This file is indexed.

/usr/share/acl2-4.3/books/unicode/app.lisp is in acl2-books-source 4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
;; Processing Unicode Files with ACL2
;; Copyright (C) 2005-2006 by Jared Davis <jared@cs.utexas.edu>
;;
;; This program is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by the Free
;; Software Foundation; either version 2 of the License, or (at your option)
;; any later version.
;;
;; This program is distributed in the hope that it will be useful but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
;; more details.
;;
;; You should have received a copy of the GNU General Public License along with
;; this program; if not, write to the Free Software Foundation, Inc., 59 Temple
;; Place - Suite 330, Boston, MA 02111-1307, USA.

(in-package "ACL2")
(include-book "list-fix")
(local (include-book "take"))
(local (include-book "nthcdr"))


(defund binary-app (x y)
  (declare (xargs :guard t))
  (if (consp x)
      (cons (car x)
            (binary-app (cdr x) y))
    (list-fix y)))

(defmacro app (x y &rest rst)
  (xxxjoin 'binary-app (list* x y rst)))

(add-macro-alias app binary-app)

(defthm app-when-not-consp
  (implies (not (consp x))
           (equal (app x y)
                  (list-fix y)))
  :hints(("Goal" :in-theory (enable app))))

(defthm app-of-cons
  (equal (app (cons a x) y)
         (cons a (app x y)))
  :hints(("Goal" :in-theory (enable app))))

(defthm app-of-list-fix-one
  (equal (app (list-fix x) y)
         (app x y))
  :hints(("Goal" :in-theory (enable app))))

(defthm app-of-list-fix-two
  (equal (app x (list-fix y))
         (app x y))
  :hints(("Goal" :in-theory (enable app))))

(defthm app-of-app
  (equal (app (app x y) z)
         (app x (app y z)))
  :hints(("Goal" :induct (len x))))

(defthm true-listp-of-app
  (equal (true-listp (app x y))
         t)
  :hints(("Goal" :induct (len x))))

(defthm consp-of-app
  (equal (consp (app x y))
         (or (consp x)
             (consp y)))
  :hints(("Goal" :induct (len x))))

(defthm app-under-iff
  (iff (app x y)
       (or (consp x)
           (consp y)))
  :hints(("Goal" :induct (len x))))

(defthm len-of-app
  (equal (len (app x y))
         (+ (len x)
            (len y)))
  :hints(("Goal" :induct (len x))))

(local (include-book "arithmetic/top" :dir :system))

(defthm nth-of-app
  (implies (and (integerp n)
                (<= 0 n))
           (equal (nth n (app x y))
                  (if (< n (len x))
                      (nth n x)
                    (nth (- n (len x)) y))))
  :hints(("Goal"
          :in-theory (enable nth)
          :induct (nth n x))))

(encapsulate
 ()
 (local (defthm lemma
          (implies (< n (len x))
                   (equal (app (simpler-take n x)
                               (nthcdr n x))
                          (list-fix x)))
          :hints(("Goal" :in-theory (enable simpler-take nthcdr)))))

 (local (defthm lemma2
          (implies (and (natp n)
                        (<= (len x) n))
                   (equal (app (simpler-take n x) (nthcdr n x))
                          (simpler-take n x)))
          :hints(("Goal" :in-theory (enable simpler-take nthcdr)))))

 (defthm app-of-take-and-nthcdr
   (equal (app (simpler-take n x) (nthcdr n x))
          (if (< (nfix n) (len x))
              (list-fix x)
            (simpler-take n x)))
   :hints(("Goal" :in-theory (enable simpler-take nthcdr)))))

(defthm append-to-app
  (implies (true-listp y)
           (equal (append x y)
                  (app x y))))

(defthm car-of-app
  (equal (car (app a x))
         (if (consp a)
             (car a)
           (car x))))

(defthm simpler-take-of-len-from-app
  (equal (simpler-take (len x) (app x y))
         (list-fix x))
  :hints(("Goal"
          :in-theory (enable simpler-take)
          :induct (len x))))

(defthm take-of-len-from-app
  (equal (take (len x) (app x y))
         (list-fix x)))

(defthm nthcdr-of-len-from-app
  (equal (nthcdr (len x) (app x y))
         (list-fix y))
  :hints(("Goal"
          :induct (len x))))