This file is indexed.

/usr/share/acl2-4.3/books/str/strnatless.lisp is in acl2-books-source 4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
; ACL2 String Library
; Copyright (C) 2009-2010 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.  This program is distributed in the hope that it will be useful but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
; more details.  You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "digitp")
(include-book "tools/mv-nth" :dir :system)
(include-book "tools/bstar" :dir :system)
(local (include-book "arithmetic"))
(local (include-book "char-support"))



(defund parse-nat-from-charlist (x val len)

; Tries to extract a natural number from the beginning of the character list x.
; VAL is an accumulator for the value of the digits we have read so far, and
; LEN is an accumulator for the number of digits we have read.  We return (MV
; VAL LEN REST), where REST is the non-numeric portion of the character list.

  (declare (type integer val)
           (type integer len)
           (xargs :guard (and (character-listp x)
                              (natp val)
                              (natp len))
                  :verify-guards nil))

  (mbe :logic
       (cond ((atom x)
              (mv (nfix val) (nfix len) nil))
             ((digitp (car x))
              (let ((digit-val (digit-val (car x))))
                (parse-nat-from-charlist (cdr x)

; A silly idea I have would be to instead multiply each character by 16, which
; would mean that the operation could be done via ash and logior.  I think the
; values produced by such a scheme would be ordered in the same way that the
; values here are ordered.  And, rudimentary speed test suggests it could be as
; much as 50% faster.  The proof seems difficult, so for now I don't have the
; patience to attempt it.

                                         (+ digit-val (* 10 (nfix val)))
                                         (+ 1 (nfix len)))))
             (t
              (mv (nfix val) (nfix len) x)))
       :exec
       (cond ((atom x)
              (mv val len nil))
             (t
              (let ((code (the (unsigned-byte 8) (char-code (the character (car x))))))
                (declare (type (unsigned-byte 8) code))
                (if (and (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code))
                         (<= (the (unsigned-byte 8) code) (the (unsigned-byte 8) 57)))
                    (let ((digit-val (the (unsigned-byte 8)
                                       (- (the (unsigned-byte 8) code)
                                          (the (unsigned-byte 8) 48)))))
                      (parse-nat-from-charlist
                       (cdr x)
                       (the integer (+ (the (unsigned-byte 8) digit-val)
                                       (the integer (* 10 (the integer val)))))
                       (the integer (+ 1 (the integer len)))))
                  (mv val len x)))))))

(verify-guards parse-nat-from-charlist
               :hints(("Goal" :in-theory (enable parse-nat-from-charlist
                                                 digitp
                                                 digit-val
                                                 char-fix))))

(encapsulate
 ()
 (local (defund leading-digits-value (x val)
          (declare (xargs :verify-guards nil))
          (if (consp x)
              (if (digitp (car x))
                  (leading-digits-value (cdr x)
                                        (+ (digit-val (car x)) (* 10 (nfix val))))
                (nfix val))
            (nfix val))))

 (local (defthm lemma-1
          (equal (mv-nth 0 (parse-nat-from-charlist x val len))
                 (leading-digits-value x val))
          :hints(("Goal" :in-theory (enable parse-nat-from-charlist
                                            leading-digits-value)))))

 (local (defthm lemma-2
          (equal (leading-digits-value x val)
                 (digit-list-value1 (take-leading-digits x) val))
          :hints(("Goal" :in-theory (e/d (leading-digits-value
                                          digit-list-value1
                                          take-leading-digits)
                                         (digit-list-value1-removal))))))

 (defthm val-of-parse-nat-from-charlist
   (equal (mv-nth 0 (parse-nat-from-charlist x val len))
          (+ (digit-list-value (take-leading-digits x))
             (* (nfix val) (expt 10 (len (take-leading-digits x))))))))


(encapsulate
 ()
 (local (defund count-leading-digits1 (x len)
          (declare (xargs :verify-guards nil))
          (if (consp x)
              (if (digitp (car x))
                  (count-leading-digits1 (cdr x) (+ 1 (nfix len)))
                (nfix len))
            (nfix len))))

 (local (defthm lemma-1
          (equal (mv-nth 1 (parse-nat-from-charlist x val len))
                 (count-leading-digits1 x len))
          :hints(("Goal" :in-theory (enable parse-nat-from-charlist
                                            count-leading-digits1)))))

 (local (defthm lemma-2
          (equal (count-leading-digits1 x len)
                 (+ (nfix len)
                    (len (take-leading-digits x))))
          :hints(("Goal" :in-theory (enable count-leading-digits1
                                            take-leading-digits)))))

 (defthm len-of-parse-nat-from-charlist
   (equal (mv-nth 1 (parse-nat-from-charlist x val len))
          (+ (nfix len) (len (take-leading-digits x))))))



(defthm rest-of-parse-nat-from-charlist
  (equal (mv-nth 2 (parse-nat-from-charlist x val len))
         (skip-leading-digits x))
  :hints(("Goal" :in-theory (enable parse-nat-from-charlist
                                    skip-leading-digits))))



(defund charlistnat< (x y)

  ":Doc-Section Str
  Mixed alphanumeric character-list less-than test~/

  We order character lists in a case-sensitive way.  But unlike a regular character-code
  based ordering, we identify natural numbers which occur in a string, and group them
  together to sort them as numbers.

  That is, most string sorts, when given strings \"x0\" through \"x11\", will put them
  into a peculiar order, \"x0\", \"x1\", \"x10\", \"x11\", \"x2\", \"x3\", ..., but in
  ~c[charlistnat<], the adjacent digits are grouped to produce the more human-friendly
  ordering, \"x0\", \"x1\", \"x2\", ..., \"x9\", \"x10\", \"x11\".

  We consider leading zeroes to be part of the number.  To sensibly handle such zeroes,
  think not of grouping adjacent digits only into a natural number, but into pairs of
  value and length, which are to be sorted first by value and then by length.  Under
  this approach, a string such as \"x0\" is considered to be less than \"x00\", etc.
  ~/
  ~l[str::strnat<], ~pl[str::icharlist<]"

  (declare (xargs :guard (and (character-listp x)
                              (character-listp y))
                  :measure (len x)))

  (cond ((atom y)
         nil)
        ((atom x)
         t)
        ((and (digitp (car x))
              (digitp (car y)))
         (b* (((mv v1 l1 rest-x) (parse-nat-from-charlist x 0 0))
              ((mv v2 l2 rest-y) (parse-nat-from-charlist y 0 0)))

; The basic idea is to order numbers by their values, and then by their
; lengths.  This second part only is necessary to accomodate leading zeroes.

             (cond ((or (< v1 v2)
                        (and (= v1 v2)
                             (< l1 l2)))
                    t)
                   ((or (< v2 v1)
                        (and (= v1 v2)
                             (< l2 l1)))
                    nil)
                   (t
                    (charlistnat< rest-x rest-y)))))

        ((char< (car x) (car y))
         t)
        ((char< (car y) (car x))
         nil)
        (t
         (charlistnat< (cdr x) (cdr y)))))

(defcong charlisteqv equal (charlistnat< x y) 1
  :hints(("Goal" :in-theory (enable charlistnat<))))

(defcong charlisteqv equal (charlistnat< x y) 2
  :hints(("Goal" :in-theory (enable charlistnat<))))

(defthm charlistnat<-irreflexive
  (not (charlistnat< x x))
  :hints(("Goal" :in-theory (enable charlistnat<))))

(defthm charlistnat<-antisymmetric
  (implies (charlistnat< x y)
           (not (charlistnat< y x)))
  :hints(("Goal" :in-theory (enable charlistnat<))))

(encapsulate
 ()
 (local (defthm char<-nonsense-1
          (implies (and (not (char< x z))
                        (char< x y))
                   (not (char< y z)))
          :hints(("Goal" :in-theory (enable char<)))))

 (local (defthm char<-nonsense-2
          (implies (and (char< a y)
                        (not (digitp a))
                        (digitp y)
                        (digitp z))
                   (char< a z))
          :hints(("Goal" :in-theory (enable char< digitp)))))

 (local (defthm char<-nonsense-3
          (implies (and 
                        (char< y a)
                        (digitp x)
                        (digitp y)
                        (not (digitp a)))
                   (char< x a))
          :hints(("Goal" :in-theory (enable char< digitp)))))

 (local (defthm char<-nonsense-4
          (implies (and (digitp x)
                        (digitp z)
                        (char< x y)
                        (not (digitp y)))
                   (not (char< y z)))
;                    (digitp y))
          :hints(("Goal" :in-theory (enable digitp char<)))))

 (defthm charlistnat<-transitive
   (implies (and (charlistnat< x y)
                 (charlistnat< y z))
            (charlistnat< x z))
   :hints(("Goal" :in-theory (e/d ((:induction charlistnat<))
                                  (expt charlistnat<-antisymmetric
                                        take-leading-digits-when-digit-listp
                                        default-+-2 default-+-1))
           :induct t
           :expand ((:free (y) (charlistnat< x y))
                    (:free (z) (charlistnat< y z)))
           ))))



(local
 (encapsulate
  ()

  ; A slightly tricky lemma about arithmetic.

  (local (defun expr (a x b n)
           (+ a (* x (expt b n)))))

  (local (include-book "arithmetic-3/floor-mod/floor-mod" :dir :system))

  (local (defthm mod-of-expr
           (implies (and (natp a1)
                         (natp x1)
                         (natp n)
                         (natp b)
                         (< a1 (expt b n))
                         (<= x1 b))
                    (equal (mod (expr a1 x1 b n)
                                (expt b n))
                           a1))))

  (local (defthm main-lemma
           (implies (and (natp a1)
                         (natp a2)
                         (natp x1)
                         (natp x2)
                         (natp n)
                         (natp b)
                         (< a1 (expt b n))
                         (< a2 (expt b n))
                         (<= x1 b)
                         (<= x2 b)
                         (not (equal a1 a2)))
                    (not (equal (expr a1 x1 b n)
                                (expr a2 x2 b n))))
           :hints(("Goal" :in-theory (disable expr mod-of-expr)
                   :use ((:instance mod-of-expr)
                         (:instance mod-of-expr (a1 a2) (x1 x2)))))))

  (defthmd arith-lemma-1
    (implies (and (natp a1)
                  (natp a2)
                  (natp x1)
                  (natp x2)
                  (natp n)
                  (natp b)
                  (< a1 (expt b n))
                  (< a2 (expt b n))
                  (<= x1 b)
                  (<= x2 b)
                  (not (equal a1 a2)))
             (not (equal (+ a1 (* x1 (expt b n)))
                         (+ a2 (* x2 (expt b n))))))
    :hints(("Goal"
            :in-theory (enable expr)
            :use ((:instance main-lemma)))))))


(encapsulate
 ()

; The main proof of trichotomy

 (local (defthm lemma-1
          (IMPLIES (AND (NOT (EQUAL (DIGIT-LIST-VALUE X2)
                                    (DIGIT-LIST-VALUE Y2)))
                        (NOT (EQUAL X2 Y2))
                        (CHARACTERP X1)
                        (CHARACTERP Y1)
                        (CHARACTER-LISTP X2)
                        (CHARACTER-LISTP Y2)
                        (DIGITP X1)
                        (DIGITP Y1)
                        (DIGIT-LISTP X2)
                        (DIGIT-LISTP Y2)
                        (EQUAL (LEN X2) (LEN Y2)))
                   (NOT (EQUAL (+ (DIGIT-LIST-VALUE X2)
                                  (* (DIGIT-VAL X1) (EXPT 10 (LEN X2))))
                               (+ (DIGIT-LIST-VALUE Y2)
                                  (* (DIGIT-VAL Y1) (EXPT 10 (LEN X2)))))))
          :hints(("Goal"
                  :use ((:instance arith-lemma-1
                                   (a1 (digit-list-value x2))
                                   (a2 (digit-list-value y2))
                                   (x1 (digit-val x1))
                                   (x2 (digit-val y1))
                                   (b 10)
                                   (n (len x2))))))))

 (local (defun my-induction (x y)
          (if (and (consp x)
                   (consp y))
              (my-induction (cdr x) (cdr y))
            nil)))

 (local (defthm lemma-2
          (implies (and
                    (character-listp x)
                    (character-listp y)
                    (digit-listp x)
                    (digit-listp y)
                    (equal (len x) (len y)))
                   (equal (equal (digit-list-value x)
                                 (digit-list-value y))
                          (equal x y)))
          :hints(("Goal"
                  :induct (my-induction x y)
                  :in-theory (enable digit-listp
                                     digit-list-value)))))

 (local (defthm lemma-3
          (implies (and (equal (len (take-leading-digits y))
                               (len (take-leading-digits x)))
                        (equal (digit-list-value (take-leading-digits y))
                               (digit-list-value (take-leading-digits x)))
                        (charlisteqv (skip-leading-digits x)
                                     (skip-leading-digits y)))
                   (equal (charlisteqv x y)
                          t))
          :hints(("Goal" :in-theory (enable take-leading-digits
                                            skip-leading-digits
                                            charlisteqv
                                            digit-list-value)))))

 (defthm charlistnat<-trichotomy-weak
   (implies (and (not (charlistnat< x y))
                 (not (charlistnat< y x)))
            (equal (charlisteqv x y)
                   t))
   :hints(("Goal" :in-theory (enable charlistnat<)))))

(defthm charlistnat<-trichotomy-strong
  (equal (charlistnat< x y)
         (and (not (charlisteqv x y))
              (not (charlistnat< y x))))
  :rule-classes ((:rewrite :loop-stopper ((x y)))))



(defund parse-nat-from-string (x val len n xl)

; This is like parse-nat-from-charlist.  X is a string instead of a character
; list, val and len are the accumulators as before, n is our current position
; in x, and xl is the pre-computed length of x.  We return (mv val len) where
; val and len are as before.  We don't return an updated index or anything,
; since that's easy to compute via adding len to the current index.

  (declare (type string x)
           (type integer val)
           (type integer len)
           (type integer n)
           (type integer xl)
           (xargs :guard (and (stringp x)
                              (natp val)
                              (natp len)
                              (natp n)
                              (equal xl (length x))
                              (<= n xl))
                  :measure (nfix (- (nfix xl) (nfix n)))
                  :verify-guards nil))

  (mbe :logic
       (cond ((zp (- (nfix xl) (nfix n)))
              (mv (nfix val) (nfix len)))
             ((digitp (char x n))
              (let ((digit-val (digit-val (char x n))))
                (parse-nat-from-string x
                                       (+ digit-val (* 10 (nfix val)))
                                       (+ 1 (nfix len))
                                       (+ 1 (nfix n))
                                       (nfix xl))))
             (t
              (mv (nfix val) (nfix len))))
       :exec
       (cond ((= (the integer n) (the integer xl))
              (mv val len))
             (t
              (let ((code (the (unsigned-byte 8)
                            (char-code (the character (char (the string x)
                                                            (the integer n)))))))
                (declare (type (unsigned-byte 8) code))
                (if (and (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code))
                         (<= (the (unsigned-byte 8) code) (the (unsigned-byte 8) 57)))
                    (let ((digit-val (the (unsigned-byte 8)
                                       (- (the (unsigned-byte 8) code)
                                          (the (unsigned-byte 8) 48)))))
                      (parse-nat-from-string
                       (the string x)
                       (the integer (+ (the (unsigned-byte 8) digit-val)
                                       (the integer (* 10 (the integer val)))))
                       (the integer (+ 1 (the integer len)))
                       (the integer (+ 1 (the integer n)))
                       (the integer xl)))
                  (mv val len)))))))

(verify-guards parse-nat-from-string
               :hints(("Goal" :in-theory (enable digitp digit-val))))

(defthm natp-of-val-of-parse-nat-from-string
  (and (integerp (mv-nth 0 (parse-nat-from-string x val len n xl)))
       (<= 0 (mv-nth 0 (parse-nat-from-string x val len n xl))))
  :rule-classes :type-prescription
  :hints(("Goal" :in-theory (enable parse-nat-from-string))))

(defthm natp-of-len-of-parse-nat-from-string
  (and (integerp (mv-nth 1 (parse-nat-from-string x val len n xl)))
       (<= 0 (mv-nth 1 (parse-nat-from-string x val len n xl))))
  :rule-classes :type-prescription
  :hints(("Goal" :in-theory (enable parse-nat-from-string))))

(defthm progress-of-parse-nat-from-string
  (implies (and (equal xl (length x))
                (or (< 0 (nfix len))
                      (digitp (char x (nfix n)))))
           (< 0 (mv-nth 1 (parse-nat-from-string x val len n xl))))
  :rule-classes ((:rewrite) (:linear))
  :hints(("Goal"
          :induct (parse-nat-from-string x val len n xl)
          :in-theory (enable parse-nat-from-string))))

(defthm val-of-parse-nat-from-string
  (implies (and (stringp x)
                (natp val)
                (natp len)
                (natp n)
                (equal xl (length x))
                (<= n xl))
           (equal (mv-nth 0 (parse-nat-from-string x val len n xl))
                  (mv-nth 0 (parse-nat-from-charlist (nthcdr n (coerce x 'list)) val len))))
  :hints(("Goal"
          :induct (parse-nat-from-string x val len n xl)
          :in-theory (e/d (parse-nat-from-string
                           parse-nat-from-charlist)
                          (val-of-parse-nat-from-charlist))
          :do-not '(generalize fertilize))))

(defthm len-of-parse-nat-from-string
  (implies (and (stringp x)
                (natp val)
                (natp len)
                (natp n)
                (equal xl (length x))
                (<= n xl))
           (equal (mv-nth 1 (parse-nat-from-string x val len n xl))
                  (mv-nth 1 (parse-nat-from-charlist (nthcdr n (coerce x 'list)) val len))))
  :hints(("Goal"
          :induct (parse-nat-from-string x val len n xl)
          :in-theory (e/d (parse-nat-from-string
                           parse-nat-from-charlist)
                          (len-of-parse-nat-from-charlist))
          :do-not '(generalize fertilize))))



(defund strnat<-aux (x y xn yn xl yl)

; This is like charlistnat< except for strings.  X and Y are the strings being
; compared, xn and yn are the current indexes we are comparing in x and y, and
; xl and yl are the lengths of x and y, respectively.

  (declare (type string x)
           (type string y)
           (type integer xn)
           (type integer yn)
           (type integer xl)
           (type integer yl)
           (xargs :guard (and (stringp x)
                              (stringp y)
                              (natp xn)
                              (natp yn)
                              (equal xl (length x))
                              (equal yl (length y))
                              (<= xn xl)
                              (<= yn yl))
                  :verify-guards nil
                  :measure
                  (let* ((x  (if (stringp x) x ""))
                         (y  (if (stringp y) y ""))
                         (xn (nfix xn))
                         (yn (nfix yn))
                         (xl (length x))
                         (yl (length y)))
                    (nfix (+ (- yl yn) (- xl xn))))
                  :hints(("Goal" :in-theory (disable val-of-parse-nat-from-string
                                                     len-of-parse-nat-from-string))))
           (ignorable xl yl))
  (mbe :logic
       (let* ((x  (if (stringp x) x ""))
              (y  (if (stringp y) y ""))
              (xn (nfix xn))
              (yn (nfix yn))
              (xl (length x))
              (yl (length y)))
         (cond ((zp (- yl yn))
                nil)
               ((zp (- xl xn))
                t)
               ((and (digitp (char x xn))
                     (digitp (char y yn)))
                (b* (((mv v1 l1)
                      (parse-nat-from-string x 0 0 xn xl))
                     ((mv v2 l2)
                      (parse-nat-from-string y 0 0 yn yl)))
                    (cond ((or (< v1 v2)
                               (and (= v1 v2)
                                    (< l1 l2)))
                           t)
                          ((or (< v2 v1)
                               (and (= v1 v2)
                                    (< l2 l1)))
                           nil)
                          (t
                           (strnat<-aux x y (+ xn l1) (+ yn l2) xl yl)))))
               ((char< (char x xn)
                       (char y yn))
                t)
               ((char< (char y yn)
                       (char x xn))
                nil)
               (t
                (strnat<-aux x y (+ 1 xn) (+ 1 yn) xl yl))))
       :exec
       (cond ((= (the integer yn) (the integer yl))
              nil)
             ((= (the integer xn) (the integer xl))
              t)
             (t
              (let* ((char-x (the character (char (the string x) (the integer xn))))
                     (char-y (the character (char (the string y) (the integer yn))))
                     (code-x (the (unsigned-byte 8) (char-code (the character char-x))))
                     (code-y (the (unsigned-byte 8) (char-code (the character char-y)))))
                (declare (type character char-x)
                         (type character char-y)
                         (type (unsigned-byte 8) code-x)
                         (type (unsigned-byte 8) code-y))
                (cond
                 ((and
                   ;; (digitp (char x xn))
                   (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code-x))
                   (<= (the (unsigned-byte 8) code-x) (the (unsigned-byte 8) 57))
                   ;; (digitp (char y yn))
                   (<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code-y))
                   (<= (the (unsigned-byte 8) code-y) (the (unsigned-byte 8) 57)))
                  (b* (((mv v1 l1)
                        (parse-nat-from-string (the string x)
                                               (the integer 0)
                                               (the integer 0)
                                               (the integer xn)
                                               (the integer xl)))
                       ((mv v2 l2)
                        (parse-nat-from-string (the string y)
                                               (the integer 0)
                                               (the integer 0)
                                               (the integer yn)
                                               (the integer yl))))
                      (cond ((or (< (the integer v1) (the integer v2))
                                 (and (= (the integer v1) (the integer v2))
                                      (< (the integer l1) (the integer l2))))
                             t)
                            ((or (< (the integer v2) (the integer v1))
                                 (and (= (the integer v1) (the integer v2))
                                      (< (the integer l2) (the integer l1))))
                             nil)
                            (t
                             (strnat<-aux (the string x)
                                          (the string y)
                                          (the integer (+ (the integer xn) (the integer l1)))
                                          (the integer (+ (the integer yn) (the integer l2)))
                                          (the integer xl)
                                          (the integer yl))))))
                 ((< (the (unsigned-byte 8) code-x) (the (unsigned-byte 8) code-y))
                  t)
                 ((< (the (unsigned-byte 8) code-y) (the (unsigned-byte 8) code-x))
                  nil)
                 (t
                  (strnat<-aux (the string x)
                               (the string y)
                               (the integer (+ (the integer 1) (the integer xn)))
                               (the integer (+ (the integer 1) (the integer yn)))
                               (the integer xl)
                               (the integer yl)))))))))

(encapsulate
  nil
  (local (in-theory (disable acl2::nth-when-bigger
                             take-leading-digits-when-digit-listp
                             digit-listp-when-not-consp
                             (:type-prescription character-listp)
                             (:type-prescription eqlable-listp)
                             (:type-prescription atom-listp)
                             (:type-prescription digitp)
                             (:type-prescription strnat<-aux)
                             (:type-prescription char<)
                             default-char-code
                             char<-antisymmetric
                             char<-trichotomy-strong
                             default-coerce-2 default-coerce-1
                             default-<-1 default-<-2
                             default-+-1 default-+-2
                             acl2::open-small-nthcdr
                             acl2::nthcdr-when-not-natp
                             acl2::nthcdr-when-non-consp
                             ACL2::|x < y  =>  0 < -x+y|
                             nthcdr len nth not)))
  (verify-guards strnat<-aux
    :hints((and stable-under-simplificationp
                '(:in-theory (enable digitp
                                     digit-val
                                     char-fix
                                     char<))))))

(encapsulate
 ()
 (local (defthm skip-leading-digits-to-nthcdr
          (implies (force (true-listp x))
                   (equal (skip-leading-digits x)
                          (nthcdr (len (take-leading-digits x)) x)))
          :hints(("Goal" :in-theory (enable skip-leading-digits take-leading-digits)))))

 (defthm strnat<-aux-correct
   (implies (and (stringp x)
                 (stringp y)
                 (natp xn)
                 (natp yn)
                 (equal xl (length x))
                 (equal yl (length y))
                 (<= xn xl)
                 (<= yn yl))
            (equal (strnat<-aux x y xn yn xl yl)
                   (charlistnat< (nthcdr xn (coerce x 'list))
                                 (nthcdr yn (coerce y 'list)))))
   :hints(("Goal"
           :induct (strnat<-aux x y xn yn xl yl)
           :expand ((charlistnat< (nthcdr xn (coerce x 'list))
                                  (nthcdr yn (coerce y 'list)))
                    (:free (xl yl) (strnat<-aux x y xn yn xl yl)))
           :in-theory (e/d (strnat<-aux charlistnat<)
                           (charlistnat<-antisymmetric
                            charlistnat<-trichotomy-strong
                            take-leading-digits-when-digit-listp
                            digit-listp-when-not-consp
                            charlistnat<
                            (:definition strnat<-aux)
                            default-+-1 default-+-2
                            acl2::nth-when-bigger))
           :do-not '(generalize fertilize)))))




(defund strnat< (x y)

  ":Doc-Section Str
  Mixed alphanumeric string less-than test~/

  This is like ~il[str::charlistnat<], but for strings.  It avoids coercing the
  strings to character-lists, and is altogether pretty fast.~/
  "

  (declare (type string x)
           (type string y))

  (mbe :logic
       (charlistnat< (coerce x 'list)
                     (coerce y 'list))

       :exec
       (strnat<-aux (the string x)
                    (the string y)
                    (the integer 0)
                    (the integer 0)
                    (the integer (length (the string x)))
                    (the integer (length (the string y))))))

(defthm strnat<-irreflexive
  (not (strnat< x x))
  :hints(("Goal" :in-theory (enable strnat<))))

(defthm strnat<-antisymmetric
  (implies (strnat< x y)
           (not (strnat< y x)))
  :hints(("Goal" :in-theory (enable strnat<))))

(defthm strnat<-transitive
  (implies (and (strnat< x y)
                (strnat< y z))
           (strnat< x z))
  :hints(("Goal" :in-theory (enable strnat<))))

(defthm strnat<-transitive-alt
  (implies (and (strnat< y z)
                (strnat< x y))
           (strnat< x z))
  :hints(("Goal" :in-theory (enable strnat<))))



#||

;; Using STP.

(include-book ;; fool dependency scanner
 "top")

(defn symnat< (sym1 sym2)
  (STR::strnat< (safe-symbol-name sym1)
                (safe-symbol-name sym2)))

(defthm symnat<-transitive
  (implies (and (symnat< x y)
                (symnat< y z))
           (symnat< x z)))

(defsort :compare< symnat<
         :prefix symnat<)

:q

(defparameter *prefixes* (list "foo" "bar" "baz" "a" "b" "c"))

(defparameter *test-strings*
  (let ((plen (length *prefixes*)))
    (loop for i from 1 to 10000 collect
          (concatenate 'string
                       (nth (mod i plen) *prefixes*)
                       "-"
                       (coerce (explode-atom i 10) 'string)
                       "-suff"))))

(defparameter *test-syms*
  (loop for str in *test-strings* collect (intern str "ACL2")))

(plev-max)
(take 30 *test-syms*)

(equal (symnat<-sort *test-syms*)
       (symsort *test-syms*))

;; 3.308 seconds, 198,769,472 bytes allocated
(progn
  (ccl::gc)
  (time (loop for i fixnum from 1 to 100 do
              (symnat<-sort *test-syms*)))
  nil)

;; 85.062 seconds, 11,405,636,416 bytes allocated
(progn
  (ccl::gc)
  (time (loop for i fixnum from 1 to 100 do
              (symsort *test-syms*)))
  nil)

||#