This file is indexed.

/usr/share/acl2-4.3/books/str/istrpos.lisp is in acl2-books-source 4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
; ACL2 String Library
; Copyright (C) 2009-2010 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.  This program is distributed in the hope that it will be useful but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
; more details.  You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "iprefixp")
(include-book "istrprefixp")
(local (include-book "arithmetic"))

(defund istrpos-impl (x y n xl yl)
  (declare (type string x)
           (type string y)
           (type integer n)
           (type integer xl)
           (type integer yl)
           (xargs :guard (and (stringp x)
                              (stringp y)
                              (natp xl)
                              (natp yl)
                              (natp n)
                              (<= n (length y))
                              (= xl (length x))
                              (= yl (length y)))
                  :measure (nfix (- (nfix yl) (nfix n)))))
  (cond ((mbe :logic (iprefixp (coerce x 'list)
                               (nthcdr n (coerce y 'list)))
              :exec (istrprefixp-impl (the string x)
                                      (the string y)
                                      (the integer 0)
                                      (the integer n)
                                      (the integer xl)
                                      (the integer yl)))
         (mbe :logic (nfix n)
              :exec n))
        ((mbe :logic (zp (- (nfix yl) (nfix n)))
              :exec (= (the integer n)
                       (the integer yl)))
         nil)
        (t
         (istrpos-impl (the string x)
                       (the string y)
                       (mbe :logic (+ (nfix n) 1)
                            :exec (the integer (+ (the integer n) 1)))
                       (the integer xl)
                       (the integer yl)))))

(defund istrpos (x y)

  ":Doc-Section Str
  Case-insensitivly locate the first occurrence of a substring~/

  ~c[(istrpos x y)] is like ~il[str::strpos], but the comparisons are done in a
  case insensitive manner.  It returns NIL if x never occurs in y, or returns
  the index of the first character of the first occurrence.

  The function is \"efficient\" in the sense that it does not coerce its
  arguments into lists, but rather traverses both strings with ~c[char].  On
  the other hand, it is a naive string search which operates by repeatedly
  calling ~il[str::istrprefixp], rather than some better algorithm.

  The \"soundness\" and \"completness\" of strpos are established in the
  theorems ~c[iprefixp-of-istrpos] and ~c[completeness-of-istrpos].~/

  ~l[str::strpos], ~pl[str::substrp], and ~pl[str::isubstrp]"

  (declare (type string x)
           (type string y))

  (istrpos-impl (the string x)
                (the string y)
                (the integer 0)
                (the integer (length (the string x)))
                (the integer (length (the string y)))))

(defthm istrpos-type
  (or (and (integerp (istrpos x y))
           (<= 0 (istrpos x y)))
      (not (istrpos x y)))
  :rule-classes :type-prescription)

(encapsulate
 ()
 (local (defthm lemma
          (implies (and (stringp x)
                        (stringp y)
                        (natp xl)
                        (natp yl)
                        (natp n)
                        (<= n (length y))
                        (= xl (length x))
                        (= yl (length y))
                        (istrpos-impl x y n xl yl))
                   (iprefixp (coerce x 'list)
                                 (nthcdr (istrpos-impl x y n xl yl)
                                         (coerce y 'list))))
          :hints(("Goal"
                  :in-theory (enable istrpos-impl)
                  :induct (istrpos-impl x y n xl yl)))))

 (defthm iprefixp-of-istrpos
   (implies (and (istrpos x y)
                 (force (stringp x))
                 (force (stringp y)))
            (iprefixp (coerce x 'list)
                      (nthcdr (istrpos x y) (coerce y 'list))))
   :hints(("Goal" :in-theory (enable istrpos)))))

(encapsulate
 ()
 (local (defun my-induction (x y n m xl yl)
          (declare (xargs :measure (nfix (- (nfix yl) (nfix n)))))
          (cond ((iprefixp (coerce x 'list)
                           (nthcdr n (coerce y 'list)))
                 nil)
                ((zp (- (nfix yl) (nfix n)))
                 (list x y n m xl yl))
                (t
                 (my-induction x y
                               (+ (nfix n) 1)
                               (if (= (nfix n) (nfix m))
                                   (+ (nfix m) 1)
                                 m)
                               xl yl)))))

 (local (defthm lemma
          (implies (and (stringp x)
                        (stringp y)
                        (natp xl)
                        (natp yl)
                        (natp n)
                        (natp m)
                        (<= n m)
                        (<= n (length y))
                        (= xl (length x))
                        (= yl (length y))
                        (iprefixp (coerce x 'list)
                                  (nthcdr m (coerce y 'list))))
                   (and (natp (istrpos-impl x y n xl yl))
                        (<= (istrpos-impl x y n xl yl) m)))
          :hints(("Goal"
                  :in-theory (enable istrpos-impl)
                  :induct (my-induction x y n m xl yl)
                  :do-not '(generalize fertilize)))))

 (defthm completeness-of-istrpos
   (implies (and (iprefixp (coerce x 'list)
                           (nthcdr m (coerce y 'list)))
                 (force (natp m))
                 (force (stringp x))
                 (force (stringp y)))
            (and (natp (istrpos x y))
                 (<= (istrpos x y) m)))
   :hints(("Goal" :in-theory (enable istrpos)))))