alistp x)
           (symbol-alistp (evens x)))
  :hints (("Goal" :induct (evens x))))

(defthm symbol-alistp-merge-sort-symbol-alist-<
  (implies (symbol-alistp x)
           (symbol-alistp (merge-sort-symbol-alist-< x))))

(verify-guards merge-sort-symbol-alist-<)





(defun sorted-symbol-alist-to-symbol-btree (x n)
  ;; Return 2 values:
  ;;   (1) the symbol-btree corresponding to first n entries of x; and
  ;;   (2) the rest of x.
  (declare (xargs :guard (and (natp n)
                              (alistp x))
                  :verify-guards nil))
  (cond ((zp n)
         (mv nil x))
        ((endp (cdr x))
         (mv (list (caar x) (cdar x))
             (cdr x)))
        (t
         (let ((n2 (floor n 2)))
           (mv-let (left restx)
                   (sorted-symbol-alist-to-symbol-btree x n2)
                   (mv-let (right restx2)
                           (sorted-symbol-alist-to-symbol-btree (cdr restx) (- n (1+ n2)))
                           (mv (list* (caar restx)
                                      (cdar restx)
                                      left
                                      right)
                               restx2)))))))

(local (defthm alistp-of-mv-nth-1-of-sorted-symbol-alist-to-symbol-btree
         (implies (alistp x)
                  (equal (alistp (mv-nth 1 (sorted-symbol-alist-to-symbol-btree x n)))
                         t))))

(local (defthm consp-of-mv-nth-1-of-sorted-symbol-alist-to-symbol-btree
         (implies (alistp x)
                  (equal (consp (mv-nth 1 (sorted-symbol-alist-to-symbol-btree x n)))
                         (if (mv-nth 1 (sorted-symbol-alist-to-symbol-btree x n))
                             t
                           nil)))))

(verify-guards sorted-symbol-alist-to-symbol-btree
               :hints(("Goal" 
                       :do-not '(generalize fertilize eliminate-destructors)
                       :in-theory (disable alistp)
                       )))





(defun symbol-alist-to-btree (alist)
  (declare (xargs :guard (symbol-alistp alist)
                  :verify-guards nil))
  (let ((n (length alist))
        (sorted-alist (merge-sort-symbol-alist-< alist)))
    (mv-let (ans empty)
            (sorted-symbol-alist-to-symbol-btree sorted-alist n)
            (declare (ignore empty))
            ans)))

(verify-guards symbol-alist-to-btree)




(defun symbol-btree-update (key val btree)
  (declare (xargs :guard (and (symbolp key)
                              (symbol-btreep btree))))
  (cond
   ((endp btree)
    (list* key val nil nil))
   ((eq key (car btree))
    (list* key val (caddr btree) (cdddr btree)))
   ((symbol-< key (car btree))
    (list* (car btree) (cadr btree)
           (symbol-btree-update key val (caddr btree))
           (cdddr btree)))
   (t
    (list* (car btree) (cadr btree)
           (caddr btree)
           (symbol-btree-update key val (cdddr btree))))))

(defun symbol-btree-to-alist (x)
  (declare (xargs :guard (symbol-btreep x)
                  :verify-guards nil))
  (if (consp x)
      (cons (cons (car x) (cadr x))
            (append (symbol-btree-to-alist (caddr x))
                    (symbol-btree-to-alist (cdddr x))))
    nil))

(defthm true-listp-symbol-btree-to-alist
  (true-listp (symbol-btree-to-alist btree))
  :rule-classes :type-prescription)

(verify-guards symbol-btree-to-alist)



(defun rebalance-symbol-btree (btree)
  (declare (xargs :guard (symbol-btreep btree)))
  (symbol-alist-to-btree
   (symbol-btree-to-alist btree)))