/usr/share/doc/cmucl-docs/cmu-user.html is in cmucl-docs 20c-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>CMUCL User's Manual
</TITLE>
<META http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<META name="GENERATOR" content="hevea 1.10">
<STYLE type="text/css">
.li-itemize{margin:1ex 0ex;}
.li-enumerate{margin:1ex 0ex;}
.dd-description{margin:0ex 0ex 1ex 4ex;}
.dt-description{margin:0ex;}
.toc{list-style:none;}
.thefootnotes{text-align:left;margin:0ex;}
.dt-thefootnotes{margin:0em;}
.dd-thefootnotes{margin:0em 0em 0em 2em;}
.footnoterule{margin:1em auto 1em 0px;width:50%;}
.caption{padding-left:2ex; padding-right:2ex; margin-left:auto; margin-right:auto}
.title{margin:2ex auto;text-align:center}
.center{text-align:center;margin-left:auto;margin-right:auto;}
.flushleft{text-align:left;margin-left:0ex;margin-right:auto;}
.flushright{text-align:right;margin-left:auto;margin-right:0ex;}
DIV TABLE{margin-left:inherit;margin-right:inherit;}
PRE{text-align:left;margin-left:0ex;margin-right:auto;}
BLOCKQUOTE{margin-left:4ex;margin-right:4ex;text-align:left;}
TD P{margin:0px;}
.boxed{border:1px solid black}
.textboxed{border:1px solid black}
.vbar{border:none;width:2px;background-color:black;}
.hbar{border:none;height:2px;width:100%;background-color:black;}
.hfill{border:none;height:1px;width:200%;background-color:black;}
.vdisplay{border-collapse:separate;border-spacing:2px;width:auto; empty-cells:show; border:2px solid red;}
.vdcell{white-space:nowrap;padding:0px;width:auto; border:2px solid green;}
.display{border-collapse:separate;border-spacing:2px;width:auto; border:none;}
.dcell{white-space:nowrap;padding:0px;width:auto; border:none;}
.dcenter{margin:0ex auto;}
.vdcenter{border:solid #FF8000 2px; margin:0ex auto;}
.minipage{text-align:left; margin-left:0em; margin-right:auto;}
.marginpar{border:solid thin black; width:20%; text-align:left;}
.marginparleft{float:left; margin-left:0ex; margin-right:1ex;}
.marginparright{float:right; margin-left:1ex; margin-right:0ex;}
.theorem{text-align:left;margin:1ex auto 1ex 0ex;}
.part{margin:2ex auto;text-align:center}
BODY{background:white;}
.title{padding:1ex;background:#00B200;}
.titlemain{padding:1ex;background:#00B200;}
.titlerest{padding:1ex;background:#00B200;}
.part{padding:1ex;background:#FFFFCE;}
.section{padding:.5ex;background:#FFFFD3;}
.subsection{padding:0.3ex;background:#FFFFE2;}
.subsubsection{padding:0.5ex;background:#FFFFED;}
.chapter{padding:0.5ex;background:#FFFFBC;}
.fmarginpar{border:solid thin #FFFFE2; width:20%; text-align:left;}
.ffootnoterule{border:none;margin:1em auto 1em 0px;width:50%;background:#FFFFCE;}
.ftoc1{list-style:none;margin:0ex 1ex;padding:0ex 1ex;border-left:1ex solid #FFFFCE;}
.ftoc2{list-style:none;margin:1ex 1ex;padding:0ex 1ex;border-left:1ex solid #FFFFBC;}
.ftoc3{list-style:none;margin:0ex 1ex;padding:0ex 1ex;border-left:1ex solid #FFFFD3;}
.ftoc4{list-style:none;margin:0ex 1ex;padding:0ex 1ex;border-left:1ex solid #FFFFE2;}
.ftoc5{list-style:none;margin:0ex 1ex;padding:0ex 1ex;border-left:1ex solid #FFFFED;}
.ftoc6{list-style:none;margin:0ex 1ex;padding:0ex 1ex;border-left:1ex solid #CCFFCC;}
</STYLE>
<link rel="stylesheet" href="cmucl.css" type="text/css">
<meta http-equiv="Content-Language" content="en">
</HEAD>
<BODY >
<!--HEVEA command line is: /usr/bin/hevea -fix cmu-user.hva cmu-user.tex -->
<!--PREFIX <ARG >CMUCL User’s Manual: </ARG>-->
<!--CUT DEF chapter 10 --><P>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
</P><DIV CLASS="center">
<HR SIZE=2>
<BR>
<BR>
<BR>
<FONT SIZE=7>CMUCL User’s Manual</FONT><P>
<BR>
<BR>
<BR>
<BR>
</P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD ALIGN=center NOWRAP><FONT SIZE=4> Robert A. MacLachlan, </FONT><FONT SIZE=4><I>Editor</I></FONT></TD></TR>
</TABLE><P>
<BR>
<BR>
<FONT SIZE=4>November 2011<BR>
20c</FONT></P><P>
<BR>
<BR>
</P><HR SIZE=2></DIV><BLOCKQUOTE CLASS="quotation">
CMUCL is a free, high-performance implementation of the Common Lisp
programming language, which runs on most major Unix platforms. It
mainly conforms to the ANSI Common Lisp Standard. CMUCL features a
sophisticated native-code compiler, a foreign function interface, a
graphical source-level debugger, an interface to the X11 Window
System, and an Emacs-like editor.<P><BR>
<B>Keywords</B>: lisp, Common Lisp, manual, compiler, programming
language implementation, programming environment</P></BLOCKQUOTE><P><BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
</P><P>This manual is based on CMU Technical Report CMU-CS-92-161, edited by
Robert A. MacLachlan, dated July 1992.</P><P>
/Author (Robert A. MacLachlan, ed)
/Title (CMUCL User’s Manual)
/Keywords (lisp, Common Lisp, manual, compiler, programming
language implementation, programming environment)
</P><!--TOC chapter Contents-->
<H1 CLASS="chapter"><!--SEC ANCHOR -->Contents</H1><!--SEC END --><UL CLASS="ftoc1"><LI CLASS="li-toc">
<A HREF="#htoc1">Chapter 1  Introduction</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc2">1.1  Distribution and Support</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc3">1.2  Command Line Options</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc4">1.3  Credits</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc5">Chapter 2  Design Choices and Extensions</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc6">2.1  Data Types</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc7">2.1.1  Integers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc8">2.1.2  Floats</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc9">2.1.3  Extended Floats</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc10">2.1.4  Characters</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc11">2.1.5  Array Initialization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc12">2.1.6  Hash tables</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc13">2.2  Default Interrupts for Lisp</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc14">2.3  Implementation-Specific Packages</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc15">2.4  Hierarchical Packages</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc16">2.4.1  Introduction</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc17">2.4.2  Relative Package Names</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc18">2.4.3  Compatibility with ANSI Common Lisp</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc19">2.5  Package Locks</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc20">2.5.1  Rationale</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc21">2.5.2  Disabling package locks</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc22">2.6  The Editor</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc23">2.7  Garbage Collection</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc24">2.7.1  GC Parameters</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc25">2.7.2  Generational GC</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc26">2.7.3  Weak Pointers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc27">2.7.4  Finalization</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc28">2.8  Describe</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc29">2.9  The Inspector</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc30">2.9.1  The Graphical Interface</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc31">2.9.2  The TTY Inspector</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc32">2.10  Load</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc33">2.11  The Reader</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc34">2.11.1  Reader Extensions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc35">2.11.2  Reader Parameters</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc36">2.12  Stream Extensions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc37">2.13  Simple Streams</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc38">2.14  Running Programs from Lisp</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc39">2.14.1  Process Accessors</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc40">2.15  Saving a Core Image</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc41">2.16  Pathnames</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc42">2.16.1  Unix Pathnames</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc43">2.16.2  Wildcard Pathnames</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc44">2.16.3  Logical Pathnames</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc45">2.16.4  Search Lists</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc46">2.16.5  Predefined Search-Lists</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc47">2.16.6  Search-List Operations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc48">2.16.7  Search List Example</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc49">2.17  Filesystem Operations</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc50">2.17.1  Wildcard Matching</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc51">2.17.2  File Name Completion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc52">2.17.3  Miscellaneous Filesystem Operations</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc53">2.18  Time Parsing and Formatting</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc54">2.19  Random Number Generation</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc55">2.19.1  MT-19937 Generator</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc56">2.20  Lisp Threads</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc57">2.21  Lisp Library</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc58">2.22  Generalized Function Names</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc59">2.23  CLOS</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc60">2.23.1  Primary Method Errors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc61">2.23.2  Slot Type Checking</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc62">2.23.3  Slot Access Optimization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc63">2.23.4  Inlining Methods in Effective Methods</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc64">2.23.5  Effective Method Precomputation</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc65">2.23.6  Sealing</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc66">2.23.7  Method Tracing and Profiling</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc67">2.23.8  Misc</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc68">2.24  Differences from ANSI Common Lisp</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc69">2.24.1  Extensions</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc70">2.25  Function Wrappers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc71">2.26  Dynamic-Extent Declarations</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc72">2.26.1  <TT class=code>&rest</TT> argument lists</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc73">2.26.2  Closures</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc74">2.26.3  <TT class=code>list</TT>, <TT class=code>list*</TT>, and <TT class=code>cons</TT></A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc75">2.27  Modular Arithmetic</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc76">2.28  Extension to REQUIRE</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc77">2.29  Localization</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc78">2.29.1  Dictionary</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc79">2.29.2  Example Usage</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc80">2.30  Static Arrays</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc81">Chapter 3  The Debugger</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc82">3.1  Debugger Introduction</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc83">3.2  The Command Loop</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc84">3.3  Stack Frames</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc85">3.3.1  Stack Motion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc86">3.3.2  How Arguments are Printed</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc87">3.3.3  Function Names</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc88">3.3.4  Funny Frames</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc89">3.3.5  Debug Tail Recursion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc90">3.3.6  Unknown Locations and Interrupts</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc91">3.4  Variable Access</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc92">3.4.1  Variable Value Availability</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc93">3.4.2  Note On Lexical Variable Access</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc94">3.5  Source Location Printing</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc95">3.5.1  How the Source is Found</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc96">3.5.2  Source Location Availability</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc97">3.6  Compiler Policy Control</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc98">3.7  Exiting Commands</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc99">3.8  Information Commands</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc100">3.9  Breakpoint Commands</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc101">3.9.1  Breakpoint Example</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc102">3.10  Function Tracing</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc103">3.10.1  Encapsulation Functions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc104">3.10.2  Tracing Examples</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc105">3.11  Specials</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc106">Chapter 4  The Compiler</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc107">4.1  Compiler Introduction</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc108">4.2  Calling the Compiler</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc109">4.3  Compilation Units</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc110">4.3.1  Undefined Warnings</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc111">4.4  Interpreting Error Messages</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc112">4.4.1  The Parts of the Error Message</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc113">4.4.2  The Original and Actual Source</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc114">4.4.3  The Processing Path</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc115">4.4.4  Error Severity</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc116">4.4.5  Errors During Macroexpansion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc117">4.4.6  Read Errors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc118">4.4.7  Error Message Parameterization</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc119">4.5  Types in Python</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc120">4.5.1  Compile Time Type Errors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc121">4.5.2  Precise Type Checking</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc122">4.5.3  Weakened Type Checking</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc123">4.6  Getting Existing Programs to Run</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc124">4.7  Compiler Policy</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc125">4.7.1  The Optimize Declaration</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc126">4.7.2  The Optimize-Interface Declaration</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc127">4.8  Open Coding and Inline Expansion</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc128">Chapter 5  Advanced Compiler Use and Efficiency Hints</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc129">5.1  Advanced Compiler Introduction</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc130">5.1.1  Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc131">5.1.2  Optimization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc132">5.1.3  Function Call</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc133">5.1.4  Representation of Objects</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc134">5.1.5  Writing Efficient Code</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc135">5.2  More About Types in Python</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc136">5.2.1  More Types Meaningful</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc137">5.2.2  Canonicalization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc138">5.2.3  Member Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc139">5.2.4  Union Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc140">5.2.5  The Empty Type</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc141">5.2.6  Function Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc142">5.2.7  The Values Declaration</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc143">5.2.8  Structure Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc144">5.2.9  The Freeze-Type Declaration</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc145">5.2.10  Type Restrictions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc146">5.2.11  Type Style Recommendations</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc147">5.3  Type Inference</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc148">5.3.1  Variable Type Inference</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc149">5.3.2  Local Function Type Inference</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc150">5.3.3  Global Function Type Inference</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc151">5.3.4  Operation Specific Type Inference</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc152">5.3.5  Dynamic Type Inference</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc153">5.3.6  Type Check Optimization</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc154">5.4  Source Optimization</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc155">5.4.1  Let Optimization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc156">5.4.2  Constant Folding</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc157">5.4.3  Unused Expression Elimination</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc158">5.4.4  Control Optimization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc159">5.4.5  Unreachable Code Deletion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc160">5.4.6  Multiple Values Optimization</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc161">5.4.7  Source to Source Transformation</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc162">5.4.8  Style Recommendations</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc163">5.5  Tail Recursion</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc164">5.5.1  Tail Recursion Exceptions</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc165">5.6  Local Call</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc166">5.6.1  Self-Recursive Calls</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc167">5.6.2  Let Calls</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc168">5.6.3  Closures</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc169">5.6.4  Local Tail Recursion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc170">5.6.5  Return Values</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc171">5.7  Block Compilation</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc172">5.7.1  Block Compilation Semantics</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc173">5.7.2  Block Compilation Declarations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc174">5.7.3  Compiler Arguments</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc175">5.7.4  Practical Difficulties</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc176">5.7.5  Context Declarations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc177">5.7.6  Context Declaration Example</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc178">5.8  Inline Expansion</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc179">5.8.1  Inline Expansion Recording</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc180">5.8.2  Semi-Inline Expansion</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc181">5.8.3  The Maybe-Inline Declaration</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc182">5.9  Byte Coded Compilation</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc183">5.10  Object Representation</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc184">5.10.1  Think Before You Use a List</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc185">5.10.2  Structure Representation</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc186">5.10.3  Arrays</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc187">5.10.4  Vectors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc188">5.10.5  Bit-Vectors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc189">5.10.6  Hashtables</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc190">5.11  Numbers</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc191">5.11.1  Descriptors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc192">5.11.2  Non-Descriptor Representations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc193">5.11.3  Variables</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc194">5.11.4  Generic Arithmetic</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc195">5.11.5  Fixnums</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc196">5.11.6  Word Integers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc197">5.11.7  Floating Point Efficiency</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc198">5.11.8  Specialized Arrays</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc199">5.11.9  Specialized Structure Slots</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc200">5.11.10  Interactions With Local Call</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc201">5.11.11  Representation of Characters</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc202">5.12  General Efficiency Hints</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc203">5.12.1  Compile Your Code</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc204">5.12.2  Avoid Unnecessary Consing</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc205">5.12.3  Complex Argument Syntax</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc206">5.12.4  Mapping and Iteration</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc207">5.12.5  Trace Files and Disassembly</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc208">5.13  Efficiency Notes</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc209">5.13.1  Type Uncertainty</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc210">5.13.2  Efficiency Notes and Type Checking</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc211">5.13.3  Representation Efficiency Notes</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc212">5.13.4  Verbosity Control</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc213">5.14  Profiling</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc214">5.14.1  Profile Interface</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc215">5.14.2  Profiling Techniques</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc216">5.14.3  Nested or Recursive Calls</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc217">5.14.4  Clock resolution</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc218">5.14.5  Profiling overhead</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc219">5.14.6  Additional Timing Utilities</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc220">5.14.7  A Note on Timing</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc221">5.14.8  Benchmarking Techniques</A>
</LI></UL>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc222">Chapter 6  UNIX Interface</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc223">6.1  Reading the Command Line</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc224">6.2  Useful Variables</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc225">6.3  Lisp Equivalents for C Routines</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc226">6.4  Type Translations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc227">6.5  System Area Pointers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc228">6.6  Unix System Calls</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc229">6.7  File Descriptor Streams</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc230">6.8  Unix Signals</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc231">6.8.1  Changing Signal Handlers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc232">6.8.2  Examples of Signal Handlers</A>
</LI></UL>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc233">Chapter 7  Event Dispatching with SERVE-EVENT</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc234">7.1  Object Sets</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc235">7.2  The SERVE-EVENT Function</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc236">7.3  Using SERVE-EVENT with Unix File Descriptors</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc237">7.4  Using SERVE-EVENT with the CLX Interface to X</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc238">7.4.1  Without Object Sets</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc239">7.4.2  With Object Sets</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc240">7.5  A SERVE-EVENT Example</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc241">7.5.1  Without Object Sets Example</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc242">7.5.2  With Object Sets Example</A>
</LI></UL>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc243">Chapter 8  Alien Objects</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc244">8.1  Introduction to Aliens</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc245">8.2  Alien Types</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc246">8.2.1  Defining Alien Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc247">8.2.2  Alien Types and Lisp Types</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc248">8.2.3  Alien Type Specifiers</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc249">8.2.4  The C-Call Package</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc250">8.3  Alien Operations</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc251">8.3.1  Alien Access Operations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc252">8.3.2  Alien Coercion Operations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc253">8.3.3  Alien Dynamic Allocation</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc254">8.4  Alien Variables</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc255">8.4.1  Local Alien Variables</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc256">8.4.2  External Alien Variables</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc257">8.5  Alien Data Structure Example</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc258">8.6  Loading Unix Object Files</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc259">8.7  Alien Function Calls</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc260">8.7.1  The alien-funcall Primitive</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc261">8.7.2  The def-alien-routine Macro</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc262">8.7.3  def-alien-routine Example</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc263">8.7.4  Calling Lisp from C</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc264">8.7.5  Callback Example</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc265">8.7.6  Accessing Lisp Arrays</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc266">8.8  Step-by-Step Alien Example</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc267">Chapter 9  Interprocess Communication under LISP</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc268">9.1  The REMOTE Package</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc269">9.1.1  Connecting Servers and Clients</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc270">9.1.2  Remote Evaluations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc271">9.1.3  Remote Objects</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc272">9.2  The WIRE Package</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc273">9.2.1  Untagged Data</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc274">9.2.2  Tagged Data</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc275">9.2.3  Making Your Own Wires</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc276">9.3  Out-Of-Band Data</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc277">Chapter 10  Networking Support</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc278">10.1  Byte Order Converters</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc279">10.2  Domain Name Services (DNS)</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc280">10.3  Binding to Interfaces</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc281">10.4  Accepting Connections</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc282">10.5  Connecting</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc283">10.6  Out-of-Band Data</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc284">10.7  Unbound Sockets, Socket Options, and Closing Sockets</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc285">10.8  Unix Datagrams</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc286">10.9  Errors</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc287">Chapter 11  Debugger Programmer’s Interface</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc288">11.1  DI Exceptional Conditions</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc289">11.1.1  Debug-conditions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc290">11.1.2  Debug-errors</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc291">11.2  Debug-variables</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc292">11.3  Frames</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc293">11.4  Debug-functions</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc294">11.5  Debug-blocks</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc295">11.6  Breakpoints</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc296">11.7  Code-locations</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc297">11.8  Debug-sources</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc298">11.9  Source Translation Utilities</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc299">Chapter 12  Cross-Referencing Facility</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc300">12.1  Populating the cross-reference database</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc301">12.2  Querying the cross-reference database</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc302">12.3  Example usage</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc303">12.4  Limitations of the cross-referencing facility</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc304">Chapter 13  Internationalization</A>
<UL CLASS="ftoc2"><LI CLASS="li-toc">
<A HREF="#htoc305">13.1  Changes</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc306">13.1.1  Design Choices</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc307">13.1.2  Characters</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc308">13.1.3  Strings</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc309">13.2  External Formats</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc310">13.2.1  Available External Formats</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc311">13.2.2  Composing External Formats</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc312">13.3  Dictionary</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc313">13.3.1  Variables</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc314">13.3.2  Characters</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc315">13.3.3  Strings</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc316">13.3.4  Sequences</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc317">13.3.5  Reader</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc318">13.3.6  Printer</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc319">13.3.7  Miscellaneous</A>
</LI></UL>
</LI><LI CLASS="li-toc"><A HREF="#htoc320">13.4  Writing External Formats</A>
<UL CLASS="ftoc3"><LI CLASS="li-toc">
<A HREF="#htoc321">13.4.1  External Formats</A>
</LI><LI CLASS="li-toc"><A HREF="#htoc322">13.4.2  Composing External Formats</A>
</LI></UL>
</LI></UL>
</LI></UL><!--NAME cmu-user.htoc.html-->
<!--TOC chapter Introduction-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc1">Chapter 1</A>  Introduction</H1><!--SEC END --><P>CMUCL is a free, high-performance implementation of the Common Lisp
programming language which runs on most major Unix platforms. It
mainly conforms to the ANSI Common Lisp standard. Here is a summary of
its main features:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
a <EM>sophisticated native-code compiler</EM> which is capable of
powerful type inferences, and generates code competitive in speed with
C compilers.</LI><LI CLASS="li-itemize">generational garbage collection and multiprocessing
capability on the x86 ports.</LI><LI CLASS="li-itemize">a foreign function interface which allows interfacing with C code and
system libraries, including shared libraries on most platforms, and
direct access to Unix system calls.</LI><LI CLASS="li-itemize">support for interprocess communication and remote procedure
calls.</LI><LI CLASS="li-itemize">an implementation of CLOS, the Common Lisp Object System, which
includes multimethods and a metaobject protocol.</LI><LI CLASS="li-itemize">a graphical source-level debugger using a Motif interface, and a
code profiler.</LI><LI CLASS="li-itemize">an interface to the X11 Window System (CLX), and a sophisticated
graphical widget library (Garnet).</LI><LI CLASS="li-itemize">programmer-extensible input and output streams.</LI><LI CLASS="li-itemize">an Emacs-like editor implemented in Common Lisp.</LI><LI CLASS="li-itemize">public domain: free, with full source code and no
strings attached (and no warranty). Like GNU/Linux and the *BSD
operating systems, CMUCL is maintained and improved by a team of
volunteers collaborating over the Internet.
</LI></UL><P>This user’s manual contains only implementation-specific information
about CMUCL. Users will also need a separate manual describing the
Common Lisp standard, for example, the
<A HREF="http://www.lispworks.com/documentation/HyperSpec/Front/index.htm">Hyperspec</A>.</P><P>In addition to the language itself, this document describes a number
of useful library modules that run in CMUCL. Hemlock, an Emacs-like
text editor, is included as an integral part of the CMUCL
environment. Two documents describe Hemlock: the <I>Hemlock
User’s Manual</I>, and the <I>Hemlock Command Implementor’s Manual</I>.</P><!--TOC section Distribution and Support-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc2">1.1</A>  Distribution and Support</H2><!--SEC END --><P>CMUCL is developed and maintained by a group of volunteers who
collaborate over the internet. Sources and binary releases for the
various supported platforms can be obtained from
<A HREF="http://www.cons.org/cmucl/">www.cons.org/cmucl</A>. These pages
describe how to download by FTP or CVS.</P><P>A number of mailing lists are available for users and developers;
please see the web site for more information. </P><!--TOC section Command Line Options-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc3">1.2</A>  Command Line Options</H2><!--SEC END --><P>
<A NAME="@concept0"></A>
<A NAME="command-line-options"></A></P><P>The command line syntax and environment is described in the
<CODE>lisp(1)</CODE> man page in the man/man1 directory of the distribution.
See also <CODE>cmucl(1)</CODE>. Currently CMUCL accepts the following
switches:</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>–help</TT><BR>
</DT><DD CLASS="dd-list"> Same as <TT class=code>-help</TT>.</DD><DT CLASS="dt-list"><TT class=code>-help</TT><BR>
</DT><DD CLASS="dd-list"> Print ou the command line options and exit.</DD><DT CLASS="dt-list"><TT class=code>-batch</TT><BR>
</DT><DD CLASS="dd-list"> specifies batch mode, where all input is
directed from standard-input. An error code of 0 is returned upon
encountering an EOF and 1 otherwise.</DD><DT CLASS="dt-list"><TT class=code>-quiet</TT><BR>
</DT><DD CLASS="dd-list"> enters quiet mode. This implies setting the
variables <TT class=code>*load-verbose*</TT>, <TT class=code>*compile-verbose*</TT>,
<TT class=code>*compile-print*</TT>, <TT class=code>*compile-progress*</TT>,
<TT class=code>*require-verbose*</TT> and <TT class=code>*gc-verbose*</TT> to NIL, and
disables the printing of the startup banner.</DD><DT CLASS="dt-list"><TT class=code>-core</TT><BR>
</DT><DD CLASS="dd-list"> requires an argument that should be the name of a
core file. Rather than using the default core file, which is searched
in a number of places, according to the initial value of the
<TT class=code>library:</TT> search-list, the specified core file is loaded. This
switch overrides the value of the <TT class=code>CMUCLCORE</TT> environment variable,
if present.</DD><DT CLASS="dt-list"><TT class=code>-lib</TT><BR>
</DT><DD CLASS="dd-list"> requires an argument that should be the path to the
CMUCL library directory, which is going to be used to initialize the
<TT class=code>library:</TT> search-list, among other things. This switch overrides
the value of the <TT class=code>CMUCLLIB</TT> environment variable, if present.</DD><DT CLASS="dt-list"><TT class=code>-dynamic-space-size</TT><BR>
</DT><DD CLASS="dd-list"> requires an argument that should be
the number of megabytes (1048576 bytes) that should be allocated to
the heap. If not specified, a platform-specific default is used.
The actual maximum allowed heap size is platform-specific.<P>Currently, this option is only available for the x86 and sparc
platforms. </P></DD><DT CLASS="dt-list"><TT class=code>-edit</TT><BR>
</DT><DD CLASS="dd-list"> specifies to enter Hemlock. A file to edit may be
specified by placing the name of the file between the program name
(usually <TT class=filename>lisp</TT>) and the first switch.</DD><DT CLASS="dt-list"><TT class=code>-eval</TT><BR>
</DT><DD CLASS="dd-list"> accepts one argument which should be a Lisp form
to evaluate during the start up sequence. The value of the form
will not be printed unless it is wrapped in a form that does output.</DD><DT CLASS="dt-list"><TT class=code>-hinit</TT><BR>
</DT><DD CLASS="dd-list"> accepts an argument that should be the name of
the hemlock init file to load the first time the function
<A NAME="@funs0"></A><TT class=code>ed</TT> is invoked. The default is to load
<TT class=filename>hemlock-init.<TT class=variable>object-type</TT></TT>, or if that does not exist,
<TT class=filename>hemlock-init.lisp</TT> from the user’s home directory. If the
file is not in the user’s home directory, the full path must be
specified.</DD><DT CLASS="dt-list"><TT class=code>-init</TT><BR>
</DT><DD CLASS="dd-list"> accepts an argument that should be the name of an
init file to load during the normal start up sequence. The default
is to load <TT class=filename>init.<TT class=variable>object-type</TT></TT> or, if that does not exist,
<TT class=filename>init.lisp</TT> from the user’s home directory. If neither exists,
CMUCLtries <TT class=filename>.cmucl-init.<TT class=variable>object-type</TT></TT> and then
<TT class=filename>.cmucl-init.lisp</TT>. If the file is not
in the user’s home directory, the full path must be specified. If
the file does not exist, CMUCLsilently ignores it.</DD><DT CLASS="dt-list"><TT class=code>-noinit</TT><BR>
</DT><DD CLASS="dd-list"> accepts no arguments and specifies that an init
file should not be loaded during the normal start up sequence.
Also, this switch suppresses the loading of a hemlock init file when
Hemlock is started up with the <TT class=code>-edit</TT> switch.</DD><DT CLASS="dt-list"><TT class=code>-nositeinit</TT><BR>
</DT><DD CLASS="dd-list"> accepts no arguments and specifies that the
site init file should not be loaded during the normal start up
sequence. </DD><DT CLASS="dt-list"><TT class=code>-load</TT><BR>
</DT><DD CLASS="dd-list"> accepts an argument which should be the name of a
file to load into Lisp before entering Lisp’s read-eval-print loop.</DD><DT CLASS="dt-list"><TT class=code>-slave</TT><BR>
</DT><DD CLASS="dd-list"> specifies that Lisp should start up as a
islave Lisp and try to connect to an editor Lisp. The name of
the editor to connect to must be specified—to find the
editor’s name, use the Hemlock “<TT class=code>Accept Slave
Connections</TT>” command. The name for the editor Lisp is of the
form:
<BLOCKQUOTE class=example><PRE>
<TT class=variable>machine-name</TT><TT class=code>:</TT><TT class=variable>socket</TT>
</PRE></BLOCKQUOTE>
where <TT class=variable>machine-name</TT> is the internet host name for the machine
and <TT class=variable>socket</TT> is the decimal number of the socket to connect to.</DD><DT CLASS="dt-list"><TT class=code>-fpu</TT><BR>
</DT><DD CLASS="dd-list"> specifies what fpu should be used for x87 machines.
The possible values are “<TT class=code>x87</TT>”, “<TT class=code>sse2</TT>”, or
“<TT class=code>auto</TT>”, which is the default. By default, CMUCLwill
detect if the chip supports the SSE2 instruction set or not. If so
or if <TT class=code>-fpu sse2</TT> is specified, the SSE2 core will be loaded
that uses SSE2 for floating-point arithmetic. If SSE2 is not
available or if <TT class=code>-fpu x87</TT> is given, the legacy x87 core is
loaded.</DD><DT CLASS="dt-list"><TT class=code>–</TT><BR>
</DT><DD CLASS="dd-list"> indicates that everything after “<TT class=code>–</TT>” is not
subject to CMUCL’s command line parsing. Everything after
“<TT class=code>–</TT>” is placed in the variable
<TT class=code>ext:*command-line-application-arguments*</TT>.
</DD></DL><P>For more details on the use of the </P><TT class=code>-edit</TT><P> and </P><TT class=code>-slave</TT><P>
switches, see the <I>Hemlock User’s Manual</I>.</P><P>Arguments to the above switches can be specified in one of two ways:
</P><TT class=variable>switch</TT><TT class=code>=</TT><TT class=variable>value</TT><P> or
</P><TT class=variable>switch</TT><P><</P><TT class=variable>space</TT><P>></P><TT class=variable>value</TT><P>. For example, to start up
the saved core file mylisp.core use either of the following two
commands:</P><BLOCKQUOTE class=example><PRE>
lisp -core=mylisp.core
lisp -core mylisp.core
</PRE></BLOCKQUOTE><!--TOC section Credits-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc4">1.3</A>  Credits</H2><!--SEC END --><P>CMUCL was developed at the Computer Science Department of Carnegie
Mellon University. The work was a small autonomous part within the
Mach microkernel-based operating system project, and started more as a
tool development effort than a research project. The project started
out as Spice Lisp, which provided a modern Lisp implementation for use
in the CMU community. CMUCL has been under continual development since
the early 1980’s (concurrent with the Common Lisp standardization
effort). Most of the CMU Common Lisp implementors went on to work on
the Gwydion environment for Dylan. The CMU team was lead by Scott E.
Fahlman, the Python compiler was written by Robert MacLachlan.</P><P>CMUCL’s CLOS implementation is derived from the PCL reference
implementation written at Xerox PARC:
</P><BLOCKQUOTE CLASS="quotation">
Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox
Corporation.<BR>
All rights reserved.<P><BR>
Use and copying of this software and preparation of
derivative works based upon this software are permitted. Any
distribution of this software or derivative works must comply with all
applicable United States export control laws.</P><P><BR>
This software is made available AS IS, and Xerox Corporation
makes no warranty about the software, its performance or its
conformity to any specification.
</P></BLOCKQUOTE><P>
Its implementation of the LOOP macro was derived from code from
Symbolics, which was derived from code written at MIT:
</P><BLOCKQUOTE CLASS="quotation">
Portions of LOOP are Copyright (c) 1986 by the Massachusetts
Institute of Technology.<BR>
All Rights Reserved.<P><BR>
Permission to use, copy, modify and distribute this software
and its documentation for any purpose and without fee is hereby granted,
provided that the M.I.T. copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation. The names "M.I.T." and "Massachusetts
Institute of Technology" may not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission. Notice must be given in supporting documentation that
copying distribution is by permission of M.I.T. M.I.T. makes no
representations about the suitability of this software for any purpose.
It is provided "as is" without express or implied warranty.</P><P><BR>
<BR>
<BR>
Portions of LOOP are Copyright (c) 1989, 1990, 1991, 1992 by
Symbolics, Inc.<BR>
All Rights Reserved.</P><P><BR>
Permission to use, copy, modify and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the Symbolics copyright notice appear in all
copies and that both that copyright notice and this permission notice
appear in supporting documentation. The name "Symbolics" may not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. Notice must be
given in supporting documentation that copying distribution is by
permission of Symbolics. Symbolics makes no representations about the
suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.</P><P><BR>
Symbolics, CLOE Runtime, and Minima are trademarks, and
CLOE, Genera, and Zetalisp are registered trademarks of Symbolics,
Inc.
</P></BLOCKQUOTE><P>
The CLX code is copyrighted by Texas Instruments Incorporated:
</P><BLOCKQUOTE CLASS="quotation">
Copyright (C) 1987 Texas Instruments Incorporated.<P><BR>
Permission is granted to any individual or institution to
use, copy, modify, and distribute this software, provided that this
complete copyright and permission notice is maintained, intact, in all
copies and supporting documentation.</P><P><BR>
Texas Instruments Incorporated provides this software "as
is" without express or implied warranty.
</P></BLOCKQUOTE><P>CMUCL was funded by DARPA under CMU’s "Research on Parallel Computing"
contract. Rather than doing pure research on programming languages and
environments, the emphasis was on developing practical programming
tools. Sometimes this required new technology, but much of the work
was in creating a Common Lisp environment that incorporates
state-of-the-art features from existing systems (both Lisp and
non-Lisp). Archives of the project are available online.</P><P>The project funding stopped in 1994, so support at Carnegie Mellon
University has been discontinued. All code and documentation developed
at CMU was released into the public domain. The project continues as a
group of users and developers collaborating over the Internet. The
current and previous maintainers include:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Marco Antoniotti
</LI><LI CLASS="li-itemize">Martin Cracauer
</LI><LI CLASS="li-itemize">Fred Gilham
</LI><LI CLASS="li-itemize">Alex Goncharov
</LI><LI CLASS="li-itemize">Rob MacLachlan
</LI><LI CLASS="li-itemize">Pierre Mai
</LI><LI CLASS="li-itemize">Eric Marsden
</LI><LI CLASS="li-itemize">Gerd Moellman
</LI><LI CLASS="li-itemize">Tim Moore
</LI><LI CLASS="li-itemize">Carl Shapiro
</LI><LI CLASS="li-itemize">Robert Swindells
</LI><LI CLASS="li-itemize">Raymond Toy
</LI><LI CLASS="li-itemize">Peter Van Eynde
</LI><LI CLASS="li-itemize">Paul Werkowski
</LI></UL><P>In particular, Paul Werkowski and Douglas Crosher completed the port
for the x86 architecture for FreeBSD. Peter VanEnyde took the FreeBSD
port and created a Linux version. Other people who have contributed to
the development of CMUCL since 1981 are</P><UL CLASS="itemize"><LI CLASS="li-itemize">
David Axmark
</LI><LI CLASS="li-itemize">Miles Bader
</LI><LI CLASS="li-itemize">Rick Busdiecker
</LI><LI CLASS="li-itemize">Bill Chiles
</LI><LI CLASS="li-itemize">Douglas Thomas Crosher
</LI><LI CLASS="li-itemize">Casper Dik
</LI><LI CLASS="li-itemize">Ted Dunning
</LI><LI CLASS="li-itemize">Scott Fahlman
</LI><LI CLASS="li-itemize">Mike Garland
</LI><LI CLASS="li-itemize">Paul Gleichauf
</LI><LI CLASS="li-itemize">Sean Hallgren
</LI><LI CLASS="li-itemize">Richard Harris
</LI><LI CLASS="li-itemize">Joerg-Cyril Hoehl
</LI><LI CLASS="li-itemize">Chris Hoover
</LI><LI CLASS="li-itemize">John Kolojejchick
</LI><LI CLASS="li-itemize">Todd Kaufmann
</LI><LI CLASS="li-itemize">Simon Leinen
</LI><LI CLASS="li-itemize">Sandra Loosemore
</LI><LI CLASS="li-itemize">William Lott
</LI><LI CLASS="li-itemize">Dave McDonald
</LI><LI CLASS="li-itemize">Tim Moore
</LI><LI CLASS="li-itemize">Skef Wholey
</LI><LI CLASS="li-itemize">Paul Foley
</LI><LI CLASS="li-itemize">Helmut Eller
</LI><LI CLASS="li-itemize">Jan Rychter
</LI></UL><P>Countless others have contributed to the project by sending in bug
reports, bug fixes, and new features.</P><P>This manual is based on CMU Technical Report CMU-CS-92-161, edited by
Robert A. MacLachlan, dated July 1992. Other contributors include
Raymond Toy, Paul Werkowski and Eric Marsden. The Hierarchical
Packages chapter is based on documentation written by Franz. Inc, and
is used with permission. The remainder of the document is in the
public domain.
</P><!--NAME introduction.html-->
<!--TOC chapter Design Choices and Extensions-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc5">Chapter 2</A>  Design Choices and Extensions</H1><!--SEC END --><P>Several design choices in Common Lisp are left to the individual
implementation, and some essential parts of the programming environment
are left undefined. This chapter discusses the most important design
choices and extensions.</P><!--TOC section Data Types-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc6">2.1</A>  Data Types</H2><!--SEC END --><!--TOC subsection Integers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc7">2.1.1</A>  Integers</H3><!--SEC END --><P>The <A NAME="@types0"></A></P><TT class=code>fixnum</TT><P> type is equivalent to </P><TT class=code>(signed-byte 30)</TT><P>.
Integers outside this range are represented as a <A NAME="@types1"></A></P><TT class=code>bignum</TT><P> or
a word integer (see section <A HREF="#word-integers">5.11.6</A>.) Almost all integers that
appear in programs can be represented as a </P><TT class=code>fixnum</TT><P>, so integer
number consing is rare.</P><!--TOC subsection Floats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc8">2.1.2</A>  Floats</H3><!--SEC END --><P>
<A NAME="ieee-float"></A></P><P>CMUCL supports three floating point formats:
<A NAME="@types2"></A></P><TT class=code>single-float</TT><P>, <A NAME="@types3"></A></P><TT class=code>double-float</TT><P> and
<A NAME="@types4"></A></P><TT class=code>double-double-float</TT><P>. The first two are implemented with
IEEE single and double float arithmetic, respectively. The last is an
extension; see section <A HREF="#extended-float">2.1.3</A> for more information.
</P><TT class=code>short-float</TT><P> is a synonym for </P><TT class=code>single-float</TT><P>, and
</P><TT class=code>long-float</TT><P> is a synonym for </P><TT class=code>double-float</TT><P>. The initial
value of <A NAME="@vars0"></A></P><TT class=code>*read-default-float-format*</TT><P> is </P><TT class=code>single-float</TT><P>.</P><P>Both </P><TT class=code>single-float</TT><P> and </P><TT class=code>double-float</TT><P> are represented with
a pointer descriptor, so float operations can cause number consing.
Number consing is greatly reduced if programs are written to allow the
use of non-descriptor representations (see section <A HREF="#numeric-types">5.11</A>.)</P><!--TOC subsubsection IEEE Special Values-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.1  IEEE Special Values</H4><!--SEC END --><P>CMUCL supports the IEEE infinity and NaN special values. These
non-numeric values will only be generated when trapping is disabled
for some floating point exception (see section <A HREF="#float-traps">2.1.2.4</A>), so users of
the default configuration need not concern themselves with special
values.</P><P><BR>
</P><DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>short-float-positive-infinity</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>short-float-negative-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>single-float-positive-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>single-float-negative-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>double-float-positive-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>double-float-negative-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>long-float-positive-infinity</TT>
</DIV>
<DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>long-float-negative-infinity</TT>
</DIV><P>The values of these constants are the IEEE positive and negative
infinity objects for each float format.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs1"></A><A NAME="FN:float-infinity-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>float-infinity-p</TT> <TT class=variable>x</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns true if </P><TT class=variable>x</TT><P> is an IEEE float infinity (of
either sign.) </P><TT class=variable>x</TT><P> must be a float.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs2"></A><A NAME="FN:float-nan-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>float-nan-p</TT> <TT class=variable>x</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs3"></A><A NAME="FN:float-trapping-nan-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>float-trapping-nan-p</TT> <TT class=variable>x</TT>
</DIV><TT class=code>float-nan-p</TT><P> returns true if </P><TT class=variable>x</TT><P> is an IEEE NaN (Not A
Number) object. </P><TT class=code>float-trapping-nan-p</TT><P> returns true only if
</P><TT class=variable>x</TT><P> is a trapping NaN. With either function, </P><TT class=variable>x</TT><P> must be a
float.
</P></BLOCKQUOTE><!--TOC subsubsection Negative Zero-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.2  Negative Zero</H4><!--SEC END --><P>The IEEE float format provides for distinct positive and negative
zeros. To test the sign on zero (or any other float), use the
Common Lisp <A NAME="@funs4"></A></P><TT class=code>float-sign</TT><P> function. Negative zero prints as
</P><TT class=code>-0.0f0</TT><P> or </P><TT class=code>-0.0d0</TT><P>.</P><!--TOC subsubsection Denormalized Floats-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.3  Denormalized Floats</H4><!--SEC END --><P>CMUCL supports IEEE denormalized floats. Denormalized floats
provide a mechanism for gradual underflow. The Common Lisp
<A NAME="@funs5"></A></P><TT class=code>float-precision</TT><P> function returns the actual precision of a
denormalized float, which will be less than <A NAME="@funs6"></A></P><TT class=code>float-digits</TT><P>.
Note that in order to generate (or even print) denormalized floats,
trapping must be disabled for the underflow exception
(see section <A HREF="#float-traps">2.1.2.4</A>.) The Common Lisp
</P><TT class=code>least-positive-</TT><TT class=variable>format</TT><P>-</P><TT class=code>float</TT><P> constants are
denormalized.</P><P><BR>
<A NAME="@funs7"></A><A NAME="FN:float-denormalized-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>float-denormalized-p</TT> <TT class=variable>x</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns true if </P><TT class=variable>x</TT><P> is a denormalized float.
</P><TT class=variable>x</TT><P> must be a float.
</P></BLOCKQUOTE><!--TOC subsubsection Floating Point Exceptions-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.4  Floating Point Exceptions</H4><!--SEC END --><P>
<A NAME="float-traps"></A></P><P>The IEEE floating point standard defines several exceptions that occur
when the result of a floating point operation is unclear or
undesirable. Exceptions can be ignored, in which case some default
action is taken, such as returning a special value. When trapping is
enabled for an exception, a error is signalled whenever that exception
occurs. These are the possible floating point exceptions:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:underflow</TT><BR>
</DT><DD CLASS="dd-list"> This exception occurs when the result of an
operation is too small to be represented as a normalized float in
its format. If trapping is enabled, the
<A NAME="@types5"></A><TT class=code>floating-point-underflow</TT> condition is signalled.
Otherwise, the operation results in a denormalized float or zero.</DD><DT CLASS="dt-list"><TT class=code>:overflow</TT><BR>
</DT><DD CLASS="dd-list"> This exception occurs when the result of an
operation is too large to be represented as a float in its format.
If trapping is enabled, the <A NAME="@types6"></A><TT class=code>floating-point-overflow</TT>
exception is signalled. Otherwise, the operation results in the
appropriate infinity.</DD><DT CLASS="dt-list"><TT class=code>:inexact</TT><BR>
</DT><DD CLASS="dd-list"> This exception occurs when the result of a
floating point operation is not exact, i.e. the result was rounded.
If trapping is enabled, the <TT class=code>extensions:floating-point-inexact</TT>
condition is signalled. Otherwise, the rounded result is returned.</DD><DT CLASS="dt-list"><TT class=code>:invalid</TT><BR>
</DT><DD CLASS="dd-list"> This exception occurs when the result of an
operation is ill-defined, such as <TT class=code>(/ 0.0 0.0)</TT>. If
trapping is enabled, the <TT class=code>extensions:floating-point-invalid</TT>
condition is signalled. Otherwise, a quiet NaN is returned.</DD><DT CLASS="dt-list"><TT class=code>:divide-by-zero</TT><BR>
</DT><DD CLASS="dd-list"> This exception occurs when a float is
divided by zero. If trapping is enabled, the
<A NAME="@types7"></A><TT class=code>divide-by-zero</TT> condition is signalled. Otherwise, the
appropriate infinity is returned.
</DD></DL><!--TOC subsubsection Floating Point Rounding Mode-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.5  Floating Point Rounding Mode</H4><!--SEC END --><P>
<A NAME="float-rounding-modes"></A></P><P>IEEE floating point specifies four possible rounding modes:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:nearest</TT><BR>
</DT><DD CLASS="dd-list"> In this mode, the inexact results are rounded to
the nearer of the two possible result values. If the neither
possibility is nearer, then the even alternative is chosen. This
form of rounding is also called “round to even”, and is the form
of rounding specified for the Common Lisp <A NAME="@funs8"></A><TT class=code>round</TT> function.</DD><DT CLASS="dt-list"><TT class=code>:positive-infinity</TT><BR>
</DT><DD CLASS="dd-list"> This mode rounds inexact results to the
possible value closer to positive infinity. This is analogous to
the Common Lisp <A NAME="@funs9"></A><TT class=code>ceiling</TT> function.</DD><DT CLASS="dt-list"><TT class=code>:negative-infinity</TT><BR>
</DT><DD CLASS="dd-list"> This mode rounds inexact results to the
possible value closer to negative infinity. This is analogous to
the Common Lisp <A NAME="@funs10"></A><TT class=code>floor</TT> function.</DD><DT CLASS="dt-list"><TT class=code>:zero</TT><BR>
</DT><DD CLASS="dd-list"> This mode rounds inexact results to the possible
value closer to zero. This is analogous to the Common Lisp
<A NAME="@funs11"></A><TT class=code>truncate</TT> function.
</DD></DL><!--TOC paragraph Warning:-->
<H5 CLASS="paragraph"><!--SEC ANCHOR -->Warning:</H5><!--SEC END --><P>Although the rounding mode can be changed with
</P><TT class=code>set-floating-point-modes</TT><P>, use of any value other than the
default (</P><TT class=code>:nearest</TT><P>) can cause unusual behavior, since it will
affect rounding done by Common Lisp system code as well as rounding in
user code. In particular, the unary </P><TT class=code>round</TT><P> function will stop
doing round-to-nearest on floats, and instead do the selected form of
rounding.</P><!--TOC subsubsection Accessing the Floating Point Modes-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.1.2.6  Accessing the Floating Point Modes</H4><!--SEC END --><P>These functions can be used to modify or read the floating point modes:</P><P><BR>
<A NAME="@funs12"></A><A NAME="FN:set-floating-point-modes"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>set-floating-point-modes</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:traps</TT> <TT class=code>:rounding-mode</TT></SPAN><BR>
<TT class=code>:fast-mode</TT> <TT class=code>:accrued-exceptions</TT><BR>
<TT class=code>:current-exceptions</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs13"></A><A NAME="FN:get-floating-point-modes"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>get-floating-point-modes</TT>
</DIV><P>The keyword arguments to </P><TT class=code>set-floating-point-modes</TT><P> set various
modes controlling how floating point arithmetic is done:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:traps</TT><BR>
</DT><DD CLASS="dd-list"> A list of the exception conditions that should
cause traps. Possible exceptions are <TT class=code>:underflow</TT>,
<TT class=code>:overflow</TT>, <TT class=code>:inexact</TT>, <TT class=code>:invalid</TT> and
<TT class=code>:divide-by-zero</TT>. Initially all traps except <TT class=code>:inexact</TT>
are enabled. See section <A HREF="#float-traps">2.1.2.4</A>.</DD><DT CLASS="dt-list"><TT class=code>:rounding-mode</TT><BR>
</DT><DD CLASS="dd-list"> The rounding mode to use when the result
is not exact. Possible values are <TT class=code>:nearest</TT>,
<TT class=code>:positive-infinity</TT>, <TT class=code>:negative-infinity</TT> and <TT class=code>:zero</TT>.
Initially, the rounding mode is <TT class=code>:nearest</TT>. See the warning in
section <A HREF="#float-rounding-modes">2.1.2.5</A> about use of other rounding
modes.</DD><DT CLASS="dt-list"><TT class=code>:current-exceptions</TT>, <TT class=code>:accrued-exceptions</TT><BR>
</DT><DD CLASS="dd-list"> Lists of
exception keywords used to set the exception flags. The
<TT class=variable>current-exceptions</TT> are the exceptions for the previous
operation, so setting it is not very useful. The
<TT class=variable>accrued-exceptions</TT> are a cumulative record of the exceptions
that occurred since the last time these flags were cleared.
Specifying <TT class=code>()</TT> will clear any accrued exceptions.</DD><DT CLASS="dt-list"><TT class=code>:fast-mode</TT><BR>
</DT><DD CLASS="dd-list"> Set the hardware’s “fast mode” flag, if
any. When set, IEEE conformance or debuggability may be impaired.
Some machines may not have this feature, in which case the value
is always <TT class=code>nil</TT>. Sparc platforms support a fast mode where
denormal numbers are silently truncated to zero.
</DD></DL><P>
If a keyword argument is not supplied, then the associated state is
not changed.</P><TT class=code>get-floating-point-modes</TT><P> returns a list representing the
state of the floating point modes. The list is in the same format
as the keyword arguments to </P><TT class=code>set-floating-point-modes</TT><P>, so
</P><TT class=code>apply</TT><P> could be used with </P><TT class=code>set-floating-point-modes</TT><P> to
restore the modes in effect at the time of the call to
</P><TT class=code>get-floating-point-modes</TT><P>.
</P></BLOCKQUOTE><P>To make handling control of floating-point exceptions, the following
macro is useful.</P><P><BR>
<A NAME="@funs14"></A><A NAME="FN:with-float-traps-masked"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>with-float-traps-masked</TT> traps <TT class=code>&body</TT> body
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>body</TT> is executed with the selected floating-point exceptions
given by <TT class=code>traps</TT> masked out (disabled). <TT class=code>traps</TT> should be
a list of possible floating-point exceptions that should be ignored.
Possible values are <TT class=code>:underflow</TT>, <TT class=code>:overflow</TT>, <TT class=code>:inexact</TT>,
<TT class=code>:invalid</TT> and <TT class=code>:divide-by-zero</TT>.<P>This is equivalent to saving the current traps from
</P><TT class=code>get-floating-point-modes</TT><P>, setting the floating-point modes to
the desired exceptions, running the </P><TT class=code>body</TT><P>, and restoring the
saved floating-point modes. The advantage of this macro is that it
causes less consing to occur.</P><P>Some points about the with-float-traps-masked:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Two approaches are available for detecting FP exceptions:
<OL CLASS="enumerate" type=1><LI CLASS="li-enumerate">
enabling the traps and handling the exceptions
</LI><LI CLASS="li-enumerate">disabling the traps and either handling the return values or
checking the accrued exceptions.
</LI></OL>
Of these the latter is the most portable because on the alpha port
it is not possible to enable some traps at run-time.</LI><LI CLASS="li-itemize">To assist the checking of the exceptions within the body any
accrued exceptions matching the given traps are cleared at the
start of the body when the traps are masked.</LI><LI CLASS="li-itemize">To allow the macros to be nested these accrued exceptions are
restored at the end of the body to their values at the start of
the body. Thus any exceptions that occurred within the body will
not affect the accrued exceptions outside the macro.</LI><LI CLASS="li-itemize">Note that only the given exceptions are restored at the end of
the body so other exception will be visible in the accrued
exceptions outside the body.</LI><LI CLASS="li-itemize">On the x86, setting the accrued exceptions of an unmasked
exception would cause a FP trap. The macro behaviour of restoring
the accrued exceptions ensures than if an accrued exception is
initially not flagged and occurs within the body it will be
restored/cleared at the exit of the body and thus not cause a
trap.</LI><LI CLASS="li-itemize">On the x86, and, perhaps, the hppa, the FP exceptions may be
delivered at the next FP instruction which requires a FP
<TT class=code>wait</TT> instruction (<TT class=code>x86::float-wait</TT>) if using the lisp
conditions to catch trap within a <TT class=code>handler-bind</TT>. The
<TT class=code>handler-bind</TT> macro does the right thing and inserts a
float-wait (at the end of its body on the x86). The masking and
noting of exceptions is also safe here.</LI><LI CLASS="li-itemize">The setting of the FP flags uses the
<TT class=code>(floating-point-modes)</TT> and the <TT class=code>(set
(floating-point-modes)…)</TT> VOPs. These VOPs blindly update
the flags which may include other state. We assume this state
hasn’t changed in between getting and setting the state. For
example, if you used the FP unit between the above calls, the
state may be incorrectly restored! The
<TT class=code>with-float-traps-masked</TT> macro keeps the intervening code to
a minimum and uses only integer operations.
</LI></UL></BLOCKQUOTE><!--TOC subsection Extended Floats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc9">2.1.3</A>  Extended Floats</H3><!--SEC END --><P>
<A NAME="extended-float"></A></P><P>CMUCL also has an extension to support </P><TT class=code>double-double-float</TT><P>
type. This float format provides extended precision of about 31
decimal digits, with the same exponent range as </P><TT class=code>double-float</TT><P>.
It is completely integrated into CMUCL, and can be used just like
any other floating-point object, including arrays, complex
</P><TT class=code>double-double-float</TT><P>’s, and special functions. With appropriate
declarations, no boxing is needed, just like </P><TT class=code>single-float</TT><P> and
</P><TT class=code>double-float</TT><P>. </P><P>The exponent marker for a double-double float number is “W”, so
“1.234w0” is a double-double float number.</P><P>Note that there are a few shortcomings with
</P><TT class=code>double-double-float</TT><P>’s:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
There are no equivalents to <TT class=code>most-positive-double-float</TT>,
<TT class=code>double-float-positive-infinity</TT>, <I>etc</I>. This is because
these are not really well defined for <TT class=code>double-double-float</TT>’s.
</LI><LI CLASS="li-itemize">Underflow and overflow may be prematurely signaled. This is
due to how <TT class=code>double-double-float</TT>’s are implemented.
</LI><LI CLASS="li-itemize">Basic arithmetic operations are inlined, so the code size is
fairly large.
</LI><LI CLASS="li-itemize"><TT class=code>double-double-float</TT> arithmetic is quite a bit slower
than <TT class=code>double-float</TT> since there is no hardware support for
this type.
</LI><LI CLASS="li-itemize">The constant <TT class=code>pi</TT> is still a <TT class=code>double-float</TT> instead
of a <TT class=code>double-double-float</TT>. Use <TT class=code>ext:dd-pi</TT> if you
want a <TT class=code>double-double-float</TT> value for π.
</LI></UL><P><BR>
<BR>
<A NAME="@types8"></A></P><DIV align=left>
[float]<BR>
<TT class=function-name>extensions:double-double-float</TT>
</DIV><BLOCKQUOTE CLASS="quote">
The <TT class=code>double-double-float</TT> type. It is in the <TT class=code>EXTENSIONS</TT>
package.
</BLOCKQUOTE><P><BR>
</P><DIV align=left>
[Constant]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>dd-pi</TT>
</DIV><BLOCKQUOTE CLASS="quote">
A <TT class=code>double-double-float</TT> approximation to π.
</BLOCKQUOTE><!--TOC subsection Characters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc10">2.1.4</A>  Characters</H3><!--SEC END --><P>CMUCL implements characters according to <I>Common Lisp: The Language II</I>. The
main difference from the first version is that character bits and font
have been eliminated, and the names of the types have been changed.
<A NAME="@types9"></A></P><TT class=code>base-character</TT><P> is the new equivalent of the old
<A NAME="@types10"></A></P><TT class=code>string-char</TT><P>. In this implementation, all characters are
base characters (there are no extended characters.) Character codes
range between </P><TT class=code>0</TT><P> and </P><TT class=code>255</TT><P>, using the ASCII encoding.
Table <A HREF="#tbl:chars">2.1</A> tbl:chars shows characters recognized
by CMUCL.</P><BLOCKQUOTE CLASS="table"><DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV>
<DIV CLASS="center">
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD ALIGN=center NOWRAP COLSPAN=2>ASCII</TD><TD ALIGN=center NOWRAP>Lisp</TD><TD ALIGN=center NOWRAP COLSPAN=3> </TD></TR>
<TR><TD ALIGN=center NOWRAP> Name</TD><TD ALIGN=center NOWRAP>Code</TD><TD ALIGN=center NOWRAP>Name</TD><TD ALIGN=center NOWRAP COLSPAN=3>1.5exAlternatives</TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>nul</TT></TD><TD ALIGN=center NOWRAP>0</TD><TD ALIGN=left NOWRAP><TT class=code>#\NULL</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\NUL</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>bel</TT></TD><TD ALIGN=center NOWRAP>7</TD><TD ALIGN=left NOWRAP><TT class=code>#\BELL</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>bs</TT></TD><TD ALIGN=center NOWRAP>8</TD><TD ALIGN=left NOWRAP><TT class=code>#\BACKSPACE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\BS</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>tab</TT></TD><TD ALIGN=center NOWRAP>9</TD><TD ALIGN=left NOWRAP><TT class=code>#\TAB</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>lf</TT></TD><TD ALIGN=center NOWRAP>10</TD><TD ALIGN=left NOWRAP><TT class=code>#\NEWLINE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\NL</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\LINEFEED</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\LF</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>ff</TT></TD><TD ALIGN=center NOWRAP>11</TD><TD ALIGN=left NOWRAP><TT class=code>#\VT</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\PAGE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\FORM</TT></TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>cr</TT></TD><TD ALIGN=center NOWRAP>13</TD><TD ALIGN=left NOWRAP><TT class=code>#\RETURN</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\CR</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>esc</TT></TD><TD ALIGN=center NOWRAP>27</TD><TD ALIGN=left NOWRAP><TT class=code>#\ESCAPE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\ESC</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\ALTMODE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\ALT</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>sp</TT></TD><TD ALIGN=center NOWRAP>32</TD><TD ALIGN=left NOWRAP><TT class=code>#\SPACE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\SP</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>del</TT></TD><TD ALIGN=center NOWRAP>127</TD><TD ALIGN=left NOWRAP><TT class=code>#\DELETE</TT></TD><TD ALIGN=left NOWRAP><TT class=code>#\RUBOUT</TT></TD><TD ALIGN=left NOWRAP> </TD><TD ALIGN=left NOWRAP> </TD></TR>
</TABLE>
<DIV CLASS="caption"><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left>Table 2.1: Characters recognized by CMUCL</TD></TR>
</TABLE></DIV>
<A NAME="tbl:chars"></A>
</DIV>
<DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV></BLOCKQUOTE><!--TOC subsection Array Initialization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc11">2.1.5</A>  Array Initialization</H3><!--SEC END --><P>If no </P><TT class=code>:initial-value</TT><P> is specified, arrays are initialized to zero.</P><!--TOC subsection Hash tables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc12">2.1.6</A>  Hash tables</H3><!--SEC END --><P>The <A NAME="@types11"></A></P><TT class=code>hash-tables</TT><P> defined by Common Lisp have limited utility because they
are limited to testing their keys using the equality predicates
provided by (pre-CLOS) Common Lisp. CMUCL overcomes this limitation
by allowing its users to specify new hash table tests and hashing
methods. The hashing method must also be specified, since the
compiler is unable to determine a good hashing function for an
arbitrary equality (equivalence) predicate.</P><P><BR>
<A NAME="@funs15"></A><A NAME="FN:define-hash-table-test"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>define-hash-table-test</TT> <TT class=variable>hash-table-test-name</TT> <TT class=variable>test-function</TT> <TT class=variable>hash-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The </P><TT class=variable>hash-table-test-name</TT><P> must be a symbol.
The </P><TT class=variable>test-function</TT><P> takes two objects and returns true
iff they are the same. The </P><TT class=variable>hash-function</TT><P> takes one object and
returns two values: the (positive fixnum) hash value and true if
the hashing depends on pointer values and will have to be redone
if the object moves.</P><P>To create a hash-table using this new “test” (really, a
test/hash-function pair), use
</P><TT class=code>(<A NAME="@funs16"></A>make-hash-table :test
<TT class=variable>hash-table-test-name</TT> …)</TT><P>.</P><P>Note that it is the </P><TT class=variable>hash-table-test-name</TT><P> that will be
returned by the function <A NAME="@funs17"></A></P><TT class=code>hash-table-test</TT><P>, when applied to
a hash-table created using this function.</P><P>This function updates <A NAME="@vars1"></A></P><TT class=code>*hash-table-tests*</TT><P>, which is now
internal.
</P></BLOCKQUOTE><P>CMUCL also supports a number of weak hash tables. These weak
tables are created using the </P><TT class=code>:weak-p</TT><P> argument to
</P><TT class=code>make-hash-table</TT><P>. Normally, a reference to an object as either
the key or value of the hash-table will prevent that object from being
garbage-collected. However, in a weak table, if the only reference is
the hash-table, the object can be collected.</P><P>The possible values for </P><TT class=code>:weak-p</TT><P> are listed below. An entry in
the table remains if the condition holds
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:key</TT><BR>
</DT><DD CLASS="dd-list"> The key is referenced elsewhere
</DD><DT CLASS="dt-list"><TT class=code>:value</TT><BR>
</DT><DD CLASS="dd-list"> The value is referenced elsewhere
</DD><DT CLASS="dt-list"><TT class=code>:key-and-value</TT><BR>
</DT><DD CLASS="dd-list"> Both the key and value are referenced elsewhere
</DD><DT CLASS="dt-list"><TT class=code>:key-or-value</TT><BR>
</DT><DD CLASS="dd-list"> Either the key or value are referenced elsewhere
</DD><DT CLASS="dt-list">T<BR>
</DT><DD CLASS="dd-list"> For backward compatibility, this means the same as <TT class=code>:key</TT>.
</DD></DL><P>
If the condition does not hold, the object can be removed from the
hash table. </P><P>Weak hash tables can only be created if the test is </P><TT class=code>eq</TT><P> or
</P><TT class=code>eql</TT><P>. An error is signaled if this is not the case.</P><P><BR>
<A NAME="@funs18"></A><A NAME="FN:make-hash-table"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>make-hash-table</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:test</TT> <TT class=code>:size</TT> <TT class=code>:rehash-size</TT> <TT class=code>:rehash-threshold</TT> <TT class=code>:weak-p</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
Creates a hash-table with the specified properties.
</BLOCKQUOTE><!--TOC section Default Interrupts for Lisp-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc13">2.2</A>  Default Interrupts for Lisp</H2><!--SEC END --><P>CMUCL has several interrupt handlers defined when it starts up,
as follows:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>SIGINT</TT> (<TT class=code>Ctrl-c</TT>)<BR>
</DT><DD CLASS="dd-list"> causes Lisp to enter a break loop.
This puts you into the debugger which allows you to look at the
current state of the computation. If you proceed from the break
loop, the computation will proceed from where it was interrupted.</DD><DT CLASS="dt-list"><TT class=code>SIGQUIT</TT> (<TT class=code>Ctrl-L</TT>)<BR>
</DT><DD CLASS="dd-list"> causes Lisp to do a throw to the
top-level. This causes the current computation to be aborted, and
control returned to the top-level read-eval-print loop.</DD><DT CLASS="dt-list"><TT class=code>SIGTSTP</TT> (<TT class=code>Ctrl-z</TT>)<BR>
</DT><DD CLASS="dd-list"> causes Lisp to suspend execution and
return to the Unix shell. If control is returned to Lisp, the
computation will proceed from where it was interrupted.</DD><DT CLASS="dt-list"><TT class=code>SIGILL</TT>, <TT class=code>SIGBUS</TT>, <TT class=code>SIGSEGV</TT>, and <TT class=code>SIGFPE</TT><BR>
</DT><DD CLASS="dd-list">
cause Lisp to signal an error.
</DD></DL><P>
For keyboard interrupt signals, the standard interrupt character is in
parentheses. Your </P><TT class=filename>.login</TT><P> may set up different interrupt
characters. When a signal is generated, there may be some delay before
it is processed since Lisp cannot be interrupted safely in an arbitrary
place. The computation will continue until a safe point is reached and
then the interrupt will be processed. See section <A HREF="#signal-handlers">6.8.1</A> to define
your own signal handlers.</P><!--TOC section Implementation-Specific Packages-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc14">2.3</A>  Implementation-Specific Packages</H2><!--SEC END --><P>When CMUCL is first started up, the default package is the
</P><TT class=code>common-lisp-user</TT><P> package. The </P><TT class=code>common-lisp-user</TT><P> package
uses the </P><TT class=code>common-lisp</TT><P> and </P><TT class=code>extensions</TT><P> packages. The
symbols exported from these three packages can be referenced without
package qualifiers. This section describes packages which have
exported interfaces that may concern users. The numerous internal
packages which implement parts of the system are not described here.
Package nicknames are in parenthesis after the full name.</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>alien</TT>, <TT class=code>c-call</TT><BR>
</DT><DD CLASS="dd-list"> Export the features of the Alien
foreign data structure facility (see section <A HREF="#aliens">8</A>.)</DD><DT CLASS="dt-list"><TT class=code>pcl</TT><BR>
</DT><DD CLASS="dd-list"> This package contains PCL (Portable CommonLoops),
which is a portable implementation of CLOS (the Common Lisp Object
System.) This implements most (but not all) of the features in the
CLOS chapter of <I>Common Lisp: The Language II</I>.</DD><DT CLASS="dt-list"><TT class=code>clos-mop (mop)</TT><BR>
</DT><DD CLASS="dd-list"> This package contains an implementation
of the CLOS Metaobject Protocol, as per the book <I>The Art of
the Metaobject Protocol</I>.</DD><DT CLASS="dt-list"><TT class=code>debug</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>debug</TT> package contains the command-line
oriented debugger. It exports utility various functions and
switches.</DD><DT CLASS="dt-list"><TT class=code>debug-internals</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>debug-internals</TT> package
exports the primitives used to write debuggers.
See section <A HREF="#debug-internals">11</A>.</DD><DT CLASS="dt-list"><TT class=code>extensions (ext)</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>extensions</TT> packages exports
local extensions to Common Lisp that are documented in this manual.
Examples include the <TT class=code>save-lisp</TT> function and time parsing.</DD><DT CLASS="dt-list"><TT class=code>hemlock (ed)</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>hemlock</TT> package contains all the
code to implement Hemlock commands. The <TT class=code>hemlock</TT> package
currently exports no symbols.</DD><DT CLASS="dt-list"><TT class=code>hemlock-internals (hi)</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>hemlock-internals</TT>
package contains code that implements low level primitives and
exports those symbols used to write Hemlock commands.</DD><DT CLASS="dt-list"><TT class=code>keyword</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>keyword</TT> package contains keywords
(e.g., <TT class=code>:start</TT>). All symbols in the <TT class=code>keyword</TT> package are
exported and evaluate to themselves (i.e., the value of the symbol
is the symbol itself).</DD><DT CLASS="dt-list"><TT class=code>profile</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>profile</TT> package exports a simple
run-time profiling facility (see section <A HREF="#profiling">5.14</A>).</DD><DT CLASS="dt-list"><TT class=code>common-lisp (cl)</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>common-lisp</TT> package
exports all the symbols defined by <I>Common Lisp: The Language</I> and only those symbols.
Strictly portable Lisp code will depend only on the symbols exported
from the <TT class=code>common-lisp</TT> package.</DD><DT CLASS="dt-list"><TT class=code>unix</TT><BR>
</DT><DD CLASS="dd-list"> This package exports system call
interfaces to Unix (see section <A HREF="#unix-interface">6</A>).</DD><DT CLASS="dt-list"><TT class=code>system (sys)</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>system</TT> package contains
functions and information necessary for system interfacing. This
package is used by the <TT class=code>lisp</TT> package and exports several
symbols that are necessary to interface to system code.</DD><DT CLASS="dt-list"><TT class=code>xlib</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>xlib</TT> package contains the Common Lisp X
interface (CLX) to the X11 protocol. This is mostly Lisp code with
a couple of functions that are defined in C to connect to the
server.</DD><DT CLASS="dt-list"><TT class=code>wire</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>wire</TT> package exports a remote procedure
call facility (see section <A HREF="#remote">9</A>).</DD><DT CLASS="dt-list"><TT class=code>stream</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>stream</TT> package exports the public
interface to the simple-streams implementation (see section <A HREF="#simple-streams">2.13</A>).</DD><DT CLASS="dt-list"><TT class=code>xref</TT><BR>
</DT><DD CLASS="dd-list"> The <TT class=code>xref</TT> package exports the public
interface to the cross-referencing utility (see section <A HREF="#xref">12</A>).</DD></DL><!--TOC section Hierarchical Packages-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc15">2.4</A>  Hierarchical Packages</H2><!--SEC END --><P>
<A NAME="@concept1"></A></P><!--TOC subsection Introduction-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc16">2.4.1</A>  Introduction</H3><!--SEC END --><P>The Common Lisp package system, designed and standardized several years
ago, is not hierarchical. Since Common Lisp was standardized, other
languages, including Java and Perl, have evolved namespaces which are
hierarchical. This document describes a hierarchical package naming
scheme for Common Lisp. The scheme was proposed by Franz Inc and
implemented in their <I>Allegro Common Lisp</I> product; a
compatible implementation of the naming scheme is implemented in
CMUCL. This documentation is based on the Franz Inc. documentation,
and is included with permission.</P><P>The goals of hierarchical packages in Common Lisp are:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Reduce collisions with user-defined packages: it is a well-known
problem that package names used by the Lisp implementation and those
defined by users can easily conflict. The intent of hierarchical
packages is to reduce such conflicts to a minimum.</LI><LI CLASS="li-itemize">Improve modularity: the current organization of packages in various
implementations has grown over the years and appears somewhat random.
Organizing future packages into a hierarchy will help make the
intention of the implementation more clear.</LI><LI CLASS="li-itemize">Foster growth in Common Lisp programs, or modules, available to the CL
community: the Perl and Java communities are able to contribute code
to repositories, with minimal fear of collision, because of the
hierarchical nature of the name spaces used by the contributed code.
We want the Lisp community to benefit from shared modules in the same
way.
</LI></UL><P>In a nutshell, a dot (<CODE>.</CODE>) is used to separate levels in package
names, and a leading dot signifies a relative package name. The choice
of dot follows Java. Perl, another language with hierarchical
packages, uses a colon (<CODE>:</CODE>) as a delimiter, but the colon is
already reserved in Common Lisp. Absolute package names require no
modifications to the underlying Common Lisp implementation. Relative
package names require only small and simple modifications.</P><!--TOC subsection Relative Package Names-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc17">2.4.2</A>  Relative Package Names</H3><!--SEC END --><P>Relative package names are needed for the same reason as relative
pathnames, for brevity and to reduce the brittleness of absolute
names. A relative package name is one that begins with one or more
dots. A single dot means the current package, two dots mean the parent
of the current package, and so on.</P><P>Table <A HREF="#tbl:hierarchical-packages">2.2</A> presents a number of examples,
assuming that the packages named <CODE>foo</CODE>, <CODE>foo.bar</CODE>,
<CODE>mypack</CODE>, <CODE>mypack.foo</CODE>, <CODE>mypack.foo.bar</CODE>,
<CODE>mypack.foo.baz</CODE>, <CODE>mypack.bar</CODE>, and <CODE>mypack.bar.baz</CODE>,
have all been created.</P><BLOCKQUOTE CLASS="table"><DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV>
<DIV CLASS="center">
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD ALIGN=left NOWRAP>relative name</TD><TD ALIGN=left NOWRAP>current package</TD><TD ALIGN=left NOWRAP>absolute name of referenced package</TD></TR>
<TR><TD ALIGN=left NOWRAP>foo</TD><TD ALIGN=left NOWRAP>any</TD><TD ALIGN=left NOWRAP>foo</TD></TR>
<TR><TD ALIGN=left NOWRAP>foo.bar</TD><TD ALIGN=left NOWRAP>any</TD><TD ALIGN=left NOWRAP>foo.bar</TD></TR>
<TR><TD ALIGN=left NOWRAP>.foo</TD><TD ALIGN=left NOWRAP>mypack</TD><TD ALIGN=left NOWRAP>mypack.foo</TD></TR>
<TR><TD ALIGN=left NOWRAP> .foo.bar</TD><TD ALIGN=left NOWRAP>mypack</TD><TD ALIGN=left NOWRAP>mypack.foo.bar</TD></TR>
<TR><TD ALIGN=left NOWRAP> ..foo</TD><TD ALIGN=left NOWRAP>mypack.bar</TD><TD ALIGN=left NOWRAP>mypack.foo</TD></TR>
<TR><TD ALIGN=left NOWRAP> ..foo.baz</TD><TD ALIGN=left NOWRAP>mypack.bar</TD><TD ALIGN=left NOWRAP>mypack.foo.baz</TD></TR>
<TR><TD ALIGN=left NOWRAP> ...foo</TD><TD ALIGN=left NOWRAP>mypack.bar.baz</TD><TD ALIGN=left NOWRAP>mypack.foo</TD></TR>
<TR><TD ALIGN=left NOWRAP> .</TD><TD ALIGN=left NOWRAP>mypack.bar.baz</TD><TD ALIGN=left NOWRAP>mypack.bar.baz</TD></TR>
<TR><TD ALIGN=left NOWRAP> ..</TD><TD ALIGN=left NOWRAP>mypack.bar.baz</TD><TD ALIGN=left NOWRAP>mypack.bar</TD></TR>
<TR><TD ALIGN=left NOWRAP> ...</TD><TD ALIGN=left NOWRAP>mypack.bar.baz</TD><TD ALIGN=left NOWRAP>mypack</TD></TR>
</TABLE>
</DIV>
<DIV CLASS="caption"><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left>Table 2.2: Examples of hierarchical packages</TD></TR>
</TABLE></DIV>
<A NAME="tbl:hierarchical-packages"></A>
<DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV></BLOCKQUOTE><P>Additional notes:</P><OL CLASS="enumerate" type=1><LI CLASS="li-enumerate">
All packages in the hierarchy must exist.</LI><LI CLASS="li-enumerate"><B>Warning about nicknames</B>: Unless you provide nicknames for
your hierarchical packages (and we recommend against doing so because
the number gets quite large), you can only use the names supplied. You
cannot mix in nicknames or alternate names. <TT class=code>cl-user</TT>
is nickname of the <TT class=code>common-lisp-user</TT> package.
Consider the following:<PRE CLASS="verbatim"> (defpackage :cl-user.foo)
</PRE><P>When the current package (the value of the variable </P><TT class=code>*package*</TT><P>)
is </P><TT class=code>common-lisp-user</TT><P>, you might expect <CODE>.foo</CODE> to refer to
<CODE>cl-user.foo</CODE>, but it does not. It actually refers to the non-existent
package <CODE>common-lisp-user.foo</CODE>. Note that the purpose of
nicknames is to provide shorter names in place of the longer names
that are designed to be fully descriptive. The hope is that
hierarchical packages makes longer names unnecessary and thus makes
nicknames unnecessary.</P></LI><LI CLASS="li-enumerate">Multiple dots can only appear at the beginning of a package name. For
example, <CODE>foo.bar..baz</CODE> does not mean <CODE>foo.baz</CODE> – it is
invalid. (Of course, it is perfectly legal to name a package
<CODE>foo.bar..baz</CODE>, but <TT class=code>cl:find-package</TT> will not process such
a name to find <CODE>foo.baz</CODE> in the package hierarchy.)
</LI></OL><!--TOC subsection Compatibility with ANSI Common Lisp-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc18">2.4.3</A>  Compatibility with ANSI Common Lisp</H3><!--SEC END --><P>The implementation of hierarchical packages modifies the
</P><TT class=code>cl:find-package</TT><P> function, and provides certain auxiliary
functions, </P><TT class=code>package-parent</TT><P>, </P><TT class=code>package-children</TT><P>, and
</P><TT class=code>relative-package-name-to-package</TT><P>, as described in this section.
The function </P><TT class=code>defpackage</TT><P> itself requires no modification.</P><P>While the changes to </P><TT class=code>cl:find-package</TT><P> are small and described
below, it is an important consideration for authors who would like
their programs to run on a variety of implementations that using
hierarchical packages will work in an implementation without the
modifications discussed in this document. We show why after
describing the changes to </P><TT class=code>cl:find-package</TT><P>.</P><P>Absolute hierarchical package names require no changes in the
underlying Common Lisp implementation.</P><!--TOC subsubsection Changes to <TT class=code>cl:find-package</TT>-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.4.3.1  Changes to <TT class=code>cl:find-package</TT></H4><!--SEC END --><P>Using relative hierarchical package names requires a simple
modification of </P><TT class=code>cl:find-package</TT><P>.</P><P>In ANSI Common Lisp, </P><TT class=code>cl:find-package</TT><P>, if passed a package object,
returns it; if passed a string, </P><TT class=code>cl:find-package</TT><P> looks for a
package with that string as its name or nickname, and returns the
package if it finds one, or returns nil if it does not; if passed a
symbol, the symbol name (a string) is extracted and
</P><TT class=code>cl:find-package</TT><P> proceeds as it does with a string.</P><P>For implementing hierarchical packages, the behavior when the argument
is a package object (return it) does not change. But when the argument
is a string starting with one or more dots not directly naming a
package, </P><TT class=code>cl:find-package</TT><P> will, instead of returning nil, check
whether the string can be resolved as naming a relative package, and
if so, return the associated absolute package object. (If the argument
is a symbol, the symbol name is extracted and </P><TT class=code>cl:find-package</TT><P>
proceeds as it does with a string argument.)</P><P>Note that you should not use leading dots in package names when using
hierarchical packages.</P><!--TOC subsubsection Using Hierarchical Packages without Modifying cl:find-package-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.4.3.2  Using Hierarchical Packages without Modifying cl:find-package</H4><!--SEC END --><P>Even without the modifications to </P><TT class=code>cl:find-package</TT><P>, authors need
not avoid using relative package names, but the ability to reuse
relative package names is restricted. Consider for example a module
<I>foo</I> which is composed of the <CODE>my.foo.bar</CODE> and
<CODE>my.foo.baz</CODE> packages. In the code for each of the these packages
there are relative package references, <CODE>..bar</CODE> and <CODE>..baz</CODE>.</P><P>Implementations that have the new </P><TT class=code>cl:find-package</TT><P> would have
<CODE>:relative-package-names</CODE> on their </P><TT class=code>*features*</TT><P>
list (this is the case of CMUCL releases starting from 18d). Then,
in the <I>foo</I> module, there would be definitions of the
<CODE>my.foo.bar</CODE> and <CODE>my.foo.baz</CODE> packages like so:</P><PRE CLASS="verbatim"> (defpackage :my.foo.bar
#-relative-package-names (:nicknames #:..bar)
...)
(defpackage :my.foo.baz
#-relative-package-names (:nicknames #:..baz)
...)
</PRE><P>Then, in a <CODE>#-relative-package-names</CODE> implementation, the symbol
<CODE>my.foo.bar:blam</CODE> would be visible from <CODE>my.foo.baz</CODE> as
<CODE>..bar:blam</CODE>, just as it would from a
<CODE>#+relative-package-names</CODE> implementation.</P><P>So, even without the implementation of the augmented
</P><TT class=code>cl:find-package</TT><P>, one can still write Common Lisp code that will
work in both types of implementations, but <CODE>..bar</CODE> and
<CODE>..baz</CODE> are now used, so you cannot also have
<CODE>otherpack.foo.bar</CODE> and <CODE>otherpack.foo.baz</CODE> and use
<CODE>..bar</CODE> and <CODE>..baz</CODE> as relative names. (The point of
hierarchical packages, of course, is to allow reusing relative package
names.)</P><!--NAME hierarchical-packages.html-->
<!--TOC section Package Locks-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc19">2.5</A>  Package Locks</H2><!--SEC END --><P>
<A NAME="@concept2"></A></P><P>CMUCL provides two types of package locks, as an extension to the
ANSI Common Lisp standard. The package-lock protects a package from
changes in its structure (the set of exported symbols, its use list,
etc). The package-definition-lock protects the symbols in the package
from being redefined due to the execution of a </P><TT class=code>defun</TT><P>,
</P><TT class=code>defmacro</TT><P>, </P><TT class=code>defstruct</TT><P>, </P><TT class=code>deftype</TT><P> or </P><TT class=code>defclass</TT><P>
form.</P><!--TOC subsection Rationale-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc20">2.5.1</A>  Rationale</H3><!--SEC END --><P>Package locks are an aid to program development, by helping to detect
inadvertent name collisions and function redefinitions. They are
consistent with the principle that a package “belongs to” its
implementor, and that noone other than the package’s developer should
be making or modifying definitions on symbols in that package. Package
locks are compatible with the ANSI Common Lisp standard, which states
that the consequences of redefining functions in the
</P><TT class=code>COMMON-LISP</TT><P> package are undefined.</P><P>Violation of a package lock leads to a continuable error of type
</P><TT class=code>lisp::package-locked-error</TT><P> being signaled. The user may choose
to ignore the lock and proceed, or to abort the computation. Two other
restarts are available, one which disables all locks on all packages,
and one to disable only the package-lock or package-definition-lock
that was tripped.</P><P>The following transcript illustrates the behaviour seen when
attempting to redefine a standard macro in the </P><TT class=code>COMMON-LISP</TT><P>
package, or to redefine a function in one of CMUCL’s
implementation-defined packages:</P><PRE CLASS="verbatim">CL-USER> (defmacro 1+ (x) (* x 2))
Attempt to modify the locked package COMMON-LISP, by defining macro 1+
[Condition of type LISP::PACKAGE-LOCKED-ERROR]
Restarts:
0: [continue ] Ignore the lock and continue
1: [unlock-package] Disable the package's definition-lock then continue
2: [unlock-all ] Unlock all packages, then continue
3: [abort ] Return to Top-Level.
CL-USER> (defun ext:gc () t)
Attempt to modify the locked package EXTENSIONS, by redefining function GC
[Condition of type LISP::PACKAGE-LOCKED-ERROR]
Restarts:
0: [continue ] Ignore the lock and continue
1: [unlock-package] Disable package's definition-lock, then continue
2: [unlock-all ] Disable all package locks, then continue
3: [abort ] Return to Top-Level.
</PRE><P>The following transcript illustrates the behaviour seen when an
attempt to modify the structure of a package is made:</P><PRE CLASS="verbatim">CL-USER> (unexport 'load-foreign :ext)
Attempt to modify the locked package EXTENSIONS, by unexporting symbols LOAD-FOREIGN
[Condition of type lisp::package-locked-error]
Restarts:
0: [continue ] Ignore the lock and continue
1: [unlock-package] Disable package's lock then continue
2: [unlock-all ] Unlock all packages, then continue
3: [abort ] Return to Top-Level.
</PRE><P>The </P><TT class=code>COMMON-LISP</TT><P> package and the CMUCL-specific
implementation packages are locked on startup. Users can lock their
own packages by using the </P><TT class=code>ext:package-lock</TT><P> and
</P><TT class=code>ext:package-definition-lock</TT><P> accessors.</P><!--TOC subsection Disabling package locks-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc21">2.5.2</A>  Disabling package locks</H3><!--SEC END --><P>A package’s locks can be enabled or disabled by using the
</P><TT class=code>ext:package-lock</TT><P> and </P><TT class=code>ext:package-definition-lock</TT><P>
accessors, as follows:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(setf (ext:package-lock (find-package "UNIX")) nil)
(setf (ext:package-definition-lock (find-package "UNIX")) nil)
</PRE></BLOCKQUOTE><P><BR>
<A NAME="@funs19"></A><A NAME="FN:package-lock"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>package-lock</TT> <TT class=variable>package</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This function is an accessor for a package’s structural lock, which
protects it against modifications to its list of exported symbols.
</BLOCKQUOTE><P><BR>
<A NAME="@funs20"></A><A NAME="FN:package-definition-lock"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>package-definition-lock</TT> <TT class=variable>package</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This function is an accessor for a package’s definition-lock, which
protects symbols in that package from redefinition. As well as
protecting the symbol’s fdefinition from change, attempts to change
the symbol’s definition using <TT class=code>defstruct</TT>, <TT class=code>defclass</TT> or
<TT class=code>deftype</TT> will be trapped.
</BLOCKQUOTE><P><BR>
<A NAME="@funs21"></A><A NAME="FN:without-package-locks"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>without-package-locks</TT> <TT class=code>&rest</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This macro can be used to execute forms with all package locks (both
structure and definition locks) disabled.
</BLOCKQUOTE><P><BR>
<A NAME="@funs22"></A><A NAME="FN:unlock-all-packages"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>unlock-all-packages</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This function disables both structure and definition locks on all
currently defined packages. Note that package locks are reset when
CMUCL is restarted, so the effect of this function is limited to
the current session.
</BLOCKQUOTE><!--NAME package-locks.html-->
<!--TOC section The Editor-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc22">2.6</A>  The Editor</H2><!--SEC END --><P>The </P><TT class=code>ed</TT><P> function invokes the Hemlock editor which is described
in <I>Hemlock User’s Manual</I> and <I>Hemlock Command Implementor’s
Manual</I>. Most users at CMU prefer to use Hemlock’s slave Common Lisp
mechanism which provides an interactive buffer for the
</P><TT class=code>read-eval-print</TT><P> loop and editor commands for evaluating and
compiling text from a buffer into the slave Common Lisp. Since the editor
runs in the Common Lisp, using slaves keeps users from trashing their
editor by developing in the same Common Lisp with Hemlock.</P><!--TOC section Garbage Collection-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc23">2.7</A>  Garbage Collection</H2><!--SEC END --><P>CMUCL uses either a stop-and-copy garbage collector or a
generational, mostly copying garbage collector. Which collector is
available depends on the platform and the features of the platform.
The stop-and-copy GC is available on all RISC platforms. The x86
platform supports a conservative stop-and-copy collector, which is now
rarely used, and a generational conservative collector. On the Sparc
platform, both the stop-and-copy GC and the generational GC are
available, but the stop-and-copy GC is deprecated in favor of the
generational GC. </P><P>The generational GC is available if </P><TT class=variable>*features*</TT><P> contains
</P><TT class=code>:gencgc</TT><P>.</P><P>The following functions invoke the garbage collector or control whether
automatic garbage collection is in effect:</P><P><BR>
<A NAME="@funs23"></A><A NAME="FN:-"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>[</TT><TT class=function-name>-</TT> c
</DIV><BLOCKQUOTE CLASS="quote">heney]extensions:gc<TT class=code>&optional</TT> <TT class=variable>verbose-p</TT><P>This function runs the garbage collector. If
</P><TT class=code>ext:*gc-verbose*</TT><P> is non-</P><TT class=code>nil</TT><P>, then it invokes
</P><TT class=code>ext:*gc-notify-before*</TT><P> before GC’ing and
</P><TT class=code>ext:*gc-notify-after*</TT><P> afterwards.</P><TT class=code>verbose-p</TT><P> indicates whether GC statistics are printed or
not. </P></BLOCKQUOTE><P><BR>
<A NAME="@funs24"></A><A NAME="FN:gc-off"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>gc-off</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function inhibits automatic garbage collection. After calling
it, the system will not GC unless you call </P><TT class=code>ext:gc</TT><P> or
</P><TT class=code>ext:gc-on</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs25"></A><A NAME="FN:gc-on"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>gc-on</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function reinstates automatic garbage collection. If the
system would have GC’ed while automatic GC was inhibited, then this
will call </P><TT class=code>ext:gc</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection GC Parameters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc24">2.7.1</A>  GC Parameters</H3><!--SEC END --><P>The following variables control the behavior of the garbage collector:</P><P><BR>
<A NAME="@vars2"></A><A NAME="VR:bytes-consed-between-gcs"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*bytes-consed-between-gcs*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>CMUCL automatically GC’s whenever the amount of memory
allocated to dynamic objects exceeds the value of an internal
variable. After each GC, the system sets this internal variable to
the amount of dynamic space in use at that point plus the value of
the variable </P><TT class=code>ext:*bytes-consed-between-gcs*</TT><P>. The default
value is 2000000.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars3"></A><A NAME="VR:gc-verbose"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*gc-verbose*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable controls whether </P><TT class=code>ext:gc</TT><P> invokes the functions
in </P><TT class=code>ext:*gc-notify-before*</TT><P> and
</P><TT class=code>ext:*gc-notify-after*</TT><P>. If </P><TT class=code>*gc-verbose*</TT><P> is </P><TT class=code>nil</TT><P>,
</P><TT class=code>ext:gc</TT><P> foregoes printing any messages. The default value is
</P><TT class=code>T</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars4"></A><A NAME="VR:gc-notify-before"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*gc-notify-before*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable’s value is a function that should notify the user that
the system is about to GC. It takes one argument, the amount of
dynamic space in use before the GC measured in bytes. The default
value of this variable is a function that prints a message similar
to the following:
</P><PRE CLASS="verbatim"> [GC threshold exceeded with 2,107,124 bytes in use. Commencing GC.]
</PRE></BLOCKQUOTE><P><BR>
<A NAME="@vars5"></A><A NAME="VR:gc-notify-after"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*gc-notify-after*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable’s value is a function that should notify the user when
a GC finishes. The function must take three arguments, the amount
of dynamic spaced retained by the GC, the amount of dynamic space
freed, and the new threshold which is the minimum amount of space in
use before the next GC will occur. All values are byte quantities.
The default value of this variable is a function that prints a
message similar to the following:
</P><PRE CLASS="verbatim"> [GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]
[GC will next occur when at least 2,025,680 bytes are in use.]
</PRE></BLOCKQUOTE><P>Note that a garbage collection will not happen at exactly the new
threshold printed by the default </P><TT class=code>ext:*gc-notify-after*</TT><P>
function. The system periodically checks whether this threshold has
been exceeded, and only then does a garbage collection.</P><P><BR>
<A NAME="@vars6"></A><A NAME="VR:gc-inhibit-hook"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*gc-inhibit-hook*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable’s value is either a function of one argument or </P><TT class=code>nil</TT><P>.
When the system has triggered an automatic GC, if this variable is a
function, then the system calls the function with the amount of
dynamic space currently in use (measured in bytes). If the function
returns </P><TT class=code>nil</TT><P>, then the GC occurs; otherwise, the system inhibits
automatic GC as if you had called </P><TT class=code>ext:gc-off</TT><P>. The writer of
this hook is responsible for knowing when automatic GC has been
turned off and for calling or providing a way to call
</P><TT class=code>ext:gc-on</TT><P>. The default value of this variable is </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars7"></A><A NAME="VR:before-gc-hooks"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*before-gc-hooks*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars8"></A><A NAME="VR:after-gc-hooks"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*after-gc-hooks*</TT>
</DIV><P>These variables’ values are lists of functions to call before or
after any GC occurs. The system provides these purely for
side-effect, and the functions take no arguments.
</P></BLOCKQUOTE><!--TOC subsection Generational GC-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc25">2.7.2</A>  Generational GC</H3><!--SEC END --><P>
Generational GC also supports some additional functions and variables
to control it.</P><P><BR>
<A NAME="@funs26"></A><A NAME="FN:-"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>[</TT><TT class=function-name>-</TT> g
</DIV><BLOCKQUOTE CLASS="quote">encgc]extensions:gc<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:verbose</TT> <TT class=code>:gen</TT> <TT class=code>:full</TT></SPAN><P>This function runs the garbage collector. If
</P><TT class=code>ext:*gc-verbose*</TT><P> is non-</P><TT class=code>nil</TT><P>, then it invokes
</P><TT class=code>ext:*gc-notify-before*</TT><P> before GC’ing and
</P><TT class=code>ext:*gc-notify-after*</TT><P> afterwards.</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>verbose</TT><BR>
</DT><DD CLASS="dd-list"> Print GC statistics if non-<TT class=code>NIL</TT>.
</DD><DT CLASS="dt-list"><TT class=code>gen</TT><BR>
</DT><DD CLASS="dd-list"> The number of generations to be collected.
</DD><DT CLASS="dt-list"><TT class=code>full</TT><BR>
</DT><DD CLASS="dd-list"> If non-<TT class=code>NIL</TT>, a full collection of all
generations is performed.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs27"></A><A NAME="FN:gencgc-stats"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp::</TT><TT class=function-name>gencgc-stats</TT> <TT class=variable>generation</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns statistics about the generation, as multiple values:
<OL CLASS="enumerate" type=1><LI CLASS="li-enumerate">
Bytes allocated in this generation
</LI><LI CLASS="li-enumerate">The GC trigger for this generation. When this many bytes have
been allocated, a GC is started automatically.
</LI><LI CLASS="li-enumerate">The number of bytes consed between GCs.
</LI><LI CLASS="li-enumerate">The number of GCs that have been done on this generation.
This is reset to zero when the generation is raised.
</LI><LI CLASS="li-enumerate">The trigger age, which is the maximum number of GCs to perform
before this generation is raised.
</LI><LI CLASS="li-enumerate">The total number of bytes allocated to this generation.
</LI><LI CLASS="li-enumerate">Average age of the objects in this generations. The average
age is the cumulative bytes allocated divided by current number of
bytes allocated.
</LI></OL>
</BLOCKQUOTE><P><BR>
<A NAME="@funs28"></A><A NAME="FN:set-gc-trigger"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp::</TT><TT class=function-name>set-gc-trigger</TT> <TT class=variable>gen</TT> <TT class=variable>trigger</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Sets the GC trigger value for the specified generation.
</BLOCKQUOTE><P><BR>
<A NAME="@funs29"></A><A NAME="FN:set-trigger-age"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp::</TT><TT class=function-name>set-trigger-age</TT> <TT class=variable>gen</TT> <TT class=variable>trigger-age</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Sets the GC trigger age for the specified generation.
</BLOCKQUOTE><P><BR>
<A NAME="@funs30"></A><A NAME="FN:set-min-mem-age"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp::</TT><TT class=function-name>set-min-mem-age</TT> <TT class=variable>gen</TT> <TT class=variable>min-mem-age</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Sets the minimum average memory age for the specified generation.
If the computed memory age is below this, GC is not performed, which
helps prevent a GC when a large number of new live objects have been
added in which case a GC would usually be a waste of time.
</BLOCKQUOTE><!--TOC subsection Weak Pointers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc26">2.7.3</A>  Weak Pointers</H3><!--SEC END --><P>A weak pointer provides a way to maintain a reference to an object
without preventing an object from being garbage collected. If the
garbage collector discovers that the only pointers to an object are
weak pointers, then it breaks the weak pointers and deallocates the
object.</P><P><BR>
<A NAME="@funs31"></A><A NAME="FN:make-weak-pointer"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>make-weak-pointer</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs32"></A><A NAME="FN:weak-pointer-value"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>weak-pointer-value</TT> <TT class=variable>weak-pointer</TT>
</DIV><TT class=code>make-weak-pointer</TT><P> returns a weak pointer to an object.
</P><TT class=code>weak-pointer-value</TT><P> follows a weak pointer, returning the two
values: the object pointed to (or </P><TT class=code>nil</TT><P> if broken) and a boolean
value which is </P><TT class=code>nil</TT><P> if the pointer has been broken, and true
otherwise.
</P></BLOCKQUOTE><!--TOC subsection Finalization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc27">2.7.4</A>  Finalization</H3><!--SEC END --><P>Finalization provides a “hook” that is triggered when the garbage
collector reclaims an object. It is usually used to recover non-Lisp
resources that were allocated to implement the finalized Lisp object.
For example, when a unix file-descriptor stream is collected,
finalization is used to close the underlying file descriptor.</P><P><BR>
<A NAME="@funs33"></A><A NAME="FN:finalize"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>finalize</TT> <TT class=variable>object</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function registers </P><TT class=variable>object</TT><P> for finalization.
</P><TT class=variable>function</TT><P> is called with no arguments when </P><TT class=variable>object</TT><P> is
reclaimed. Normally </P><TT class=variable>function</TT><P> will be a closure over the
underlying state that needs to be freed, e.g. the unix file
descriptor in the fd-stream case. Note that </P><TT class=variable>function</TT><P> must not
close over </P><TT class=variable>object</TT><P> itself, as this prevents the object from
ever becoming garbage.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs34"></A><A NAME="FN:cancel-finalization"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>cancel-finalization</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function cancel any finalization request for </P><TT class=variable>object</TT><P>.
</P></BLOCKQUOTE><!--TOC section Describe-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc28">2.8</A>  Describe</H2><!--SEC END --><P><BR>
<A NAME="@funs35"></A><A NAME="FN:describe"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>describe</TT> <TT class=variable>object</TT> &optional <TT class=variable>stream</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The </P><TT class=code>describe</TT><P> function prints useful information about
</P><TT class=variable>object</TT><P> on </P><TT class=variable>stream</TT><P>, which defaults to
</P><TT class=code>*standard-output*</TT><P>. For any object, </P><TT class=code>describe</TT><P> will
print out the type. Then it prints other information based on the
type of </P><TT class=variable>object</TT><P>. The types which are presently handled are:</P><DL CLASS="list"><DT CLASS="dt-list">
<A NAME="@types12"></A><TT class=code>hash-table</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=code>describe</TT> prints the number of
entries currently in the hash table and the number of buckets
currently allocated.</DD><DT CLASS="dt-list"><A NAME="@types13"></A><TT class=code>function</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=code>describe</TT> prints a list of the
function’s name (if any) and its formal parameters. If the name
has function documentation, then it will be printed. If the
function is compiled, then the file where it is defined will be
printed as well.</DD><DT CLASS="dt-list"><A NAME="@types14"></A><TT class=code>fixnum</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=code>describe</TT> prints whether the integer
is prime or not.</DD><DT CLASS="dt-list"><A NAME="@types15"></A><TT class=code>symbol</TT><BR>
</DT><DD CLASS="dd-list"> The symbol’s value, properties, and
documentation are printed. If the symbol has a function
definition, then the function is described.
</DD></DL><P>
If there is anything interesting to be said about some component of
the object, describe will invoke itself recursively to describe that
object. The level of recursion is indicated by indenting output.
</P></BLOCKQUOTE><P>A number of switches can be used to control </P><TT class=code>describe</TT><P>’s behavior.</P><P><BR>
<A NAME="@vars9"></A><A NAME="VR:describe-level"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*describe-level*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The maximum level of recursive description allowed. Initially two.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars10"></A><A NAME="VR:describe-indentation"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*describe-indentation*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The number of spaces to indent for each level of recursive
description, initially three.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars11"></A><A NAME="VR:describe-print-level"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*describe-print-level*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars12"></A><A NAME="VR:describe-print-length"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*describe-print-length*</TT>
</DIV><P>The values of </P><TT class=code>*print-level*</TT><P> and </P><TT class=code>*print-length*</TT><P> during
description. Initially two and five.
</P></BLOCKQUOTE><!--TOC section The Inspector-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc29">2.9</A>  The Inspector</H2><!--SEC END --><P>CMUCL has both a graphical inspector that uses the X Window System,
and a simple terminal-based inspector.</P><P><BR>
<A NAME="@funs36"></A><A NAME="FN:inspect"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>inspect</TT> <TT class=code>&optional</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>inspect</TT><P> calls the inspector on the optional argument
</P><TT class=variable>object</TT><P>. If </P><TT class=variable>object</TT><P> is unsupplied, </P><TT class=code>inspect</TT><P>
immediately returns </P><TT class=code>nil</TT><P>. Otherwise, the behavior of inspect
depends on whether Lisp is running under X. When </P><TT class=code>inspect</TT><P> is
eventually exited, it returns some selected Lisp object.
</P></BLOCKQUOTE><!--TOC subsection The Graphical Interface-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc30">2.9.1</A>  The Graphical Interface</H3><!--SEC END --><P>
<A NAME="motif-interface"></A></P><P>CMUCL has an interface to Motif which is functionally similar to
CLM, but works better in CMUCL. This interface is documented in
separate manuals <I>CMUCL Motif Toolkit</I> and <I>Design Notes
on the Motif Toolkit</I>, which are distributed with CMUCL.</P><P>This motif interface has been used to write the inspector and graphical
debugger. There is also a Lisp control panel with a simple file management
facility, apropos and inspector dialogs, and controls for setting global
options. See the </P><TT class=code>interface</TT><P> and </P><TT class=code>toolkit</TT><P> packages.</P><P><BR>
<A NAME="@funs37"></A><A NAME="FN:lisp-control-panel"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>interface:</TT><TT class=function-name>lisp-control-panel</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function creates a control panel for the Lisp process.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars13"></A><A NAME="VR:interface-style"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>interface:</TT><TT class=function-name>*interface-style*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>When the graphical interface is loaded, this variable controls
whether it is used by </P><TT class=code>inspect</TT><P> and the error system. If the
value is </P><TT class=code>:graphics</TT><P> (the default) and the </P><TT class=code>DISPLAY</TT><P>
environment variable is defined, the graphical inspector and
debugger will be invoked by <A NAME="@funs38"></A></P><TT class=code>inspect</TT><P> or when an error is
signalled. Possible values are </P><TT class=code>:graphics</TT><P> and tty. If the
value is </P><TT class=code>:graphics</TT><P>, but there is no X display, then we quietly
use the TTY interface.
</P></BLOCKQUOTE><!--TOC subsection The TTY Inspector-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc31">2.9.2</A>  The TTY Inspector</H3><!--SEC END --><P>If X is unavailable, a terminal inspector is invoked. The TTY inspector
is a crude interface to </P><TT class=code>describe</TT><P> which allows objects to be
traversed and maintains a history. This inspector prints information
about and object and a numbered list of the components of the object.
The command-line based interface is a normal
</P><TT class=code>read</TT><P>–</P><TT class=code>eval</TT><P>–</P><TT class=code>print</TT><P> loop, but an integer </P><TT class=variable>n</TT><P>
descends into the </P><TT class=variable>n</TT><P>’th component of the current object, and
symbols with these special names are interpreted as commands:</P><DL CLASS="list"><DT CLASS="dt-list">
U<BR>
</DT><DD CLASS="dd-list"> Move back to the enclosing object. As you descend into the
components of an object, a stack of all the objects previously seen is
kept. This command pops you up one level of this stack.</DD><DT CLASS="dt-list">Q, E<BR>
</DT><DD CLASS="dd-list"> Return the current object from <TT class=code>inspect</TT>.</DD><DT CLASS="dt-list">R<BR>
</DT><DD CLASS="dd-list"> Recompute object display, and print again. Useful if the
object may have changed.</DD><DT CLASS="dt-list">D<BR>
</DT><DD CLASS="dd-list"> Display again without recomputing.</DD><DT CLASS="dt-list">H, ?<BR>
</DT><DD CLASS="dd-list"> Show help message.
</DD></DL><!--TOC section Load-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc32">2.10</A>  Load</H2><!--SEC END --><P><BR>
<A NAME="@funs39"></A><A NAME="FN:load"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>load</TT> <TT class=variable>filename</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:verbose</TT> <TT class=code>:print</TT> <TT class=code>:if-does-not-exist</TT></SPAN><BR>
<TT class=code>:if-source-newer</TT> <TT class=code>:contents</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>As in standard Common Lisp, this function loads a file containing
source or object code into the running Lisp. Several CMU extensions
have been made to </P><TT class=code>load</TT><P> to conveniently support a variety of
program file organizations. </P><TT class=variable>filename</TT><P> may be a wildcard
pathname such as </P><TT class=filename>*.lisp</TT><P>, in which case all matching files are
loaded.</P><P>If </P><TT class=variable>filename</TT><P> has a </P><TT class=code>pathname-type</TT><P> (or extension), then
that exact file is loaded. If the file has no extension, then this
tells </P><TT class=code>load</TT><P> to use a heuristic to load the “right” file.
The </P><TT class=code>*load-source-types*</TT><P> and </P><TT class=code>*load-object-types*</TT><P>
variables below are used to determine the default source and object
file types. If only the source or the object file exists (but not
both), then that file is quietly loaded. Similarly, if both the
source and object file exist, and the object file is newer than the
source file, then the object file is loaded. The value of the
</P><TT class=variable>if-source-newer</TT><P> argument is used to determine what action to
take when both the source and object files exist, but the object
file is out of date:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:load-object</TT><BR>
</DT><DD CLASS="dd-list"> The object file is loaded even though the
source file is newer.</DD><DT CLASS="dt-list"><TT class=code>:load-source</TT><BR>
</DT><DD CLASS="dd-list"> The source file is loaded instead of the
older object file.</DD><DT CLASS="dt-list"><TT class=code>:compile</TT><BR>
</DT><DD CLASS="dd-list"> The source file is compiled and then the new
object file is loaded.</DD><DT CLASS="dt-list"><TT class=code>:query</TT><BR>
</DT><DD CLASS="dd-list"> The user is asked a yes or no question to
determine whether the source or object file is loaded.
</DD></DL><P>
This argument defaults to the value of
</P><TT class=code>ext:*load-if-source-newer*</TT><P> (initially </P><TT class=code>:load-object</TT><P>.)</P><P>The </P><TT class=variable>contents</TT><P> argument can be used to override the heuristic
(based on the file extension) that normally determines whether to
load the file as a source file or an object file. If non-null, this
argument must be either </P><TT class=code>:source</TT><P> or </P><TT class=code>:binary</TT><P>, which forces
loading in source and binary mode, respectively. You really
shouldn’t ever need to use this argument.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars14"></A><A NAME="VR:load-source-types"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*load-source-types*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars15"></A><A NAME="VR:load-object-types"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*load-object-types*</TT>
</DIV><P>These variables are lists of possible </P><TT class=code>pathname-type</TT><P> values
for source and object files to be passed to </P><TT class=code>load</TT><P>. These
variables are only used when the file passed to </P><TT class=code>load</TT><P> has no
type; in this case, the possible source and object types are used to
default the type in order to determine the names of the source and
object files.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars16"></A><A NAME="VR:load-if-source-newer"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*load-if-source-newer*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable determines the default value of the
</P><TT class=variable>if-source-newer</TT><P> argument to </P><TT class=code>load</TT><P>. Its initial value is
</P><TT class=code>:load-object</TT><P>.
</P></BLOCKQUOTE><!--TOC section The Reader-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc33">2.11</A>  The Reader</H2><!--SEC END --><!--TOC subsection Reader Extensions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc34">2.11.1</A>  Reader Extensions</H3><!--SEC END --><P>
CMUCL supports an ANSI-compatible extension to enable reading of
specialized arrays. Thus
</P><BLOCKQUOTE class=example><PRE>
* (setf *print-readably* nil)
NIL
* (make-array ’(2 2) :element-type ’(signed-byte 8))
#2A((0 0) (0 0))
* (setf *print-readably* t)
T
* (make-array ’(2 2) :element-type ’(signed-byte 8))
#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))
* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))
(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))
* (setf *print-readably* nil)
NIL
* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))
(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))
</PRE></BLOCKQUOTE><!--TOC subsection Reader Parameters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc35">2.11.2</A>  Reader Parameters</H3><!--SEC END --><P><BR>
<A NAME="@vars17"></A><A NAME="VR:ignore-extra-close-parentheses"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*ignore-extra-close-parentheses*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>If this variable is </P><TT class=code>t</TT><P> (the default), then the reader merely
prints a warning when an extra close parenthesis is detected
(instead of signalling an error.)
</P></BLOCKQUOTE><!--TOC section Stream Extensions-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc36">2.12</A>  Stream Extensions</H2><!--SEC END --><P><BR>
<A NAME="@funs40"></A><A NAME="FN:read-n-bytes"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>sys:</TT><TT class=function-name>read-n-bytes</TT> <TT class=variable>stream buffer start numbytes</TT>
<TT class=code>&optional</TT> <TT class=variable>eof-error-p</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>On streams that support it, this function reads multiple bytes of
data into a buffer. The buffer must be a </P><TT class=code>simple-string</TT><P> or
</P><TT class=code>(simple-array (unsigned-byte 8) (*))</TT><P>. The argument
</P><TT class=variable>nbytes</TT><P> specifies the desired number of bytes, and the return
value is the number of bytes actually read.
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
If <TT class=variable>eof-error-p</TT> is true, an <A NAME="@types16"></A><TT class=code>end-of-file</TT>
condition is signalled if end-of-file is encountered before
<TT class=variable>count</TT> bytes have been read.</LI><LI CLASS="li-itemize">If <TT class=variable>eof-error-p</TT> is false, <TT class=code>read-n-bytes reads</TT> as
much data is currently available (up to count bytes.) On pipes or
similar devices, this function returns as soon as any data is
available, even if the amount read is less than <TT class=variable>count</TT> and
eof has not been hit. See also <A NAME="@funs41"></A><TT class=code>make-fd-stream</TT>.
</LI></UL></BLOCKQUOTE><!--TOC section Simple Streams-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc37">2.13</A>  Simple Streams</H2><!--SEC END --><P>
<A NAME="@concept3"></A>
<A NAME="simple-streams"></A></P><P>CMUCL includes a partial implementation of <EM>Simple Streams</EM>, a
protocol that allows user-extensible streams<SUP><A NAME="text1" HREF="#note1">1</A></SUP>. The protocol was proposed
by Franz, Inc. and is intended to replace the <EM>Gray Streams</EM>
method of extending streams. Simple streams are distributed as a
CMUCL subsystem, that can be loaded into the image by saying</P><BLOCKQUOTE CLASS=lisp> <PRE>
(require :simple-streams)
</PRE></BLOCKQUOTE><P>Note that CMUCL’s implementation of simple streams is incomplete, and
in particular is currently missing support for the functions
</P><TT class=code>read-sequence</TT><P> and </P><TT class=code>write-sequence</TT><P>. Please consult the
<I>Allegro Common Lisp</I> documentation for more information on
simple streams.</P><!--NAME simple-streams.html-->
<!--TOC section Running Programs from Lisp-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc38">2.14</A>  Running Programs from Lisp</H2><!--SEC END --><P>It is possible to run programs from Lisp by using the following function.</P><P><BR>
<A NAME="@funs42"></A><A NAME="FN:run-program"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>run-program</TT> <TT class=variable>program</TT> <TT class=variable>args</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:env</TT> <TT class=code>:wait</TT> <TT class=code>:pty</TT> <TT class=code>:input</TT></SPAN><BR>
<TT class=code>:if-input-does-not-exist</TT><BR>
<TT class=code>:output</TT> <TT class=code>:if-output-exists</TT><BR>
<TT class=code>:error</TT> <TT class=code>:if-error-exists</TT><BR>
<TT class=code>:status-hook</TT> <TT class=code>:before-execve</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>run-program</TT><P> runs </P><TT class=variable>program</TT><P> in a child process.
</P><TT class=variable>Program</TT><P> should be a pathname or string naming the program.
</P><TT class=variable>Args</TT><P> should be a list of strings which this passes to
</P><TT class=variable>program</TT><P> as normal Unix parameters. For no arguments, specify
</P><TT class=variable>args</TT><P> as </P><TT class=code>nil</TT><P>. The value returned is either a process
structure or </P><TT class=code>nil</TT><P>. The process interface follows the description of
</P><TT class=code>run-program</TT><P>. If </P><TT class=code>run-program</TT><P> fails to fork the child
process, it returns </P><TT class=code>nil</TT><P>.</P><P>Except for sharing file descriptors as explained in keyword argument
descriptions, </P><TT class=code>run-program</TT><P> closes all file descriptors in the
child process before running the program. When you are done using a
process, call </P><TT class=code>process-close</TT><P> to reclaim system resources. You
only need to do this when you supply </P><TT class=code>:stream</TT><P> for one of
</P><TT class=code>:input</TT><P>, </P><TT class=code>:output</TT><P>, or </P><TT class=code>:error</TT><P>, or you supply </P><TT class=code>:pty</TT><P>
non-</P><TT class=code>nil</TT><P>. You can call </P><TT class=code>process-close</TT><P> regardless of whether
you must to reclaim resources without penalty if you feel safer.</P><TT class=code>run-program</TT><P> accepts the following keyword arguments:</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:env</TT><BR>
</DT><DD CLASS="dd-list"> This is an a-list mapping keywords and
simple-strings. The default is <TT class=code>ext:*environment-list*</TT>. If
<TT class=code>:env</TT> is specified, <TT class=code>run-program</TT> uses the value given
and does not combine the environment passed to Lisp with the one
specified.</DD><DT CLASS="dt-list"><TT class=code>:wait</TT><BR>
</DT><DD CLASS="dd-list"> If non-<TT class=code>nil</TT> (the default), wait until the child
process terminates. If <TT class=code>nil</TT>, continue running Lisp while the
child process runs.</DD><DT CLASS="dt-list"><TT class=code>:pty</TT><BR>
</DT><DD CLASS="dd-list"> This should be one of <TT class=code>t</TT>, <TT class=code>nil</TT>, or a stream. If
specified non-<TT class=code>nil</TT>, the subprocess executes under a Unix PTY.
If specified as a stream, the system collects all output to this
pty and writes it to this stream. If specified as <TT class=code>t</TT>, the
<TT class=code>process-pty</TT> slot contains a stream from which you can read
the program’s output and to which you can write input for the
program. The default is <TT class=code>nil</TT>.</DD><DT CLASS="dt-list"><TT class=code>:input</TT><BR>
</DT><DD CLASS="dd-list"> This specifies how the program gets its input.
If specified as a string, it is the name of a file that contains
input for the child process. <TT class=code>run-program</TT> opens the file as
standard input. If specified as <TT class=code>nil</TT> (the default), then
standard input is the file <TT class=filename>/dev/null</TT>. If specified as
<TT class=code>t</TT>, the program uses the current standard input. This may
cause some confusion if <TT class=code>:wait</TT> is <TT class=code>nil</TT> since two processes
may use the terminal at the same time. If specified as
<TT class=code>:stream</TT>, then the <TT class=code>process-input</TT> slot contains an
output stream. Anything written to this stream goes to the
program as input. <TT class=code>:input</TT> may also be an input stream that
already contains all the input for the process. In this case
<TT class=code>run-program</TT> reads all the input from this stream before
returning, so this cannot be used to interact with the process.</DD><DT CLASS="dt-list"><TT class=code>:if-input-does-not-exist</TT><BR>
</DT><DD CLASS="dd-list"> This specifies what to do if
the input file does not exist. The following values are valid:
<TT class=code>nil</TT> (the default) causes <TT class=code>run-program</TT> to return <TT class=code>nil</TT>
without doing anything; <TT class=code>:create</TT> creates the named file; and
<TT class=code>:error</TT> signals an error.</DD><DT CLASS="dt-list"><TT class=code>:output</TT><BR>
</DT><DD CLASS="dd-list"> This specifies what happens with the program’s
output. If specified as a pathname, it is the name of a file that
contains output the program writes to its standard output. If
specified as <TT class=code>nil</TT> (the default), all output goes to
<TT class=filename>/dev/null</TT>. If specified as <TT class=code>t</TT>, the program writes to
the Lisp process’s standard output. This may cause confusion if
<TT class=code>:wait</TT> is <TT class=code>nil</TT> since two processes may write to the terminal
at the same time. If specified as <TT class=code>:stream</TT>, then the
<TT class=code>process-output</TT> slot contains an input stream from which you
can read the program’s output. <TT class=code>:output</TT> can also be a stream
in which case all output from the process is written to this
stream. </DD><DT CLASS="dt-list"><TT class=code>:if-output-exists</TT><BR>
</DT><DD CLASS="dd-list"> This specifies what to do if the
output file already exists. The following values are valid:
<TT class=code>nil</TT> causes <TT class=code>run-program</TT> to return <TT class=code>nil</TT> without doing
anything; <TT class=code>:error</TT> (the default) signals an error;
<TT class=code>:supersede</TT> overwrites the current file; and <TT class=code>:append</TT>
appends all output to the file.</DD><DT CLASS="dt-list"><TT class=code>:error</TT><BR>
</DT><DD CLASS="dd-list"> This is similar to <TT class=code>:output</TT>, except the file
becomes the program’s standard error. Additionally, <TT class=code>:error</TT>
can be <TT class=code>:output</TT> in which case the program’s error output is
routed to the same place specified for <TT class=code>:output</TT>. If specified
as <TT class=code>:stream</TT>, the <TT class=code>process-error</TT> contains a stream
similar to the <TT class=code>process-output</TT> slot when specifying the
<TT class=code>:output</TT> argument.</DD><DT CLASS="dt-list"><TT class=code>:if-error-exists</TT><BR>
</DT><DD CLASS="dd-list"> This specifies what to do if the error
output file already exists. It accepts the same values as
<TT class=code>:if-output-exists</TT>.</DD><DT CLASS="dt-list"><TT class=code>:status-hook</TT><BR>
</DT><DD CLASS="dd-list"> This specifies a function to call whenever
the process changes status. This is especially useful when
specifying <TT class=code>:wait</TT> as <TT class=code>nil</TT>. The function takes the process as
a required argument.</DD></DL></BLOCKQUOTE><!--TOC subsection Process Accessors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc39">2.14.1</A>  Process Accessors</H3><!--SEC END --><P>The following functions interface the process returned by </P><TT class=code>run-program</TT><P>:</P><P><BR>
<A NAME="@funs43"></A><A NAME="FN:process-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-p</TT> <TT class=variable>thing</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=code>t</TT><P> if </P><TT class=variable>thing</TT><P> is a process.
Otherwise it returns </P><TT class=code>nil</TT></BLOCKQUOTE><P><BR>
<A NAME="@funs44"></A><A NAME="FN:process-pid"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-pid</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the process ID, an integer, for the
</P><TT class=variable>process</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs45"></A><A NAME="FN:process-status"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-status</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the current status of </P><TT class=variable>process</TT><P>, which is
one of </P><TT class=code>:running</TT><P>, </P><TT class=code>:stopped</TT><P>, </P><TT class=code>:exited</TT><P>, or
</P><TT class=code>:signaled</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs46"></A><A NAME="FN:process-exit-code"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-exit-code</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns either the exit code for </P><TT class=variable>process</TT><P>, if it
is </P><TT class=code>:exited</TT><P>, or the termination signal </P><TT class=variable>process</TT><P> if it is
</P><TT class=code>:signaled</TT><P>. The result is undefined for processes that are
still alive.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs47"></A><A NAME="FN:process-core-dumped"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-core-dumped</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=code>t</TT><P> if someone used a Unix signal to
terminate the </P><TT class=variable>process</TT><P> and caused it to dump a Unix core image.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs48"></A><A NAME="FN:process-pty"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-pty</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns either the two-way stream connected to
</P><TT class=variable>process</TT><P>’s Unix PTY connection or </P><TT class=code>nil</TT><P> if there is none.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs49"></A><A NAME="FN:process-input"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-input</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs50"></A><A NAME="FN:process-output"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-output</TT> <TT class=variable>process</TT>
</DIV><P><A NAME="@funs51"></A><A NAME="FN:process-error"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-error</TT> <TT class=variable>process</TT>
</DIV><P>If the corresponding stream was created, these functions return the
input, output or error fd-stream. </P><TT class=code>nil</TT><P> is returned if there
is no stream.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs52"></A><A NAME="FN:process-status-hook"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-status-hook</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the current function to call whenever
</P><TT class=variable>process</TT><P>’s status changes. This function takes the
</P><TT class=variable>process</TT><P> as a required argument. </P><TT class=code>process-status-hook</TT><P> is
</P><TT class=code>setf</TT><P>’able.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs53"></A><A NAME="FN:process-plist"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-plist</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns annotations supplied by users, and it is
</P><TT class=code>setf</TT><P>’able. This is available solely for users to associate
information with </P><TT class=variable>process</TT><P> without having to build a-lists or
hash tables of process structures.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs54"></A><A NAME="FN:process-wait"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-wait</TT>
<TT class=variable>process</TT> <TT class=code>&optional</TT> <TT class=variable>check-for-stopped</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function waits for </P><TT class=variable>process</TT><P> to finish. If
</P><TT class=variable>check-for-stopped</TT><P> is non-</P><TT class=code>nil</TT><P>, this also returns when
</P><TT class=variable>process</TT><P> stops.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs55"></A><A NAME="FN:process-kill"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-kill</TT> <TT class=variable>process</TT> <TT class=variable>signal</TT> <TT class=code>&optional</TT> <TT class=variable>whom</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function sends the Unix </P><TT class=variable>signal</TT><P> to </P><TT class=variable>process</TT><P>.
</P><TT class=variable>Signal</TT><P> should be the number of the signal or a keyword with
the Unix name (for example, </P><TT class=code>:sigsegv</TT><P>). </P><TT class=variable>Whom</TT><P> should be
one of the following:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:pid</TT><BR>
</DT><DD CLASS="dd-list"> This is the default, and it indicates sending the
signal to <TT class=variable>process</TT> only.</DD><DT CLASS="dt-list"><TT class=code>:process-group</TT><BR>
</DT><DD CLASS="dd-list"> This indicates sending the signal to
<TT class=variable>process</TT>’s group.</DD><DT CLASS="dt-list"><TT class=code>:pty-process-group</TT><BR>
</DT><DD CLASS="dd-list"> This indicates sending the signal to
the process group currently in the foreground on the Unix PTY
connected to <TT class=variable>process</TT>. This last option is useful if the
running program is a shell, and you wish to signal the program
running under the shell, not the shell itself. If
<TT class=code>process-pty</TT> of <TT class=variable>process</TT> is <TT class=code>nil</TT>, using this option is
an error.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs56"></A><A NAME="FN:process-alive-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-alive-p</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=code>t</TT><P> if </P><TT class=variable>process</TT><P>’s status is either
</P><TT class=code>:running</TT><P> or </P><TT class=code>:stopped</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs57"></A><A NAME="FN:process-close"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>process-close</TT> <TT class=variable>process</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function closes all the streams associated with </P><TT class=variable>process</TT><P>.
When you are done using a process, call this to reclaim system
resources.
</P></BLOCKQUOTE><!--TOC section Saving a Core Image-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc40">2.15</A>  Saving a Core Image</H2><!--SEC END --><P>A mechanism has been provided to save a running Lisp core image and to
later restore it. This is convenient if you don’t want to load several files
into a Lisp when you first start it up. The main problem is the large
size of each saved Lisp image, typically at least 20 megabytes.</P><P><BR>
<A NAME="@funs58"></A><A NAME="FN:save-lisp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>save-lisp</TT> <TT class=variable>file</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:purify</TT> <TT class=code>:root-structures</TT> <TT class=code>:init-function</TT></SPAN><BR>
<TT class=code>:load-init-file</TT> <TT class=code>:print-herald</TT> <TT class=code>:site-init</TT><BR>
<TT class=code>:process-command-line</TT> <TT class=code>:batch-mode</TT> <TT class=code>:executable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The </P><TT class=code>save-lisp</TT><P> function saves the state of the currently
running Lisp core image in </P><TT class=variable>file</TT><P>. The keyword arguments have
the following meaning:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:purify</TT><BR>
</DT><DD CLASS="dd-list"> If non-<TT class=code>nil</TT> (the default), the core image is
purified before it is saved (see <A NAME="@funs59"></A><TT class=code>purify</TT>.) This reduces
the amount of work the garbage collector must do when the
resulting core image is being run. Also, if more than one Lisp is
running on the same machine, this maximizes the amount of memory
that can be shared between the two processes.</DD><DT CLASS="dt-list"><TT class=code>:root-structures</TT><BR>
</DT><DD CLASS="dd-list">
This should be a list of the main entry points in any newly
loaded systems. This need not be supplied, but locality and/or
GC performance will be better if they are. Meaningless if
<TT class=code>:purify</TT> is <TT class=code>nil</TT>. See <A NAME="@funs60"></A><TT class=code>purify</TT>.</DD><DT CLASS="dt-list"><TT class=code>:init-function</TT><BR>
</DT><DD CLASS="dd-list"> This is the function that starts running
when the created core file is resumed. The default function
simply invokes the top level read-eval-print loop. If the
function returns the lisp will exit.</DD><DT CLASS="dt-list"><TT class=code>:load-init-file</TT><BR>
</DT><DD CLASS="dd-list"> If non-NIL, then load an init file;
either the one specified on the command line or
“<TT class=filename>init.</TT><TT class=variable>fasl-type</TT>”, or, if
“<TT class=filename>init.</TT><TT class=variable>fasl-type</TT>” does not exist,
<TT class=code>init.lisp</TT> from the user’s home directory. If the init file
is found, it is loaded into the resumed core file before the
read-eval-print loop is entered.</DD><DT CLASS="dt-list"><TT class=code>:site-init</TT><BR>
</DT><DD CLASS="dd-list"> If non-NIL, the name of the site init file to
quietly load. The default is <TT class=filename>library:site-init</TT>. No error
is signalled if the file does not exist.</DD><DT CLASS="dt-list"><TT class=code>:print-herald</TT><BR>
</DT><DD CLASS="dd-list"> If non-NIL (the default), then print out
the standard Lisp herald when starting.</DD><DT CLASS="dt-list"><TT class=code>:process-command-line</TT><BR>
</DT><DD CLASS="dd-list"> If non-NIL (the default),
processes the command line switches and performs the appropriate
actions.</DD><DT CLASS="dt-list"><TT class=code>:batch-mode</TT><BR>
</DT><DD CLASS="dd-list"> If NIL (the default), then the presence of
the -batch command-line switch will invoke batch-mode processing
upon resuming the saved core. If non-NIL, the produced core will
always be in batch-mode, regardless of any command-line switches.</DD><DT CLASS="dt-list"><TT class=code>:executable</TT><BR>
</DT><DD CLASS="dd-list"> If non-NIL, an executable image is created.
Normally, CMUCL consists of the C runtime along with a core
file image. When <TT class=code>:executable</TT> is non-NIL, the core file is
incorporated into the C runtime, so one (large) executable is
created instead of a new separate core file.<P>This feature is only available on some platforms, as indicated by
having the feature </P><TT class=code>:executable</TT><P>. Currently only x86 ports and
the solaris/sparc port have this feature.
</P></DD></DL></BLOCKQUOTE><P>To resume a saved file, type:
</P><BLOCKQUOTE class=example><PRE>
lisp -core file
</PRE></BLOCKQUOTE><P>
However, if the </P><TT class=code>:executable</TT><P> option was specified, you can just
use
</P><BLOCKQUOTE class=example><PRE>
file
</PRE></BLOCKQUOTE><P>
since the executable contains the core file within the executable.</P><P><BR>
<A NAME="@funs61"></A><A NAME="FN:purify"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>purify</TT>
<TT class=variable>file</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:root-structures</TT> <TT class=code>:environment-name</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function optimizes garbage collection by moving all currently
live objects into non-collected storage. Once statically allocated,
the objects can never be reclaimed, even if all pointers to them are
dropped. This function should generally be called after a large
system has been loaded and initialized.</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:root-structures</TT><BR>
</DT><DD CLASS="dd-list"> is an optional list of objects which
should be copied first to maximize locality. This should be a
list of the main entry points for the resulting core image. The
purification process tries to localize symbols, functions, etc.,
in the core image so that paging performance is improved. The
default value is NIL which means that Lisp objects will still be
localized but probably not as optimally as they could be.<TT class=variable>defstruct</TT><P> structures defined with the </P><TT class=code>(:pure t)</TT><P>
option are moved into read-only storage, further reducing GC cost.
List and vector slots of pure structures are also moved into
read-only storage.</P></DD><DT CLASS="dt-list"><TT class=code>:environment-name</TT><BR>
</DT><DD CLASS="dd-list"> is gratuitous documentation for the
compacted version of the current global environment (as seen in
<TT class=code>c::*info-environment*</TT>.) If <TT class=code>nil</TT> is supplied, then
environment compaction is inhibited.
</DD></DL></BLOCKQUOTE><!--TOC section Pathnames-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc41">2.16</A>  Pathnames</H2><!--SEC END --><P>In Common Lisp quite a few aspects of <A NAME="@types17"></A></P><TT class=code>pathname</TT><P> semantics are left to
the implementation. </P><!--TOC subsection Unix Pathnames-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc42">2.16.1</A>  Unix Pathnames</H3><!--SEC END --><P>
<A NAME="@concept4"></A></P><P>Unix pathnames are always parsed with a </P><TT class=code>unix-host</TT><P> object as the host and
</P><TT class=code>nil</TT><P> as the device. The last two dots (</P><TT class=code>.</TT><P>) in the namestring mark
the type and version, however if the first character is a dot, it is considered
part of the name. If the last character is a dot, then the pathname has the
empty-string as its type. The type defaults to </P><TT class=code>nil</TT><P> and the version
defaults to </P><TT class=code>:newest</TT><P>.</P><BLOCKQUOTE class=example><PRE>
(defun parse (x)
(values (pathname-name x) (pathname-type x) (pathname-version x)))
(parse "foo") ==> "foo", NIL, NIL
(parse "foo.bar") ==> "foo", "bar", NIL
(parse ".foo") ==> ".foo", NIL, NIL
(parse ".foo.bar") ==> ".foo", "bar", NIL
(parse "..") ==> NIL, NIL, NIL
(parse "foo.") ==> "foo", "", NIL
(parse "foo.bar.~1~") ==> "foo", "bar", 1
(parse "foo.bar.baz") ==> "foo.bar", "baz", NIL
</PRE></BLOCKQUOTE><P>The directory of pathnames beginning with a slash (or a search-list,
see section <A HREF="#search-lists">2.16.4</A>) is starts </P><TT class=code>:absolute</TT><P>, others start with
</P><TT class=code>:relative</TT><P>. The </P><TT class=code>..</TT><P> directory is parsed as </P><TT class=code>:up</TT><P>; there is no
namestring for </P><TT class=code>:back</TT><P>:</P><BLOCKQUOTE class=example><PRE>
(pathname-directory "/usr/foo/bar.baz") ==> (:ABSOLUTE "usr" "foo")
(pathname-directory "../foo/bar.baz") ==> (:RELATIVE :UP "foo")
</PRE></BLOCKQUOTE><!--TOC subsection Wildcard Pathnames-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc43">2.16.2</A>  Wildcard Pathnames</H3><!--SEC END --><P>Wildcards are supported in Unix pathnames. If ‘</P><TT class=code>*</TT><P>’ is specified for a
part of a pathname, that is parsed as </P><TT class=code>:wild</TT><P>. ‘</P><TT class=code>**</TT><P>’ can be used as a
directory name to indicate </P><TT class=code>:wild-inferiors</TT><P>. Filesystem operations
treat </P><TT class=code>:wild-inferiors</TT><P> the same as </P><TT class=code>:wild</TT><P>, but pathname pattern
matching (e.g. for logical pathname translation, see section <A HREF="#logical-pathnames">2.16.3</A>)
matches any number of directory parts with ‘</P><TT class=code>**</TT><P>’ (see
see section <A HREF="#wildcard-matching">2.17.1</A>.)</P><P>‘</P><TT class=code>*</TT><P>’ embedded in a pathname part matches any number of characters.
Similarly, ‘</P><TT class=code>?</TT><P>’ matches exactly one character, and ‘</P><TT class=code>[a,b]</TT><P>’
matches the characters ‘</P><TT class=code>a</TT><P>’ or ‘</P><TT class=code>b</TT><P>’. These pathname parts are
parsed as </P><TT class=code>pattern</TT><P> objects.</P><P>Backslash can be used as an escape character in namestring
parsing to prevent the next character from being treated as a wildcard. Note
that if typed in a string constant, the backslash must be doubled, since the
string reader also uses backslash as a quote:</P><BLOCKQUOTE class=example><PRE>
(pathname-name "foo\\*bar") => "foo*bar"
</PRE></BLOCKQUOTE><!--TOC subsection Logical Pathnames-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc44">2.16.3</A>  Logical Pathnames</H3><!--SEC END --><P>
<A NAME="@concept5"></A>
<A NAME="logical-pathnames"></A></P><P>If a namestring begins with the name of a defined logical pathname
host followed by a colon, then it will be parsed as a logical
pathname. Both ‘</P><TT class=code>*</TT><P>’ and ‘</P><TT class=code>**</TT><P>’ wildcards are implemented.
<A NAME="@funs62"></A></P><TT class=code>load-logical-pathname-translations</TT><P> on </P><TT class=variable>name</TT><P> looks for a
logical host definition file in
</P><TT class=filename>library:<TT class=variable>name</TT>.translations</TT><P>. Note that </P><TT class=filename>library:</TT><P>
designates the search list (see section <A HREF="#search-lists">2.16.4</A>) initialized to the
CMUCL </P><TT class=filename>lib/</TT><P> directory, not a logical pathname. The format of
the file is a single list of two-lists of the from and to patterns:</P><BLOCKQUOTE class=example><PRE>
(("foo;*.text" "/usr/ram/foo/*.txt")
("foo;*.lisp" "/usr/ram/foo/*.l"))
</PRE></BLOCKQUOTE><!--TOC subsection Search Lists-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc45">2.16.4</A>  Search Lists</H3><!--SEC END --><P>
<A NAME="@concept6"></A>
<A NAME="search-lists"></A></P><P>Search lists are an extension to Common Lisp pathnames. They serve a function
somewhat similar to Common Lisp logical pathnames, but work more like Unix PATH
variables. Search lists are used for two purposes:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
They provide a convenient shorthand for commonly used directory names,
and</LI><LI CLASS="li-itemize">They allow the abstract (directory structure independent) specification
of file locations in program pathname constants (similar to logical pathnames.)
</LI></UL><P>
Each search list has an associated list of directories (represented as
pathnames with no name or type component.) The namestring for any relative
pathname may be prefixed with “</P><TT class=variable>slist</TT><TT class=code>:</TT><P>”, indicating that the
pathname is relative to the search list </P><TT class=variable>slist</TT><P> (instead of to the current
working directory.) Once qualified with a search list, the pathname is no
longer considered to be relative.</P><P>When a search list qualified pathname is passed to a file-system operation such
as </P><TT class=code>open</TT><P>, </P><TT class=code>load</TT><P> or </P><TT class=code>truename</TT><P>, each directory in the search
list is successively used as the root of the pathname until the file is
located. When a file is written to a search list directory, the file is always
written to the first directory in the list.</P><!--TOC subsection Predefined Search-Lists-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc46">2.16.5</A>  Predefined Search-Lists</H3><!--SEC END --><P>These search-lists are initialized from the Unix environment or when Lisp was
built:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>default:</TT><BR>
</DT><DD CLASS="dd-list"> The current directory at startup.</DD><DT CLASS="dt-list"><TT class=code>home:</TT><BR>
</DT><DD CLASS="dd-list"> The user’s home directory.</DD><DT CLASS="dt-list"><TT class=code>library:</TT><BR>
</DT><DD CLASS="dd-list"> The CMUCL <TT class=filename>lib/</TT> directory (<TT class=code>CMUCLLIB</TT> environment
variable).</DD><DT CLASS="dt-list"><TT class=code>path:</TT><BR>
</DT><DD CLASS="dd-list"> The Unix command path (<TT class=code>PATH</TT> environment variable).
</DD><DT CLASS="dt-list"><TT class=code>ld-library-path:</TT><BR>
</DT><DD CLASS="dd-list"> The Unix <TT class=code>LD_LIBRARY_PATH</TT>
environment variable.
</DD><DT CLASS="dt-list"><TT class=code>target:</TT><BR>
</DT><DD CLASS="dd-list"> The root of the tree where CMUCL was compiled.
</DD><DT CLASS="dt-list"><TT class=code>modules:</TT><BR>
</DT><DD CLASS="dd-list"> The list of directories where CMUCL’s
modules can be found.
</DD><DT CLASS="dt-list"><TT class=code>ext-formats:</TT><BR>
</DT><DD CLASS="dd-list"> The list of directories where CMUCL can
find the implementation of external formats.
</DD></DL><P>
It can be useful to redefine these search-lists, for example, </P><TT class=filename>library:</TT><P>
can be augmented to allow logical pathname translations to be located, and
</P><TT class=filename>target:</TT><P> can be redefined to point to where CMUCL system sources are
locally installed. </P><!--TOC subsection Search-List Operations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc47">2.16.6</A>  Search-List Operations</H3><!--SEC END --><P>These operations define and access search-list definitions. A search-list name
may be parsed into a pathname before the search-list is actually defined, but
the search-list must be defined before it can actually be used in a filesystem
operation.</P><P><BR>
<A NAME="@funs63"></A><A NAME="FN:search-list"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>search-list</TT> <TT class=variable>name</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the list of directories associated with the
search list </P><TT class=variable>name</TT><P>. If </P><TT class=variable>name</TT><P> is not a defined search list,
then an error is signaled. When set with </P><TT class=code>setf</TT><P>, the list of
directories is changed to the new value. If the new value is just a
namestring or pathname, then it is interpreted as a one-element
list. Note that (unlike Unix pathnames), search list names are
case-insensitive.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs64"></A><A NAME="FN:search-list-defined-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>search-list-defined-p</TT> <TT class=variable>name</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs65"></A><A NAME="FN:clear-search-list"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>clear-search-list</TT> <TT class=variable>name</TT>
</DIV><TT class=code>search-list-defined-p</TT><P> returns </P><TT class=code>t</TT><P> if </P><TT class=variable>name</TT><P> is a
defined search list name, </P><TT class=code>nil</TT><P> otherwise.
</P><TT class=code>clear-search-list</TT><P> make the search list </P><TT class=variable>name</TT><P> undefined.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs66"></A><A NAME="FN:enumerate-search-list"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>enumerate-search-list</TT> (<TT class=variable>var</TT> <TT class=variable>pathname</TT> <TT class=code>{result}</TT>) <TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro provides an interface to search list resolution. The
body </P><TT class=variable>forms</TT><P> are executed with </P><TT class=variable>var</TT><P> bound to each
successive possible expansion for </P><TT class=variable>name</TT><P>. If </P><TT class=variable>name</TT><P> does
not contain a search-list, then the body is executed exactly once.
Everything is wrapped in a block named </P><TT class=code>nil</TT><P>, so </P><TT class=code>return</TT><P> can be
used to terminate early. The </P><TT class=variable>result</TT><P> form (default </P><TT class=code>nil</TT><P>) is
evaluated to determine the result of the iteration.
</P></BLOCKQUOTE><!--TOC subsection Search List Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc48">2.16.7</A>  Search List Example</H3><!--SEC END --><P>The search list </P><TT class=code>code:</TT><P> can be defined as follows:
</P><BLOCKQUOTE class=example><PRE>
(setf (ext:search-list "code:") ’("/usr/lisp/code/"))
</PRE></BLOCKQUOTE><P>
It is now possible to use </P><TT class=code>code:</TT><P> as an abbreviation for the directory
</P><TT class=filename>/usr/lisp/code/</TT><P> in all file operations. For example, you can now specify
</P><TT class=code>code:eval.lisp</TT><P> to refer to the file </P><TT class=filename>/usr/lisp/code/eval.lisp</TT><P>.</P><P>To obtain the value of a search-list name, use the function search-list
as follows:
</P><BLOCKQUOTE class=example><PRE>
(ext:search-list <TT class=variable>name</TT>)
</PRE></BLOCKQUOTE><P>
Where </P><TT class=variable>name</TT><P> is the name of a search list as described above. For example,
calling </P><TT class=code>ext:search-list</TT><P> on </P><TT class=code>code:</TT><P> as follows:
</P><BLOCKQUOTE class=example><PRE>
(ext:search-list "code:")
</PRE></BLOCKQUOTE><P>
returns the list </P><TT class=code>("/usr/lisp/code/")</TT><P>.</P><!--TOC section Filesystem Operations-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc49">2.17</A>  Filesystem Operations</H2><!--SEC END --><P>CMUCL provides a number of extensions and optional features beyond those
required by the Common Lisp specification.</P><!--TOC subsection Wildcard Matching-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc50">2.17.1</A>  Wildcard Matching</H3><!--SEC END --><P>
<A NAME="wildcard-matching"></A></P><P>Unix filesystem operations such as </P><TT class=code>open</TT><P> will accept wildcard pathnames
that match a single file (of course, </P><TT class=code>directory</TT><P> allows any number of
matches.) Filesystem operations treat </P><TT class=code>:wild-inferiors</TT><P> the same as
</P><TT class=code>:wild</TT><P>.</P><P><BR>
<A NAME="@funs67"></A><A NAME="FN:directory"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>directory</TT> <TT class=variable>wildname</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:all</TT> <TT class=code>:check-for-subdirs</TT></SPAN>
<TT class=code>:truenamep</TT><BR>
<TT class=code>:follow-links</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The keyword arguments to this Common Lisp function are a CMUCL extension.
The arguments (all default to </P><TT class=code>t</TT><P>) have the following
functions:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:all</TT><BR>
</DT><DD CLASS="dd-list"> Include files beginning with dot such as
<TT class=filename>.login</TT>, similar to “<TT class=code>ls -a</TT>”.</DD><DT CLASS="dt-list"><TT class=code>:check-for-subdirs</TT><BR>
</DT><DD CLASS="dd-list"> Test whether files are directories,
similar to “<TT class=code>ls -F</TT>”.</DD><DT CLASS="dt-list"><TT class=code>:truenamep</TT><BR>
</DT><DD CLASS="dd-list"> Call <TT class=code>truename</TT> on each file, which
expands out all symbolic links. Note that this option can easily
result in pathnames being returned which have a different
directory from the one in the <TT class=variable>wildname</TT> argument.</DD><DT CLASS="dt-list"><TT class=code>:follow-links</TT><BR>
</DT><DD CLASS="dd-list"> Follow symbolic links when searching for
matching directories.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs68"></A><A NAME="FN:print-directory"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>print-directory</TT> <TT class=variable>wildname</TT>
<TT class=code>&optional</TT> <TT class=variable>stream</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:all</TT> <TT class=code>:verbose</TT></SPAN><BR>
<TT class=code>:return-list</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Print a directory of </P><TT class=variable>wildname</TT><P> listing to </P><TT class=variable>stream</TT><P> (default
</P><TT class=code>*standard-output*</TT><P>.) </P><TT class=code>:all</TT><P> and </P><TT class=code>:verbose</TT><P> both default
to </P><TT class=code>nil</TT><P> and correspond to the “</P><TT class=code>-a</TT><P>” and “</P><TT class=code>-l</TT><P>”
options of </P><TT class=filename>ls</TT><P>. Normally this function returns </P><TT class=code>nil</TT><P>, but
if </P><TT class=code>:return-list</TT><P> is true, a list of the matched pathnames are
returned.
</P></BLOCKQUOTE><!--TOC subsection File Name Completion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc51">2.17.2</A>  File Name Completion</H3><!--SEC END --><P><BR>
<A NAME="@funs69"></A><A NAME="FN:complete-file"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>complete-file</TT> <TT class=variable>pathname</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:defaults</TT> <TT class=code>:ignore-types</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Attempt to complete a file name to the longest unambiguous prefix.
If supplied, directory from </P><TT class=code>:defaults</TT><P> is used as the “working
directory” when doing completion. </P><TT class=code>:ignore-types</TT><P> is a list of
strings of the pathname types (a.k.a. extensions) that should be
disregarded as possible matches (binary file names, etc.)
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs70"></A><A NAME="FN:ambiguous-files"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>ambiguous-files</TT> <TT class=variable>pathname</TT>
<TT class=code>&optional</TT> <TT class=variable>defaults</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Return a list of pathnames for all the possible completions of
</P><TT class=variable>pathname</TT><P> with respect to </P><TT class=variable>defaults</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Miscellaneous Filesystem Operations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc52">2.17.3</A>  Miscellaneous Filesystem Operations</H3><!--SEC END --><P><BR>
<A NAME="@funs71"></A><A NAME="FN:default-directory"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>default-directory</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Return the current working directory as a pathname. If set with
</P><TT class=code>setf</TT><P>, set the working directory.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs72"></A><A NAME="FN:file-writable"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>file-writable</TT> <TT class=variable>name</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function accepts a pathname and returns </P><TT class=code>t</TT><P> if the current
process can write it, and </P><TT class=code>nil</TT><P> otherwise.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs73"></A><A NAME="FN:unix-namestring"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>unix-namestring</TT> <TT class=variable>pathname</TT>
<TT class=code>&optional</TT> <TT class=variable>for-input</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function converts </P><TT class=variable>pathname</TT><P> into a string that can be used
with UNIX system calls. Search-lists and wildcards are expanded.
</P><TT class=variable>for-input</TT><P> controls the treatment of search-lists: when true
(the default) and the file exists anywhere on the search-list, then
that absolute pathname is returned; otherwise the first element of
the search-list is used as the directory.
</P></BLOCKQUOTE><!--TOC section Time Parsing and Formatting-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc53">2.18</A>  Time Parsing and Formatting</H2><!--SEC END --><P><A NAME="@concept7"></A> <A NAME="@concept8"></A>
Functions are provided to allow parsing strings containing time information
and printing time in various formats are available.</P><P><BR>
<A NAME="@funs74"></A><A NAME="FN:parse-time"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>parse-time</TT> <TT class=variable>time-string</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:error-on-mismatch</TT> <TT class=code>:default-seconds</TT></SPAN><BR>
<TT class=code>:default-minutes</TT> <TT class=code>:default-hours</TT><BR>
<TT class=code>:default-day</TT> <TT class=code>:default-month</TT><BR>
<TT class=code>:default-year</TT> <TT class=code>:default-zone</TT><BR>
<TT class=code>:default-weekday</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>parse-time</TT><P> accepts a string containing a time (e.g.,
"</P><TT class=code>Jan 12, 1952</TT><P>") and returns the universal time if it is
successful. If it is unsuccessful and the keyword argument
</P><TT class=code>:error-on-mismatch</TT><P> is non-</P><TT class=code>nil</TT><P>, it signals an error.
Otherwise it returns </P><TT class=code>nil</TT><P>. The other keyword arguments have the
following meaning:</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:default-seconds</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the
seconds value if one is not provided by <TT class=variable>time-string</TT>. The
default value is 0.</DD><DT CLASS="dt-list"><TT class=code>:default-minutes</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the
minutes value if one is not provided by <TT class=variable>time-string</TT>. The
default value is 0.</DD><DT CLASS="dt-list"><TT class=code>:default-hours</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the hours
value if one is not provided by <TT class=variable>time-string</TT>. The default
value is 0.</DD><DT CLASS="dt-list"><TT class=code>:default-day</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the day
value if one is not provided by <TT class=variable>time-string</TT>. The default
value is the current day.</DD><DT CLASS="dt-list"><TT class=code>:default-month</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the month
value if one is not provided by <TT class=variable>time-string</TT>. The default
value is the current month.</DD><DT CLASS="dt-list"><TT class=code>:default-year</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the year
value if one is not provided by <TT class=variable>time-string</TT>. The default
value is the current year.</DD><DT CLASS="dt-list"><TT class=code>:default-zone</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the time
zone value if one is not provided by <TT class=variable>time-string</TT>. The
default value is the current time zone.</DD><DT CLASS="dt-list"><TT class=code>:default-weekday</TT><BR>
</DT><DD CLASS="dd-list"> specifies the default value for the day
of the week if one is not provided by <TT class=variable>time-string</TT>. The
default value is the current day of the week.
</DD></DL><P>
Any of the above keywords can be given the value </P><TT class=code>:current</TT><P> which
means to use the current value as determined by a call to the
operating system.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs75"></A><A NAME="FN:format-universal-time"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>format-universal-time</TT>
<TT class=variable>dest</TT> <TT class=variable>universal-time</TT><BR>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:timezone</TT></SPAN><BR>
<TT class=code>:style</TT> <TT class=code>:date-first</TT><BR>
<TT class=code>:print-seconds</TT> <TT class=code>:print-meridian</TT><BR>
<TT class=code>:print-timezone</TT> <TT class=code>:print-weekday</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs76"></A><A NAME="FN:format-decoded-time"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>format-decoded-time</TT>
<TT class=variable>dest</TT> <TT class=variable>seconds</TT> <TT class=variable>minutes</TT> <TT class=variable>hours</TT> <TT class=variable>day</TT> <TT class=variable>month</TT> <TT class=variable>year</TT><BR>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:timezone</TT></SPAN><BR>
<TT class=code>:style</TT> <TT class=code>:date-first</TT><BR>
<TT class=code>:print-seconds</TT> <TT class=code>:print-meridian</TT><BR>
<TT class=code>:print-timezone</TT> <TT class=code>:print-weekday</TT>
</DIV><TT class=code>format-universal-time</TT><P> formats the time specified by
</P><TT class=variable>universal-time</TT><P>. </P><TT class=code>format-decoded-time</TT><P> formats the time
specified by </P><TT class=variable>seconds</TT><P>, </P><TT class=variable>minutes</TT><P>, </P><TT class=variable>hours</TT><P>, </P><TT class=variable>day</TT><P>,
</P><TT class=variable>month</TT><P>, and </P><TT class=variable>year</TT><P>. </P><TT class=variable>Dest</TT><P> is any destination
accepted by the </P><TT class=code>format</TT><P> function. The keyword arguments have
the following meaning:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:timezone</TT><BR>
</DT><DD CLASS="dd-list"> is an integer specifying the hours west of
Greenwich. <TT class=code>:timezone</TT> defaults to the current time zone.</DD><DT CLASS="dt-list"><TT class=code>:style</TT><BR>
</DT><DD CLASS="dd-list"> specifies the style to use in formatting the
time. The legal values are:
<DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:short</TT><BR>
</DT><DD CLASS="dd-list"> specifies to use a numeric date.</DD><DT CLASS="dt-list"><TT class=code>:long</TT><BR>
</DT><DD CLASS="dd-list"> specifies to format months and weekdays as
words instead of numbers.</DD><DT CLASS="dt-list"><TT class=code>:abbreviated</TT><BR>
</DT><DD CLASS="dd-list"> is similar to long except the words are
abbreviated.</DD><DT CLASS="dt-list"><TT class=code>:government</TT><BR>
</DT><DD CLASS="dd-list"> is similar to abbreviated, except the
date is of the form “day month year” instead of “month day,
year”.
</DD></DL></DD><DT CLASS="dt-list"><TT class=code>:date-first</TT><BR>
</DT><DD CLASS="dd-list"> if non-<TT class=code>nil</TT> (default) will place the
date first. Otherwise, the time is placed first.</DD><DT CLASS="dt-list"><TT class=code>:print-seconds</TT><BR>
</DT><DD CLASS="dd-list"> if non-<TT class=code>nil</TT> (default) will format
the seconds as part of the time. Otherwise, the seconds will be
omitted.</DD><DT CLASS="dt-list"><TT class=code>:print-meridian</TT><BR>
</DT><DD CLASS="dd-list"> if non-<TT class=code>nil</TT> (default) will format
“AM” or “PM” as part of the time. Otherwise, the “AM” or
“PM” will be omitted.</DD><DT CLASS="dt-list"><TT class=code>:print-timezone</TT><BR>
</DT><DD CLASS="dd-list"> if non-<TT class=code>nil</TT> (default) will format
the time zone as part of the time. Otherwise, the time zone will
be omitted.</DD><DT CLASS="dt-list"><TT class=code>:print-weekday</TT><BR>
</DT><DD CLASS="dd-list"> if non-<TT class=code>nil</TT> (default) will format
the weekday as part of date. Otherwise, the weekday will be
omitted.
</DD></DL></BLOCKQUOTE><!--TOC section Random Number Generation-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc54">2.19</A>  Random Number Generation</H2><!--SEC END --><P>
<A NAME="@concept9"></A></P><P>Common Lisp includes a random number generator as a standard part of the
language; however, the implementation of the generator is not
specified.</P><!--TOC subsection MT-19937 Generator-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc55">2.19.1</A>  MT-19937 Generator</H3><!--SEC END --><P>
<A NAME="@concept10"></A>
On all platforms, the random number is </P><TT class=code>MT-19937</TT><P> generator as indicated by
</P><TT class=code>:rand-mt19937</TT><P> being in </P><TT class=code>*features*</TT><P>. This is a Lisp
implementation of the MT-19937 generator of Makoto Matsumoto and
T. Nishimura. We refer the reader to their paper<SUP><A NAME="text2" HREF="#note2">2</A></SUP> or to
their
<A HREF="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">website</A>.
</P><P>When CMUCL starts up, </P><TT class=code>*random-state*</TT><P> is initialized by
reading 627 words from </P><TT class=code>/dev/urandom</TT><P>, when available. If
</P><TT class=code>/dev/urandom</TT><P> is not available, the universal time is used to
initialize </P><TT class=code>*random-state*</TT><P>. The initialization is done as given
in Matsumoto’s paper.</P><!--TOC section Lisp Threads-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc56">2.20</A>  Lisp Threads</H2><!--SEC END --><P>
<A NAME="@concept11"></A></P><P>CMUCL supports Lisp threads for the x86 platform.</P><!--TOC section Lisp Library-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc57">2.21</A>  Lisp Library</H2><!--SEC END --><P>
<A NAME="lisp-lib"></A></P><P>The CMUCL project maintains a collection of useful or interesting
programs written by users of our system. The library is in
</P><TT class=filename>lib/contrib/</TT><P>. Two files there that users should read are:
</P><DL CLASS="list"><DT CLASS="dt-list">
CATALOG.TXT<BR>
</DT><DD CLASS="dd-list">
This file contains a page for each entry in the library. It
contains information such as the author, portability or dependency issues, how
to load the entry, etc.</DD><DT CLASS="dt-list">READ-ME.TXT<BR>
</DT><DD CLASS="dd-list">
This file describes the library’s organization and all the
possible pieces of information an entry’s catalog description could contain.
</DD></DL><P>Hemlock has a command </P><TT class=code>Library Entry</TT><P> that displays a list of the current
library entries in an editor buffer. There are mode specific commands that
display catalog descriptions and load entries. This is a simple and convenient
way to browse the library.</P><!--TOC section Generalized Function Names-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc58">2.22</A>  Generalized Function Names</H2><!--SEC END --><P><BR>
<A NAME="@funs77"></A><A NAME="FN:define-function-name-syntax"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>define-function-name-syntax</TT> name (var) <TT class=code>&body</TT> body
</DIV><BLOCKQUOTE CLASS="quote">
Define lists starting with the symbol <TT class=code>name</TT> as a new extended
function name syntax.<TT class=code>body</TT><P> is executed with </P><TT class=code>var</TT><P> bound to an actual function
name of that form, and should return two values:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
A generalized boolean that is true if <TT class=code>var</TT> is a valid
function name.
</LI><LI CLASS="li-itemize">A symbol that can be used as a <TT class=code>block</TT> name in functions
whose name is <TT class=code>var</TT>. (For some sorts of function names it
might make sense to return <TT class=code>nil</TT> for the block name, or just
return one value.)
</LI></UL><P>Users should not define function names starting with a symbol that
CMUCL might be using internally. It is therefore advisable to
only define new function names starting with a symbol from a
user-defined package.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs78"></A><A NAME="FN:valid-function-name-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>valid-function-name-p</TT> name
</DIV><BLOCKQUOTE CLASS="quote">
Returns two values:<UL CLASS="itemize"><LI CLASS="li-itemize">
True if <TT class=code>name</TT> is a valid function name.
</LI><LI CLASS="li-itemize">A symbol that can be used as a <TT class=code>block</TT> name in
functions whose name is <TT class=code>name</TT>. This can be <TT class=code>nil</TT>
for some function names.
</LI></UL></BLOCKQUOTE><!--TOC section CLOS-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc59">2.23</A>  CLOS</H2><!--SEC END --><!--TOC subsection Primary Method Errors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc60">2.23.1</A>  Primary Method Errors</H3><!--SEC END --><P>
<A NAME="@concept12"></A></P><P>The standard requires that an error is signaled when a generic
function is called and</P><UL CLASS="itemize"><LI CLASS="li-itemize">
no primary method is applicable to the generic function’s actual
arguments, and
</LI><LI CLASS="li-itemize">the generic function’s method combination is either the standard
method combination or a method combination defined with the short
form of <TT class=code>define-method-combination</TT>. The latter includes the
standardized method combinations like <TT class=code>progn</TT>, <TT class=code>and</TT>, etc.
</LI></UL><P><BR>
<A NAME="@funs79"></A><A NAME="FN:no-primary-method-generic-generic"></A></P><DIV align=left>
[Generic Function]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>no-primary-method</TT> gf &rest args
</DIV><P>
In CMUCL, this generic function is called in the above erroneous
cases. The parameter </P><TT class=code>gf</TT><P> is the generic function being
called, and </P><TT class=code>args</TT><P> is a list of actual arguments in the generic
function call.
</P><P><BR>
<A NAME="@funs80"></A><A NAME="FN:no-primary-method-method-standard"></A></P><DIV align=left>
[Method]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>no-primary-method</TT> (gf standard-generic-function) &rest args
</DIV><P>
This method signals a continuable error of type
</P><TT class=code>pcl:no-primary-method-error</TT><P>.
</P><!--TOC subsection Slot Type Checking-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc61">2.23.2</A>  Slot Type Checking</H3><!--SEC END --><P>
<A NAME="@concept13"></A></P><P>Declared slot types are used when </P><UL CLASS="itemize"><LI CLASS="li-itemize">
reading slot values with <TT class=code>slot-value</TT> in methods, or</LI><LI CLASS="li-itemize">setting slots with <TT class=code>(setf slot-value)</TT> in methods, or </LI><LI CLASS="li-itemize">creating instances with <TT class=code>make-instance</TT>, when slots are
initialized from initforms. This currently depends on PCL being
able to use its internal <TT class=code>make-instance</TT> optimization, which it
usually can.
</LI></UL><P>Example:</P><BLOCKQUOTE class=example><PRE>
(defclass foo ()
((a :type fixnum)))
(defmethod bar ((object foo) value)
(with-slots (a) object
(setf a value)))
(defmethod baz ((object foo))
(< (slot-value object ’a) 10))
</PRE></BLOCKQUOTE><P>In method </P><TT class=code>bar</TT><P>, and with a suitable safety setting, a type error
will occur if </P><TT class=code>value</TT><P> is not a </P><TT class=code>fixnum</TT><P>. In method
</P><TT class=code>baz</TT><P>, a </P><TT class=code>fixnum</TT><P> comparison can be used by the compiler.</P><P><BR>
<A NAME="@vars18"></A><A NAME="VR:use-slot-types-p"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>pcl::</TT><TT class=function-name>*use-slot-types-p*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Slot type checking can be turned off by setting this variable to
<TT class=code>nil</TT>, which can be useful for compiling code containing incorrect
slot type declarations.
</BLOCKQUOTE><!--TOC subsection Slot Access Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc62">2.23.3</A>  Slot Access Optimization</H3><!--SEC END --><P>
<A NAME="@concept14"></A>
<A NAME="@concept15"></A></P><P>The declaration </P><TT class=code>ext:slots</TT><P> is used for optimizing slot access in
methods.</P><BLOCKQUOTE class=example><PRE>
declare (ext:slots specifier*)
specifier ::= (quality class-entry*)
quality ::= SLOT-BOUNDP | INLINE
class-entry ::= class | (class slot-name*)
class ::= the name of a class
slot-name ::= the name of a slot
</PRE></BLOCKQUOTE><P>The </P><TT class=code>slot-boundp</TT><P> quality specifies that all or some slots of a
class are always bound.</P><P>The </P><TT class=code>inline</TT><P> quality specifies that access to all or some slots
of a class should be inlined, using compile-time knowledge of class
layouts.</P><!--TOC subsubsection <TT class=code>slot-boundp</TT> Declaration-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.23.3.1  <TT class=code>slot-boundp</TT> Declaration</H4><!--SEC END --><P>
<A NAME="@concept16"></A></P><P>Example:</P><BLOCKQUOTE class=example><PRE>
(defclass foo ()
(a b))
(defmethod bar ((x foo))
(declare (ext:slots (slot-boundp foo)))
(list (slot-value x ’a) (slot-value x ’b)))
</PRE></BLOCKQUOTE><P>The </P><TT class=code>slot-boundp</TT><P> declaration in method </P><TT class=code>bar</TT><P> specifies that
the slots </P><TT class=code>a</TT><P> and </P><TT class=code>b</TT><P> accessed through parameter </P><TT class=code>x</TT><P> in
the scope of the declaration are always bound, because parameter
</P><TT class=code>x</TT><P> is specialized on class </P><TT class=code>foo</TT><P> to which the
</P><TT class=code>slot-boundp</TT><P> declaration applies. The PCL-generated code for
the </P><TT class=code>slot-value</TT><P> forms will thus not contain tests for the slots
being bound or not. The consequences are undefined should one of the
accessed slots not be bound.</P><!--TOC subsubsection <TT class=code>inline</TT> Declaration-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.23.3.2  <TT class=code>inline</TT> Declaration</H4><!--SEC END --><P>
<A NAME="@concept17"></A></P><P>Example:</P><BLOCKQUOTE class=example><PRE>
(defclass foo ()
(a b))
(defmethod bar ((x foo))
(declare (ext:slots (inline (foo a))))
(list (slot-value x ’a) (slot-value x ’b)))
</PRE></BLOCKQUOTE><P>The </P><TT class=code>inline</TT><P> declaration in method </P><TT class=code>bar</TT><P> tells PCL to use
compile-time knowledge of slot locations for accessing slot </P><TT class=code>a</TT><P>
of class </P><TT class=code>foo</TT><P>, in the scope of the declaration.</P><P>Class </P><TT class=code>foo</TT><P> must be known at compile time for this optimization
to be possible. PCL prints a warning and uses normal slot access If
the class is not defined at compile time.</P><P>If a class is </P><TT class=code>proclaim</TT><P>ed to use inline slot access before it is
defined, the class is defined at compile time. Example:</P><BLOCKQUOTE class=example><PRE>
(declaim (ext:slots (inline (foo slot-a))))
(defclass foo () ...)
(defclass bar (foo) ...)
</PRE></BLOCKQUOTE><P>Class </P><TT class=code>foo</TT><P> will be defined at compile time because it is
declared to use inline slot access; methods accessing slot
</P><TT class=code>slot-a</TT><P> of </P><TT class=code>foo</TT><P> will use inline slot access if otherwise
possible. Class </P><TT class=code>bar</TT><P> will be defined at compile time because
its superclass </P><TT class=code>foo</TT><P> is declared to use inline slot access. PCL
uses compile-time information from subclasses to warn about situations
where using inline slot access is not possible.</P><P>Normal slot access will be used if PCL finds, at method compilation
time, that</P><UL CLASS="itemize"><LI CLASS="li-itemize">
class <TT class=code>foo</TT> has a subclass in which slot <TT class=code>a</TT> is at a
different location, or</LI><LI CLASS="li-itemize">there exists a <TT class=code>slot-value-using-class</TT> method for
<TT class=code>foo</TT> or a subclass of <TT class=code>foo</TT>.
</LI></UL><P>When the declaration is used to optimize calls to slot accessor
generic functions in methods, as opposed to </P><TT class=code>slot-value</TT><P> or
</P><TT class=code>(setf slot-value)</TT><P>, the optimization is additionally not used if</P><UL CLASS="itemize"><LI CLASS="li-itemize">
there exist, at compile time, applicable methods on the
reader/writer generic function that are not standard accessor
methods (for instance, there exist around-methods), or</LI><LI CLASS="li-itemize">applicable reader/writer methods access different slots in a
class accessed inline, and one of its subclasses.
</LI></UL><P>The consequences are undefined if the compile-time environment is not
the same as the run-time environment in these respects, or if the
definition of class </P><TT class=code>foo</TT><P> or any subclass of </P><TT class=code>foo</TT><P> is
changed in an incompatible way, that is, if slot locations change.</P><P>The effect of the </P><TT class=code>inline</TT><P> optimization combined with the
</P><TT class=code>slot-boundp</TT><P> optimization is that CLOS slot access becomes as
fast as structure slot access, which is an order of magnitude faster
than normal CLOS slot access.</P><P><BR>
<A NAME="@vars19"></A><A NAME="VR:optimize-inline-slot-access-p"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>pcl::</TT><TT class=function-name>*optimize-inline-slot-access-p*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This variable controls if inline slot access optimizations are
performed. It is true by default.
</BLOCKQUOTE><!--TOC subsubsection Automatic Method Recompilation-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->2.23.3.3  Automatic Method Recompilation</H4><!--SEC END --><P>
<A NAME="@concept18"></A>
<A NAME="@concept19"></A>
<A NAME="@concept20"></A></P><P>Methods using inline slot access can be automatically recompiled after
class changes. Two declarations control which methods are
automatically recompiled.</P><BLOCKQUOTE class=example><PRE>
declaim (ext:auto-compile specifier*)
declaim (ext:not-auto-compile specifier*)
specifier ::= gf-name | (gf-name qualifier* (specializer*))
gf-name ::= the name of a generic function
qualifier ::= a method qualifier
specializer ::= a method specializer
</PRE></BLOCKQUOTE><P>If no specifier is given, auto-compilation is by default done/not done
for all methods of all generic functions using inline slot access;
current default is that it is not done. This global policy can be
overridden on a generic function and method basis. If
</P><TT class=code>specifier</TT><P> is a generic function name, it applies to all methods
of that generic function.</P><P>Examples:</P><BLOCKQUOTE class=example><PRE>
(declaim (ext:auto-compile foo))
(defmethod foo :around ((x bar)) ...)
</PRE></BLOCKQUOTE><P>The around-method </P><TT class=code>foo</TT><P> will be automatically recompiled because
the declamation applies to all methods with name </P><TT class=code>foo</TT><P>.</P><BLOCKQUOTE class=example><PRE>
(declaim (ext:auto-compile (foo (bar))))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)
</PRE></BLOCKQUOTE><P>The around-method will not be automatically recompiled, but the
primary method will.</P><BLOCKQUOTE class=example><PRE>
(declaim (ext:auto-compile foo))
(declaim (ext:not-auto-compile (foo :around (bar)))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)
</PRE></BLOCKQUOTE><P>The around-method will not be automatically recompiled, because it
is explicitly declaimed not to be. The primary method will be
automatically recompiled because the first declamation applies to
it.</P><P>Auto-recompilation works by recording method bodies using inline slot
access. When PCL determines that a recompilation is necessary, a
</P><TT class=code>defmethod</TT><P> form is constructed and evaluated.</P><P>Auto-compilation can only be done for methods defined in a null
lexical environment. PCL prints a warning and doesn’t record the
method body if a method using inline slot access is defined in a
non-null lexical environment. Instead of doing a recompilation on
itself, PCL will then print a warning that the method must be
recompiled manually when classes are changed.</P><!--TOC subsection Inlining Methods in Effective Methods-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc63">2.23.4</A>  Inlining Methods in Effective Methods</H3><!--SEC END --><P>
<A NAME="@concept21"></A>
<A NAME="@concept22"></A>
<A NAME="@concept23"></A>
<A NAME="@concept24"></A></P><P>When a generic function is called, an effective method is constructed
from applicable methods. The effective method is called with the
original arguments, and itself calls applicable methods according to
the generic function’s method combination. Some of the function call
overhead in effective methods can be removed by inlining methods in
effective methods, at the expense of increased code size.</P><P>Inlining of methods is controlled by the usual </P><TT class=code>inline</TT><P>
declaration. In the following example, both </P><TT class=code>foo</TT><P> methods shown
will be inlined in effective methods:</P><BLOCKQUOTE class=example><PRE>
(declaim (inline (method foo (foo))
(method foo :before (foo))))
(defmethod foo ((x foo)) ...)
(defmethod foo :before ((x foo)) ...)
</PRE></BLOCKQUOTE><P>Please note that this form of inlining has no noticeable effect for
effective methods that consist of a primary method only, which doesn’t
have keyword arguments. In such cases, PCL uses the primary method
directly for the effective method.</P><P>When the definition of an inlined method is changed, effective methods
are <B>not</B> automatically updated to reflect the change. This is
just as it is when inlining normal functions. Different from the
normal case is that users do not have direct access to effective
methods, as it would be the case when a function is inlined somewhere
else. Because of this, the function </P><TT class=code>pcl:flush-emf-cache</TT><P> is
provided for forcing such an update of effective methods.</P><P><BR>
<A NAME="@funs81"></A><A NAME="FN:flush-emf-cache"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>flush-emf-cache</TT> &optional gf
</DIV><BLOCKQUOTE CLASS="quote">
Flush cached effective method functions. If <TT class=code>gf</TT> is supplied,
it should be a generic function metaobject or the name of a generic
function, and this function flushes all cached effective methods for
the given generic function. If <TT class=code>gf</TT> is not supplied, all
cached effective methods are flushed.
</BLOCKQUOTE><P><BR>
<A NAME="@vars20"></A><A NAME="VR:inline-methods-in-emfs"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>pcl::</TT><TT class=function-name>*inline-methods-in-emfs*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
If true, the default, perform method inlining as described above.
If false, don’t.
</BLOCKQUOTE><!--TOC subsection Effective Method Precomputation-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc64">2.23.5</A>  Effective Method Precomputation</H3><!--SEC END --><P>
<A NAME="@concept25"></A>
<A NAME="@concept26"></A>
<A NAME="@concept27"></A></P><P>When a generic function is called, the generic function’s
discriminating function computes the set of methods applicable to
actual arguments and constructs an effective method function from
applicable methods, using the generic function’s method combination.</P><P>Effective methods can be precomputed at method load time instead of
when the generic function is called depending on the value of
</P><TT class=code>pcl:*max-emf-precomputation-methods*</TT><P>.</P><P><BR>
<A NAME="@vars21"></A><A NAME="VR:*max-emf-precomputation-methods*"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>**max-emf-precomputation-methods**</TT>
</DIV><BLOCKQUOTE CLASS="quote">
If nonzero, the default value is 100, precompute effective methods
when methods are loaded, and the method’s generic function has less
than the specified number of methods.<P>If zero, compute effective methods only when the generic function is
called.
</P></BLOCKQUOTE><!--TOC subsection Sealing-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc65">2.23.6</A>  Sealing</H3><!--SEC END --><P>
<A NAME="@concept28"></A>
<A NAME="@concept29"></A>
<A NAME="@concept30"></A>
<A NAME="@concept31"></A></P><P>Support for sealing classes and generic functions have been
implemented. Please note that this interface is subject to change.</P><P><BR>
<A NAME="@funs82"></A><A NAME="FN:seal"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>seal</TT> name (var) <TT class=code>&rest</TT> specifiers
</DIV><BLOCKQUOTE CLASS="quote">
Seal <TT class=code>name</TT> with respect to the given specifiers; <TT class=code>name</TT>
can be the name of a class or generic-function.<P>Supported specifiers are </P><TT class=code>:subclasses</TT><P> for classes,
which prevents changing subclasses of a class, and </P><TT class=code>:methods</TT><P>
which prevents changing the methods of a generic function.</P><P>Sealing violations signal an error of type </P><TT class=code>pcl:sealed-error</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs83"></A><A NAME="FN:unseal"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>pcl:</TT><TT class=function-name>unseal</TT> name-or-object
</DIV><BLOCKQUOTE CLASS="quote">
Remove seals from <TT class=code>name-or-object</TT>.
</BLOCKQUOTE><!--TOC subsection Method Tracing and Profiling-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc66">2.23.7</A>  Method Tracing and Profiling</H3><!--SEC END --><P>
<A NAME="sec:method-tracing"></A>
<A NAME="@concept32"></A>
<A NAME="@concept33"></A>
<A NAME="@concept34"></A>
<A NAME="@concept35"></A>
<A NAME="@concept36"></A>
<A NAME="@concept37"></A></P><P>Methods can be traced with </P><TT class=code>trace</TT><P>, using function names of the
form </P><TT class=code>(method <name> <qualifiers> <specializers>)</TT><P>. Example:</P><BLOCKQUOTE class=example><PRE>
(defmethod foo ((x integer)) x)
(defmethod foo :before ((x integer)) x)
(trace (method foo (integer)))
(trace (method foo :before (integer)))
(untrace (method foo :before (integer)))
</PRE></BLOCKQUOTE><TT class=code>trace</TT><P> and </P><TT class=code>untrace</TT><P> also allow a name specifier
</P><TT class=code>:methods gf-form</TT><P> for tracing all methods of a generic function:</P><BLOCKQUOTE class=example><PRE>
(trace :methods ’foo)
(untrace :methods ’foo)
</PRE></BLOCKQUOTE><P>Methods can also be specified for the </P><TT class=code>:wherein</TT><P> option to
</P><TT class=code>trace</TT><P>. Because this option is a name or a list of names,
methods must be specified as a list. Thus, to trace all calls of
</P><TT class=code>foo</TT><P> from the method </P><TT class=code>bar</TT><P> specialized on integer argument,
use
</P><BLOCKQUOTE class=example><PRE>
(trace foo :wherein ((method bar (integer))))
</PRE></BLOCKQUOTE><P>
Before and after methods are supported as well:
</P><BLOCKQUOTE class=example><PRE>
(trace foo :wherein ((method bar :before (integer))))
</PRE></BLOCKQUOTE><P>Method profiling is done analogously to </P><TT class=code>trace</TT><P>:</P><BLOCKQUOTE class=example><PRE>
(defmethod foo ((x integer)) x)
(defmethod foo :before ((x integer)) x)
(profile:profile (method foo (integer)))
(profile:profile (method foo :before (integer)))
(profile:unprofile (method foo :before (integer)))
(profile:profile :methods ’foo)
(profile:unprofile :methods ’foo)
(profile:profile-all :methods t)
</PRE></BLOCKQUOTE><!--TOC subsection Misc-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc67">2.23.8</A>  Misc</H3><!--SEC END --><P>
<A NAME="@concept38"></A></P><P><BR>
<A NAME="@vars22"></A><A NAME="VR:compile-interpreted-methods-p"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>pcl::</TT><TT class=function-name>*compile-interpreted-methods-p*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This variable controls compilation of interpreted method functions,
e.g. for methods defined interactively at the REPL. Default is
true, that is, method functions are compiled.
</BLOCKQUOTE><!--TOC section Differences from ANSI Common Lisp-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc68">2.24</A>  Differences from ANSI Common Lisp</H2><!--SEC END --><P>
This section describes some of the known differences between CMUCL
and ANSI Common Lisp. Some may be non-compliance issues; same may be
extensions.</P><!--TOC subsection Extensions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc69">2.24.1</A>  Extensions</H3><!--SEC END --><P><BR>
<A NAME="@funs84"></A><A NAME="FN:constantly"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>constantly</TT> value &optional val1 val2 &rest
more-values
</DIV><BLOCKQUOTE CLASS="quote">
As an extension, CMUCL allows <TT class=code>constantly</TT> to accept more
than one value which are returned as multiple values.
</BLOCKQUOTE><!--TOC section Function Wrappers-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc70">2.25</A>  Function Wrappers</H2><!--SEC END --><P>
<A NAME="@concept39"></A>
<A NAME="@concept40"></A></P><P>Function wrappers, fwrappers for short, are a facility for efficiently
encapsulating functions<SUP><A NAME="text3" HREF="#note3">3</A></SUP>.</P><P>Functions in CMUCL are represented by </P><TT class=code>kernel:fdefn</TT><P>
objects. Each </P><TT class=code>fdefn</TT><P> object contains a reference to its
function’s actual code, which we call the function’s primary function.</P><P>A function wrapper replaces the primary function in the </P><TT class=code>fdefn</TT><P>
object with a function of its own, and records the original function
in an fwrapper object, a funcallable instance. Thus, when the
function is called, the fwrapper gets called, which in turn might call
the primary function, or a previously installed fwrapper that was
found in the </P><TT class=code>fdefn</TT><P> object when the second fwrapper was
installed.</P><P>Example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(use-package :fwrappers)
(define-fwrapper foo (x y)
(format t "x = ~s, y = ~s, user-data = ~s~%"
x y (fwrapper-user-data fwrapper))
(let ((value (call-next-function)))
(format t "value = ~s~%" value)
value))
(defun bar (x y)
(+ x y))
(fwrap ’bar #’foo :type ’foo :user-data 42)
(bar 1 2)
=>
x = 1, y = 2, user-data = 42
value = 3
3
</PRE></BLOCKQUOTE><P>Fwrappers are used in the implementation of </P><TT class=code>trace</TT><P> and
</P><TT class=code>profile</TT><P>.</P><P>Please note that </P><TT class=code>fdefinition</TT><P> always returns the primary
definition of a function; if a function is fwrapped,
</P><TT class=code>fdefinition</TT><P> returns the primary function stored in the
innermost fwrapper object. Likewise, if a function is fwrapped,
</P><TT class=code>(setf fdefinition)</TT><P> will set the primary function in the
innermost fwrapper.</P><P><BR>
<A NAME="@funs85"></A><A NAME="FN:define-fwrapper"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>define-fwrapper</TT> name lambda-list <TT class=code>&body</TT> body
</DIV><BLOCKQUOTE CLASS="quote">
This macro is like <TT class=code>defun</TT>, but defines a function named
<TT class=variable>name</TT> that can be used as an fwrapper definition.<P>In </P><TT class=variable>body</TT><P>, the symbol </P><TT class=code>fwrapper</TT><P> is bound to the current
fwrapper object.</P><P>The macro </P><TT class=code>call-next-function</TT><P> can be used to invoke the next
fwrapper, or the primary function that is being fwrapped. When
called with no arguments, </P><TT class=code>call-next-function</TT><P> invokes the next
function with the original arguments passed to the fwrapper, unless
you modify one of the parameters. When called with arguments,
</P><TT class=code>call-next-function</TT><P> invokes the next function with the given
arguments.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs86"></A><A NAME="FN:fwrap"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>fwrap</TT> function-name fwrapper &key type
user-data
</DIV><BLOCKQUOTE CLASS="quote">
This function wraps function <TT class=code>function-name</TT> in an fwrapper
<TT class=variable>fwrapper</TT> which was defined with <TT class=code>define-fwrapper</TT>.<P>The value of </P><TT class=variable>type</TT><P>, if supplied, is used as an identifying
tag that can be used in various other operations.</P><P>The value of </P><TT class=variable>user-data</TT><P> is stored as user-supplied data in the
fwrapper object that is created for the function encapsulation.
User-data is accessible in the body of fwrappers defined with
</P><TT class=code>define-fwrapper</TT><P> as </P><TT class=code>(fwrapper-user-data fwrapper)</TT><P>.</P><P>Value is the fwrapper object created.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs87"></A><A NAME="FN:funwrap"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>funwrap</TT> function-name &key type test
</DIV><BLOCKQUOTE CLASS="quote">
Remove fwrappers from the function named <TT class=variable>function-name</TT>. If
<TT class=variable>type</TT> is supplied, remove fwrappers whose type is <TT class=code>equal</TT>
to <TT class=variable>type</TT>. If <TT class=variable>test</TT> is supplied, remove fwrappers
satisfying <TT class=variable>test</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs88"></A><A NAME="FN:find-fwrapper"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>find-fwrapper</TT> function-name &key type test
</DIV><BLOCKQUOTE CLASS="quote">
Find an fwrapper of <TT class=variable>function-name</TT>. If <TT class=variable>type</TT> is supplied,
find an fwrapper whose type is <TT class=code>equal</TT> to <TT class=variable>type</TT>. If
<TT class=variable>test</TT> is supplied, find an fwrapper satisfying <TT class=variable>test</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs89"></A><A NAME="FN:update-fwrapper"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>update-fwrapper</TT> fwrapper
</DIV><BLOCKQUOTE CLASS="quote">
Update the funcallable instance function of the fwrapper object
<TT class=variable>fwrapper</TT> from the definition of its function that was
defined with <TT class=code>define-fwrapper</TT>. This can be used to update
fwrappers after changing a <TT class=code>define-fwrapper</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs90"></A><A NAME="FN:update-fwrappers"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>update-fwrappers</TT> function-name &key type test
</DIV><BLOCKQUOTE CLASS="quote">
Update fwrappers of <TT class=variable>function-name</TT>; see <TT class=code>update-fwrapper</TT>.
If <TT class=variable>type</TT> is supplied, update fwrappers whose type is
<TT class=code>equal</TT> to <TT class=variable>type</TT>. If <TT class=variable>test</TT> is supplied, update fwrappers
satisfying <TT class=variable>test</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs91"></A><A NAME="FN:set-fwrappers"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>set-fwrappers</TT> function-name fwrappers
</DIV><BLOCKQUOTE CLASS="quote">
Set <TT class=variable>function-names</TT>’s fwrappers to elements of the list
<TT class=variable>fwrappers</TT>, which is assumed to be ordered from outermost to
innermost. <TT class=variable>fwrappers</TT> null means remove all fwrappers.
</BLOCKQUOTE><P><BR>
<A NAME="@funs92"></A><A NAME="FN:list-fwrappers"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>list-fwrappers</TT> function-name
</DIV><BLOCKQUOTE CLASS="quote">
Return a list of all fwrappers of <TT class=variable>function-name</TT>, ordered
from outermost to innermost.
</BLOCKQUOTE><P><BR>
<A NAME="@funs93"></A><A NAME="FN:push-fwrapper"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>push-fwrapper</TT> fwrapper function-name
</DIV><BLOCKQUOTE CLASS="quote">
Prepend fwrapper <TT class=variable>fwrapper</TT> to the definition of
<TT class=variable>function-name</TT>. Signal an error if <TT class=variable>function-name</TT> is an
undefined function.
</BLOCKQUOTE><P><BR>
<A NAME="@funs94"></A><A NAME="FN:delete-fwrapper"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>delete-fwrapper</TT> fwrapper function-name
</DIV><BLOCKQUOTE CLASS="quote">
Remove fwrapper <TT class=variable>fwrapper</TT> from the definition of
<TT class=variable>function-name</TT>. Signal an error if <TT class=variable>function-name</TT> is an
undefined function.
</BLOCKQUOTE><P><BR>
<A NAME="@funs95"></A><A NAME="FN:do-fwrappers"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>fwrappers:</TT><TT class=function-name>do-fwrappers</TT> (var fdefn <TT class=code>&optional</TT>
result) <TT class=code>&body</TT> body
</DIV><BLOCKQUOTE CLASS="quote">
Evaluate <TT class=variable>body</TT> with <TT class=variable>var</TT> bound to consecutive fwrappers of
<TT class=variable>fdefn</TT>. Return <TT class=variable>result</TT> at the end. Note that <TT class=variable>fdefn</TT>
must be an <TT class=code>fdefn</TT> object. You can use
<TT class=code>kernel:fdefn-or-lose</TT>, for instance, to get the <TT class=code>fdefn</TT>
object from a function name.
</BLOCKQUOTE><!--TOC section Dynamic-Extent Declarations-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc71">2.26</A>  Dynamic-Extent Declarations</H2><!--SEC END --><P>
<A NAME="@concept41"></A></P><P><EM>Note: As of the 19a release, </EM></P><TT class=code><EM>dynamic-extent</EM></TT><P><EM> is
unfortunately disabled by default. It is known to cause some issues
with CLX and Hemlock. The cause is not known, but causes random
errors and brokeness. Enable at your own risk. However, it is safe
enough to build all of CMUCL without problems.</EM></P><P>On x86 and sparc, CMUCL can exploit </P><TT class=code>dynamic-extent</TT><P>
declarations by allocating objects on the stack instead of the heap.</P><P>You can tell CMUCL to trust or not trust </P><TT class=code>dynamic-extent</TT><P>
declarations by setting the variable
</P><TT class=variable>*trust-dynamic-extent-declarations*</TT><P>.</P><P><BR>
<A NAME="@vars23"></A><A NAME="VR:trust-dynamic-extent-declarations"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>*trust-dynamic-extent-declarations*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
If the value of <TT class=variable>*trust-dynamic-extent-declarations*</TT> is
<TT class=code>NIL</TT>, <TT class=code>dynamic-extent</TT> declarations are effectively
ignored.<P>If the value of this variable is a function, the function is called
with four arguments to determine if a </P><TT class=code>dynamic-extent</TT><P>
declaration should be trusted. The arguments are the safety,
space, speed, and debug settings at the point where the
</P><TT class=code>dynamic-extent</TT><P> declaration is used. If the function
returns true, the declaration is trusted, otherwise it is not
trusted.</P><P>In all other cases, </P><TT class=code>dynamic-extent</TT><P> declarations are
trusted.
</P></BLOCKQUOTE><P>Please note that stack-allocation is inherently unsafe. If you make a
mistake, and a stack-allocated object or part of it escapes, CMUCL
is likely to crash, or format your hard disk.</P><!--TOC subsection <TT class=code>&rest</TT> argument lists-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc72">2.26.1</A>  <TT class=code>&rest</TT> argument lists</H3><!--SEC END --><P>
<A NAME="@concept42"></A></P><P>Rest argument lists can be allocated on the stack by declaring the
rest argument variable </P><TT class=code>dynamic-extent</TT><P>. Examples:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (x &rest rest)
(declare (dynamic-extent rest))
...)
(defun bar ()
(lambda (&rest rest)
(declare (dynamic-extent rest))
...))
</PRE></BLOCKQUOTE><!--TOC subsection Closures-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc73">2.26.2</A>  Closures</H3><!--SEC END --><P>
<A NAME="@concept43"></A></P><P>Closures for local functions can be allocated on the stack if the
local function is declared </P><TT class=code>dynamic-extent</TT><P>, and the closure
appears as an argument in the call of a named function. In the
example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (x)
(flet ((bar () x))
(declare (dynamic-extent #’bar))
(baz #’bar)))
</PRE></BLOCKQUOTE><P>the closure passed to function </P><TT class=code>baz</TT><P> is allocated on the stack.
Likewise in the example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (x)
(flet ((bar () x))
(baz #’bar)
(locally (declare (dynamic-extent #’bar))
(baz #’bar))))
</PRE></BLOCKQUOTE><P><A NAME="@concept44"></A></P><P>Stack-allocation of closures can also automatically take place when
calling certain known CL functions taking function arguments, for
example </P><TT class=code>some</TT><P> or </P><TT class=code>find-if</TT><P>.</P><!--TOC subsection <TT class=code>list</TT>, <TT class=code>list*</TT>, and <TT class=code>cons</TT>-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc74">2.26.3</A>  <TT class=code>list</TT>, <TT class=code>list*</TT>, and <TT class=code>cons</TT></H3><!--SEC END --><P>
<A NAME="@concept45"></A></P><P>New conses allocated by </P><TT class=code>list</TT><P>, </P><TT class=code>list*</TT><P>, or </P><TT class=code>cons</TT><P>
which are used to initialize variables can be allocated from the stack
if the variables are declared </P><TT class=code>dynamic-extent</TT><P>. In the case of
</P><TT class=code>cons</TT><P>, only the outermost cons cell is allocated from the stack;
this is an arbitrary restriction.</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((x (list 1 2))
(y (list* 1 2 x))
(z (cons 1 (cons 2 nil))))
(declare (dynamic-extent x y z))
...
(setq x (list 2 3))
...)
</PRE></BLOCKQUOTE><P>Please note that the </P><TT class=code>setq</TT><P> of </P><TT class=code>x</TT><P> in the example program
assigns to </P><TT class=code>x</TT><P> a list that is allocated from the heap. This is
another arbitrary restriction that exists because other Lisps behave
that way.</P><!--TOC section Modular Arithmetic-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc75">2.27</A>  Modular Arithmetic</H2><!--SEC END --><P>
<A NAME="@concept46"></A></P><P>This section is mostly taken, with permission, from the documentation
for SBCL.</P><P>Some numeric functions have a property: </P><TT class=code>N</TT><P> lower bits of
the result depend only on </P><TT class=code>N</TT><P> lower bits of (all or some)
arguments. If the compiler sees an expression of form </P><TT class=code>(logand
exp mask)</TT><P>, where </P><TT class=code>exp</TT><P> is a tree of such “good” functions
and </P><TT class=code>mask</TT><P> is known to be of type </P><TT class=code>(unsigned-byte
w)</TT><P>, where </P><TT class=code>w</TT><P> is a "good" width, all intermediate results
will be cut to </P><TT class=code>w</TT><P> bits (but it is not done for variables
and constants!). This often results in an ability to use simple
machine instructions for the functions.</P><P>Consider an example.
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun i (x y)
(declare (type (unsigned-byte 32) x y))
(ldb (byte 32 0) (logxor x (lognot y))))
</PRE></BLOCKQUOTE><P>
The result of </P><TT class=code>(lognot y)</TT><P> will be negative and of
type </P><TT class=code>(signed-byte 33)</TT><P>, so a naive implementation on a 32-bit
platform is unable to use 32-bit arithmetic here. But modular
arithmetic optimizer is able to do it: because the result is cut down
to 32 bits, the compiler will replace </P><TT class=code>logxor</TT><P>
and </P><TT class=code>lognot</TT><P> with versions cutting results to 32 bits, and
because terminals (here—expressions </P><TT class=code>x</TT><P> and </P><TT class=code>y</TT><P>)
are also of type </P><TT class=code>(unsigned-byte 32)</TT><P>, 32-bit machine
arithmetic can be used.</P><P>Currently “good” functions
are </P><TT class=code>+</TT><P>, </P><TT class=code>-</TT><P>, </P><TT class=code>*</TT><P>; </P><TT class=code>logand</TT><P>, </P><TT class=code>logior</TT><P>,
</P><TT class=code>logxor</TT><P>, </P><TT class=code>lognot</TT><P> and their combinations;
and </P><TT class=code>ash</TT><P> with the positive second argument. “Good” widths
are 32 on HPPA, MIPS, PPC, Sparc and X86 and 64 on Alpha. While it is
possible to support smaller widths as well, currently it is not
implemented.</P><P>A more extensive description of modular arithmetic can be found in the
paper “Efficient Hardware Arithmetic in Common Lisp” by Alexey
Dejneka, and Christophe Rhodes, to be published.</P><!--TOC section Extension to REQUIRE-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc76">2.28</A>  Extension to REQUIRE</H2><!--SEC END --><P>
<A NAME="@concept47"></A></P><P>The behavior of </P><TT class=code>require</TT><P> when called with only one argument is
implementation-defined. In CMUCL, functions from the list
</P><TT class=variable>*module-provider-functions*</TT><P> are called in order with the
stringified module name as the argument. The first function to return
non-</P><TT class=variable>NIL</TT><P> is assumed to have loaded the module.</P><P>By default the functions </P><TT class=code>module-provide-cmucl-defmodule</TT><P> and
</P><TT class=code>module-provide- cmucl-library</TT><P> are on this list of functions, in
that order.</P><P><BR>
<A NAME="@vars24"></A><A NAME="VR:module-provider-functions"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>*module-provider-functions*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This is a list of functions taking a single argument.
<TT class=code>require</TT> calls each function in turn with the stringified
module name. The first function to return non-<TT class=variable>NIL</TT> indicates
that the module has been loaded. The remaining functions, if any,
are not called.<P>To add new providers, push the new provider function onto the
beginning of this list.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs96"></A><A NAME="FN:defmodule"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>defmodule</TT> name <TT class=code>&rest</TT> files
</DIV><BLOCKQUOTE CLASS="quote">
Defines a module by registering the files that need to be loaded
when the module is required. If <TT class=variable>name</TT> is a symbol, its print
name is used after downcasing it.
</BLOCKQUOTE><P><BR>
<A NAME="@funs97"></A><A NAME="FN:module-provide-cmucl-defmodule"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>module-provide-cmucl-defmodule</TT> module-name
</DIV><BLOCKQUOTE CLASS="quote">
This function is the module-provider for modules registered by a
<TT class=code>ext:defmodule</TT> form.
</BLOCKQUOTE><P><BR>
<A NAME="@funs98"></A><A NAME="FN:module-provide-cmucl-library"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>module-provide-cmucl-library</TT> module-name
</DIV><BLOCKQUOTE CLASS="quote">
This function is the module-provider for CMUCL’s libraries,
including Gray streams, simple streams, CLX, CLM, Hemlock,
<EM>etc</EM>.<P>This function causes a file to be loaded whose name is formed by
merging the search-list “modules:” and the concatenation of
module-name with the suffix “-LIBRARY”. Note that both the
module-name and the suffix are each, separately, converted from
:case :common to :case :local. This merged name will be probed with
both a .lisp and .fasl extensions, calling </P><TT class=code>LOAD</TT><P> if it exists.
</P></BLOCKQUOTE><!--TOC section Localization-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc77">2.29</A>  Localization</H2><!--SEC END --><P>
<A NAME="sec:localization"></A></P><P>CMUCL support localization where messages can be presented in the
native language. This is done in the style of </P><TT class=code>gettext</TT><P> which
marks strings that are to be translated and provides the lookup to
convert the string to the specified language.</P><P>All messages from CMUCL can be translated but as of this writing,
the only complete translation is a Pig Latin translation done by
machine. There are a few messages translated to Korean.</P><P>In general, translatable strings are marked as such by using the
functions </P><TT class=code>intl:gettext</TT><P> and </P><TT class=code>intl:ngettext</TT><P> or by using the
reader macros <CODE>_</CODE> or <CODE>_N</CODE>. When loading or compiling, such
strings are recorded for translation. At runtime, such strings are
looked in and the translation is returned. Doc strings do not need to
be noted in any way; the are automatically noted for translation.</P><P>By default, recording of translatable strings is disabled. To enable
recording of strings, call </P><TT class=code>intl:translation-enable</TT><P>.</P><!--TOC subsection Dictionary-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc78">2.29.1</A>  Dictionary</H3><!--SEC END --><P>
<A NAME="sec:localization-dictionary"></A></P><P><BR>
<A NAME="@funs99"></A><A NAME="FN:translation-enable"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>translation-enable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Enable recording of translatable strings.
</BLOCKQUOTE><P><BR>
<A NAME="@funs100"></A><A NAME="FN:translation-disable"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>translation-disable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Disablle recording of translatable strings.
</BLOCKQUOTE><P><BR>
<A NAME="@funs101"></A><A NAME="FN:setlocale"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>setlocale</TT> <TT class=code>&optional</TT> locale
</DIV><BLOCKQUOTE CLASS="quote">
Sets the locale to the locale specified by <TT class=variable>locale</TT>. If
<TT class=variable>locale</TT> is not give or is <TT class=code>nil</TT>, the locale is determined by
look at the environment variables <TT class=code>LANGUAGE</TT>, <TT class=code>LC_ALL</TT>,
<TT class=code>LC_MESSAGES</TT>, or <TT class=code>LANG</TT>. If none of these are set, the
locale is unchanged.<P>The default locale is “C”.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs102"></A><A NAME="FN:textdomain"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>textdomain</TT> domain
</DIV><BLOCKQUOTE CLASS="quote">
Set the default domain to the domain specified by <TT class=variable>domain</TT>.
Typically, this only needs to be done at the top of each source
file. This is used to <TT class=code>gettext</TT> and <TT class=code>ngettext</TT> to set the
domain for the message string.
</BLOCKQUOTE><P><BR>
<A NAME="@funs103"></A><A NAME="FN:gettext"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>gettext</TT> string
</DIV><BLOCKQUOTE CLASS="quote">
Look up the specified string, <TT class=variable>string</TT>, in the current message
domain and return its translation.
</BLOCKQUOTE><P><BR>
<A NAME="@funs104"></A><A NAME="FN:dgettext"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>dgettext</TT> domain string
</DIV><BLOCKQUOTE CLASS="quote">
Look up the specified string, <TT class=variable>string</TT>, in the message domain,
<TT class=variable>domain</TT>. The translation is returned.<P>When compiled, this also function also records the string so that an
appropriate message template file can be created. (See
</P><TT class=code>intl::dump-pot-files</TT><P>.)
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs105"></A><A NAME="FN:ngettext"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>ngettext</TT> singular plural n
</DIV><BLOCKQUOTE CLASS="quote">
Look up the singular or plural form of a message in the default
domain. The singular form is <TT class=variable>singular</TT>; the plural is
<TT class=variable>plural</TT>. The number of items is specified by <TT class=variable>n</TT> in case
the correct translation depends on the actual number of items.
</BLOCKQUOTE><P><BR>
<A NAME="@funs106"></A><A NAME="FN:dngettext"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>dngettext</TT> domain singular plural n
</DIV><BLOCKQUOTE CLASS="quote">
Look up the singular or plural form of a message in the specified
domain, <TT class=variable>domain</TT>. The singular form is <TT class=variable>singular</TT>; the
plural is <TT class=variable>plural</TT>. The number of items is specified by <TT class=variable>n</TT>
in case the correct translation depends on the actual number of
items.<P>When compiled, this also function also records the singular and
plural forms so that an appropriate message template file can be
created. (See </P><TT class=code>intl::dump-pot-files</TT><P>.)
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs107"></A><A NAME="FN:dump-pot-files"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl::</TT><TT class=function-name>dump-pot-files</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline">c</SPAN>opyright
output-directory
</DIV><BLOCKQUOTE CLASS="quote">
Dumps the translatable strings recorded by <TT class=code>dgettext</TT> and
<TT class=code>dngettext</TT>. The message template file (pot file) is written
to a file in the directory specified by <TT class=variable>output-directory</TT>, and
the name of the file is the domain of the string.<P>If </P><TT class=variable>copyright</TT><P> is specified, this is placed in the output file
as the copyright message.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars25"></A><A NAME="VR:locale-directories"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>*locale-directories*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This is a list of directory pathnames where the translations can be found.
</BLOCKQUOTE><P><BR>
<A NAME="@funs108"></A><A NAME="FN:install"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>intl:</TT><TT class=function-name>install</TT> <TT class=code>&optional</TT> (rt *readtable*)
</DIV><BLOCKQUOTE CLASS="quote">
Installs reader macros and comment reader into the specified
readtable as explained below. The readtable defaults to
<TT class=variable>*readtable*</TT>.
</BLOCKQUOTE><P>Two reader macros are also provided: </P><TT class=code>_”</TT><P> and </P><TT class=code>_N”</TT><P>. The
first is equivalent to wrapping </P><TT class=code>dgettext</TT><P> around the string.
The second returns the string, but also records the string. This is
needed when we want to record a docstring for translation or any other
string in a place where a macro or function call would be incorrect.</P><P>Also, the standard comment reader is extended to allow translator
comments to be saved and written to the messages template file so that
the translator may not need to look at the original source to
understand the string. Any comment line that begins with exactly
<CODE>"TRANSLATORS: "</CODE> is saved. This means each translator comment
must be preceded by this string to be saved; the translator comment
ends at the end of each line.</P><!--TOC subsection Example Usage-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc79">2.29.2</A>  Example Usage</H3><!--SEC END --><P>
<A NAME="sec:localization-usage"></A></P><P>Here is a simple example of how to localize your code. Let the file
</P><TT class=code>intl-ex.lisp</TT><P> contain:</P><BLOCKQUOTE class=example><PRE>
(intl:textdomain "example")
(defun foo (x y)
"Cool function foo of x and y"
(let ((result (bar x y)))
;; TRANSLATORS: One line comment about bar.
(format t _"bar of ~A and ~A = ~A~%" x y result)
#| TRANSLATORS: Multiline comment about
how many Xs there are
|#
(format t (intl:ngettext "There is one X"
"There are many Xs"
x))
result))
</PRE></BLOCKQUOTE><P>The call to </P><TT class=code>textdomain</TT><P> sets the default domain for all
translatable strings following the call.</P><P>Here is a sample session for creating a template file:</P><BLOCKQUOTE class=example><PRE>
* (intl:install)
T
* (intl:translation-enable)
T
* (compile-file "intl-ex")
#P"/Volumes/share/cmucl/cvs/intl-ex.sse2f"
NIL
NIL
* (intl::dump-pot-files :output-directory "./")
Dumping 3 messages for domain "example"
NIL
*
</PRE></BLOCKQUOTE><P>When this file is compiled, all of the translatable strings are
recorded. This includes the docstring for </P><TT class=code>foo</TT><P>, the string for
the first </P><TT class=code>format</TT><P>, and the string marked by the call to
</P><TT class=code>intl:ngettext</TT><P>.</P><P>A file named “example.pot” in the directory “./” is created.
The contents of this file are:
</P><BLOCKQUOTE class=example><PRE>
#@ example
# SOME DESCRIPTIVE TITLE
# FIRST AUTHOR <EMAIL@ADDRESS>, YEAR
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION"
"Report-Msgid-Bugs-To: "
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>"
"Language-Team: LANGUAGE <LL@li.org>"
"MIME-Version: 1.0"
"Content-Type: text/plain; charset=UTF-8"
"Content-Transfer-Encoding: 8bit"
#. One line comment about bar.
#: intl-ex.lisp
msgid "bar of ~A and ~A = ~A~%"
msgstr ""
#. Multiline comment about
how many Xs there are
#: intl-ex.lisp
msgid "Cool function foo of x and y"
msgstr ""
#: intl-ex.lisp
msgid "There is one X"
msgid_plural "There are many Xs"
msgstr[0] ""
</PRE></BLOCKQUOTE><P>To finish the translation, a corresponding “example.po” file needs
to be created with the appropriate translations for the given
strings. This file must be placed in some directory that is included
in </P><TT class=code>intl:*locale-directories*</TT><P>.</P><P>Suppose the translation is done for Korean. Then the user can set the
environment variables appropriately or call </P><TT class=code>(intl:setlocale
"ko")</TT><P>. Note that the external format for the standard streams
needs to be set up appropriately too. It is up to the user to set
this correctly. Once this is all done, the output from the function
</P><TT class=code>foo</TT><P> will now be in Korean instead of English as in the original
source file.</P><P>For further information, we refer the reader to documentation on
<A HREF="http://www.gnu.org/software/gettext/manual/gettext.html">gettext</A>.
</P><!--TOC section Static Arrays-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc80">2.30</A>  Static Arrays</H2><!--SEC END --><P>
<A NAME="sec:static-arrays"></A></P><P>CMUCL supports static arrays which are arrays that are not moved by
the garbage collector. To create such an array, use the
</P><TT class=code>:allocation</TT><P> option to </P><TT class=code>make-array</TT><P> with a value of
</P><TT class=code>:malloc</TT><P>. These arrays appear as normal Lisp arrays, but are
actually allocated from the </P><TT class=code>C</TT><P> heap (hence the </P><TT class=code>:malloc</TT><P>).
Thus, the number and size of such arrays are limited by the available
</P><TT class=code>C</TT><P> heap.</P><P>Also, only certain types of arrays can be allocated. The static array
cannot be adjustable and cannot be displaced to. The array must also
be a </P><TT class=code>simple-array</TT><P> of one dimension. The element type is also
constrained to be one of the types in
Table <A HREF="#tbl:static-array-types">2.3</A>.</P><BLOCKQUOTE CLASS="table"><DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV>
<DIV CLASS="center">
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD ALIGN=center NOWRAP> <TT class=code>(unsigned-byte 8)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(unsigned-byte 16)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(unsigned-byte 32)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(signed-byte 8)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(signed-byte 16)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(signed-byte 32)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>single-float</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>double-float</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(complex single-float)</TT></TD></TR>
<TR><TD ALIGN=center NOWRAP> <TT class=code>(complex double-float)</TT></TD></TR>
</TABLE>
<DIV CLASS="caption"><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left>Table 2.3: Allowed element types for static arrays</TD></TR>
</TABLE></DIV>
<A NAME="tbl:static-array-types"></A>
</DIV>
<DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV></BLOCKQUOTE><P>The arrays are properly handled by GC. GC will not move the arrays,
but they will be properly removed up if they become garbage.
</P><!--NAME extensions.html-->
<!--BEGIN NOTES chapter-->
<HR CLASS="ffootnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note1" HREF="#text1">1</A></DT><DD CLASS="dd-thefootnotes">This
implementation was donated by Paul Foley
</DD><DT CLASS="dt-thefootnotes"><A NAME="note2" HREF="#text2">2</A></DT><DD CLASS="dd-thefootnotes">“Mersenne
Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom
Number Generator,” ACM Trans. on Modeling and Computer Simulation,
Vol. 8, No. 1, January 1998, pp.3–30
</DD><DT CLASS="dt-thefootnotes"><A NAME="note3" HREF="#text3">3</A></DT><DD CLASS="dd-thefootnotes">This feature was independently
developed, but the interface is modelled after a similar feature in
Allegro. Some names, however, have been changed.
</DD></DL>
<!--END NOTES-->
<!--TOC chapter The Debugger-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc81">Chapter 3</A>  The Debugger</H1><!--SEC END --><P>
<A NAME="@concept48"></A>
<A NAME="debugger"></A></P><DIV CLASS="center">
<B>by Robert MacLachlan</B>
</DIV><!--TOC section Debugger Introduction-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc82">3.1</A>  Debugger Introduction</H2><!--SEC END --><P>The CMUCL debugger is unique in its level of support for source-level
debugging of compiled code. Although some other debuggers allow access of
variables by name, this seems to be the first Common Lisp debugger that:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Tells you when a variable doesn’t have a value because it hasn’t been
initialized yet or has already been deallocated, or</LI><LI CLASS="li-itemize">Can display the precise source location corresponding to a code
location in the debugged program.
</LI></UL><P>
These features allow the debugging of compiled code to be made almost
indistinguishable from interpreted code debugging.</P><P>The debugger is an interactive command loop that allows a user to examine
the function call stack. The debugger is invoked when:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">A <A NAME="@types18"></A><TT class=code>serious-condition</TT> is signaled, and it is not handled, or</LI><LI CLASS="li-itemize"><A NAME="@funs109"></A><TT class=code>error</TT> is called, and the condition it signals is not handled, or</LI><LI CLASS="li-itemize">The debugger is explicitly invoked with the Common Lisp <A NAME="@funs110"></A><TT class=code>break</TT>
or <A NAME="@funs111"></A><TT class=code>debug</TT> functions.
</LI></UL><P><I>Note: there are two debugger interfaces in CMUCL: the TTY
debugger (described below) and the Motif debugger. Since the
difference is only in the user interface, much of this chapter also
applies to the Motif version. See section </I><A HREF="#motif-interface"><I>2.9.1</I></A><I> for a very brief
discussion of the graphical interface.</I></P><P>When you enter the TTY debugger, it looks something like this:</P><BLOCKQUOTE class=example><PRE>
Error in function CAR.
Wrong type argument, 3, should have been of type LIST.
Restarts:
0: Return to Top-Level.
Debug (type H for help)
(CAR 3)
0]
</PRE></BLOCKQUOTE><P>The first group of lines describe what the error was that put us in the
debugger. In this case </P><TT class=code>car</TT><P> was called on </P><TT class=code>3</TT><P>. After </P><TT class=code>Restarts:</TT><P>
is a list of all the ways that we can restart execution after this error. In
this case, the only option is to return to top-level. After printing its
banner, the debugger prints the current frame and the debugger prompt.</P><!--TOC section The Command Loop-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc83">3.2</A>  The Command Loop</H2><!--SEC END --><P>The debugger is an interactive read-eval-print loop much like the normal
top-level, but some symbols are interpreted as debugger commands instead
of being evaluated. A debugger command starts with the symbol name of
the command, possibly followed by some arguments on the same line. Some
commands prompt for additional input. Debugger commands can be
abbreviated by any unambiguous prefix: </P><TT class=code>help</TT><P> can be typed as
</P><TT class=code>h</TT><P>, </P><TT class=code>he</TT><P>, etc. For convenience, some commands have
ambiguous one-letter abbreviations: </P><TT class=code>f</TT><P> for </P><TT class=code>frame</TT><P>.</P><P>The package is not significant in debugger commands; any symbol with the
name of a debugger command will work. If you want to show the value of
a variable that happens also to be the name of a debugger command, you
can use the </P><TT class=code>list-locals</TT><P> command or the </P><TT class=code>debug:var</TT><P>
function, or you can wrap the variable in a </P><TT class=code>progn</TT><P> to hide it from
the command loop.</P><P>The debugger prompt is “</P><TT class=variable>frame</TT><TT class=code>]</TT><P>”, where </P><TT class=variable>frame</TT><P> is the number
of the current frame. Frames are numbered starting from zero at the top (most
recent call), increasing down to the bottom. The current frame is the frame
that commands refer to. The current frame also provides the lexical
environment for evaluation of non-command forms.</P><P><A NAME="@concept49"></A> The debugger evaluates forms in the lexical
environment of the functions being debugged. The debugger can only
access variables. You can’t </P><TT class=code>go</TT><P> or </P><TT class=code>return-from</TT><P> into a
function, and you can’t call local functions. Special variable
references are evaluated with their current value (the innermost binding
around the debugger invocation)—you don’t get the value that the
special had in the current frame. See section <A HREF="#debug-vars">3.4</A> for more
information on debugger variable access.</P><!--TOC section Stack Frames-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc84">3.3</A>  Stack Frames</H2><!--SEC END --><P>
<A NAME="@concept50"></A> <A NAME="@concept51"></A></P><P>A stack frame is the run-time representation of a call to a function;
the frame stores the state that a function needs to remember what it is
doing. Frames have:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Variables (see section <A HREF="#debug-vars">3.4</A>), which are the values being operated
on, and</LI><LI CLASS="li-itemize">Arguments to the call (which are really just particularly interesting
variables), and</LI><LI CLASS="li-itemize">A current location (see section <A HREF="#source-locations">3.5</A>), which is the place in
the program where the function was running when it stopped to call another
function, or because of an interrupt or error.
</LI></UL><!--TOC subsection Stack Motion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc85">3.3.1</A>  Stack Motion</H3><!--SEC END --><P>These commands move to a new stack frame and print the name of the function
and the values of its arguments in the style of a Lisp function call:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>up</TT><BR>
</DT><DD CLASS="dd-list">
Move up to the next higher frame. More recent function calls are considered
to be higher on the stack.</DD><DT CLASS="dt-list"><TT class=code>down</TT><BR>
</DT><DD CLASS="dd-list">
Move down to the next lower frame.</DD><DT CLASS="dt-list"><TT class=code>top</TT><BR>
</DT><DD CLASS="dd-list">
Move to the highest frame.</DD><DT CLASS="dt-list"><TT class=code>bottom</TT><BR>
</DT><DD CLASS="dd-list">
Move to the lowest frame.</DD><DT CLASS="dt-list"><TT class=code>frame</TT> [<I>n</I><BR>
</DT><DD CLASS="dd-list">]
Move to the frame with the specified number. Prompts for the number if not
supplied.</DD></DL><!--TOC subsection How Arguments are Printed-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc86">3.3.2</A>  How Arguments are Printed</H3><!--SEC END --><P>A frame is printed to look like a function call, but with the actual argument
values in the argument positions. So the frame for this call in the source:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(myfun (+ 3 4) ’a)
</PRE></BLOCKQUOTE><P>would look like this:</P><BLOCKQUOTE class=example><PRE>
(MYFUN 7 A)
</PRE></BLOCKQUOTE><P>All keyword and optional arguments are displayed with their actual
values; if the corresponding argument was not supplied, the value will
be the default. So this call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(subseq "foo" 1)
</PRE></BLOCKQUOTE><P>would look like this:</P><BLOCKQUOTE class=example><PRE>
(SUBSEQ "foo" 1 3)
</PRE></BLOCKQUOTE><P>And this call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(string-upcase "test case")
</PRE></BLOCKQUOTE><P>would look like this:</P><BLOCKQUOTE class=example><PRE>
(STRING-UPCASE "test case" :START 0 :END NIL)
</PRE></BLOCKQUOTE><P>The arguments to a function call are displayed by accessing the argument
variables. Although those variables are initialized to the actual argument
values, they can be set inside the function; in this case the new value will be
displayed.</P><TT class=code><TT class=code>&rest</TT></TT><P> arguments are handled somewhat differently. The value of
the rest argument variable is displayed as the spread-out arguments to
the call, so:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(format t "~A is a ~A." "This" ’test)
</PRE></BLOCKQUOTE><P>would look like this:</P><BLOCKQUOTE class=example><PRE>
(FORMAT T "~A is a ~A." "This" ’TEST)
</PRE></BLOCKQUOTE><P>Rest arguments cause an exception to the normal display of keyword
arguments in functions that have both </P><TT class=code><TT class=code>&rest</TT></TT><P> and </P><TT class=code>&key</TT><P>
arguments. In this case, the keyword argument variables are not
displayed at all; the rest arg is displayed instead. So for these
functions, only the keywords actually supplied will be shown, and the
values displayed will be the argument values, not values of the
(possibly modified) variables.</P><P>If the variable for an argument is never referenced by the function, it will be
deleted. The variable value is then unavailable, so the debugger prints
</P><TT class=code>#<unused-arg></TT><P> instead of the value. Similarly, if for any of a number of
reasons (described in more detail in section <A HREF="#debug-vars">3.4</A>) the value of the
variable is unavailable or not known to be available, then
</P><TT class=code>#<unavailable-arg></TT><P> will be printed instead of the argument value.</P><P>Printing of argument values is controlled by </P><TT class=code>*debug-print-level*</TT><P> and
<A NAME="@vars26"></A></P><TT class=code>*debug-print-length*</TT><P>.</P><!--TOC subsection Function Names-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc87">3.3.3</A>  Function Names</H3><!--SEC END --><P>
<A NAME="@concept52"></A>
<A NAME="@concept53"></A></P><P>If a function is defined by </P><TT class=code>defun</TT><P>, </P><TT class=code>labels</TT><P>, or </P><TT class=code>flet</TT><P>, then the
debugger will print the actual function name after the open parenthesis, like:</P><BLOCKQUOTE class=example><PRE>
(STRING-UPCASE "test case" :START 0 :END NIL)
((SETF AREF) #\a "for" 1)
</PRE></BLOCKQUOTE><P>Otherwise, the function name is a string, and will be printed in quotes:</P><BLOCKQUOTE class=example><PRE>
("DEFUN MYFUN" BAR)
("DEFMACRO DO" (DO ((I 0 (1+ I))) ((= I 13))) NIL)
("SETQ *GC-NOTIFY-BEFORE*")
</PRE></BLOCKQUOTE><P>This string name is derived from the </P><TT class=code>def</TT><TT class=variable>mumble</TT><P> form
that encloses or expanded into the lambda, or the outermost enclosing
form if there is no </P><TT class=code>def</TT><TT class=variable>mumble</TT><P>.</P><!--TOC subsection Funny Frames-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc88">3.3.4</A>  Funny Frames</H3><!--SEC END --><P>
<A NAME="@concept54"></A>
<A NAME="@concept55"></A>
<A NAME="@concept56"></A>
<A NAME="@concept57"></A>
<A NAME="@concept58"></A>
<A NAME="@concept59"></A></P><P>Sometimes the evaluator introduces new functions that are used to implement a
user function, but are not directly specified in the source. The main place
this is done is for checking argument type and syntax. Usually these functions
do their thing and then go away, and thus are not seen on the stack in the
debugger. But when you get some sort of error during lambda-list processing,
you end up in the debugger on one of these funny frames.</P><P>These funny frames are flagged by printing “</P><TT class=code>[</TT><TT class=variable>keyword</TT><TT class=code>]</TT><P>” after the
parentheses. For example, this call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(car ’a ’b)
</PRE></BLOCKQUOTE><P>will look like this:</P><BLOCKQUOTE class=example><PRE>
(CAR 2 A) [:EXTERNAL]
</PRE></BLOCKQUOTE><P>And this call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(string-upcase "test case" :end)
</PRE></BLOCKQUOTE><P>would look like this:</P><BLOCKQUOTE class=example><PRE>
("DEFUN STRING-UPCASE" "test case" 335544424 1) [:OPTIONAL]
</PRE></BLOCKQUOTE><P>As you can see, these frames have only a vague resemblance to the original
call. Fortunately, the error message displayed when you enter the debugger
will usually tell you what problem is (in these cases, too many arguments
and odd keyword arguments.) Also, if you go down the stack to the frame for
the calling function, you can display the original source (see section <A HREF="#source-locations">3.5</A>.)</P><P>With recursive or block compiled functions
(see section <A HREF="#block-compilation">5.7</A>), an </P><TT class=code>:EXTERNAL</TT><P> frame may appear
before the frame representing the first call to the recursive function
or entry to the compiled block. This is a consequence of the way the
compiler does block compilation: there is nothing odd with your
program. You will also see </P><TT class=code>:CLEANUP</TT><P> frames during the execution
of </P><TT class=code>unwind-protect</TT><P> cleanup code. Note that inline expansion and
open-coding affect what frames are present in the debugger, see
sections <A HREF="#debugger-policy">3.6</A> and <A HREF="#open-coding">4.8</A>.</P><!--TOC subsection Debug Tail Recursion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc89">3.3.5</A>  Debug Tail Recursion</H3><!--SEC END --><P>
<A NAME="debug-tail-recursion"></A>
<A NAME="@concept60"></A>
<A NAME="@concept61"></A></P><P>Both the compiler and the interpreter are “properly tail recursive.” If a
function call is in a tail-recursive position, the stack frame will be
deallocated <EM>at the time of the call</EM>, rather than after the call returns.
Consider this backtrace:
</P><BLOCKQUOTE class=example><PRE>
(BAR ...)
(FOO ...)
</PRE></BLOCKQUOTE><P>
Because of tail recursion, it is not necessarily the case that
</P><TT class=code>FOO</TT><P> directly called </P><TT class=code>BAR</TT><P>. It may be that </P><TT class=code>FOO</TT><P> called
some other function </P><TT class=code>FOO2</TT><P> which then called </P><TT class=code>BAR</TT><P>
tail-recursively, as in this example:
</P><BLOCKQUOTE class=example><PRE>
(defun foo ()
...
(foo2 ...)
...)
(defun foo2 (...)
...
(bar ...))
(defun bar (...)
...)
</PRE></BLOCKQUOTE><P>Usually the elimination of tail-recursive frames makes debugging more
pleasant, since theses frames are mostly uninformative. If there is any
doubt about how one function called another, it can usually be
eliminated by finding the source location in the calling frame (section
<A HREF="#source-locations">3.5</A>.)</P><P>The elimination of tail-recursive frames can be prevented by disabling
tail-recursion optimization, which happens when the </P><TT class=code>debug</TT><P>
optimization quality is greater than </P><TT class=code>2</TT><P>
(see section <A HREF="#debugger-policy">3.6</A>.)</P><P>For a more thorough discussion of tail recursion, see section <A HREF="#tail-recursion">5.5</A>.</P><!--TOC subsection Unknown Locations and Interrupts-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc90">3.3.6</A>  Unknown Locations and Interrupts</H3><!--SEC END --><P>
<A NAME="unknown-locations"></A>
<A NAME="@concept62"></A>
<A NAME="@concept63"></A>
<A NAME="@concept64"></A>
<A NAME="@concept65"></A></P><P>The debugger operates using special debugging information attached to
the compiled code. This debug information tells the debugger what it
needs to know about the locations in the code where the debugger can be
invoked. If the debugger somehow encounters a location not described in
the debug information, then it is said to be </P><TT class=variable>unknown</TT><P>. If the code
location for a frame is unknown, then some variables may be
inaccessible, and the source location cannot be precisely displayed.</P><P>There are three reasons why a code location could be unknown:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">There is inadequate debug information due to the value of the <TT class=code>debug</TT>
optimization quality. See section <A HREF="#debugger-policy">3.6</A>.</LI><LI CLASS="li-itemize">The debugger was entered because of an interrupt such as <TT class=code>^<I>C</I></TT>.</LI><LI CLASS="li-itemize">A hardware error such as “<TT class=code>bus error</TT>” occurred in code that was
compiled unsafely due to the value of the <TT class=code>safety</TT> optimization
quality. See section <A HREF="#optimize-declaration">4.7.1</A>.
</LI></UL><P>In the last two cases, the values of argument variables are accessible,
but may be incorrect. See section <A HREF="#debug-var-validity">3.4.1</A> for more details on
when variable values are accessible.</P><P>It is possible for an interrupt to happen when a function call or return is in
progress. The debugger may then flame out with some obscure error or insist
that the bottom of the stack has been reached, when the real problem is that
the current stack frame can’t be located. If this happens, return from the
interrupt and try again.</P><P>When running interpreted code, all locations should be known. However,
an interrupt might catch some subfunction of the interpreter at an
unknown location. In this case, you should be able to go up the stack a
frame or two and reach an interpreted frame which can be debugged.</P><!--TOC section Variable Access-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc91">3.4</A>  Variable Access</H2><!--SEC END --><P>
<A NAME="debug-vars"></A>
<A NAME="@concept66"></A>
<A NAME="@concept67"></A></P><P>There are three ways to access the current frame’s local variables in the
debugger. The simplest is to type the variable’s name into the debugger’s
read-eval-print loop. The debugger will evaluate the variable reference as
though it had appeared inside that frame.</P><P>The debugger doesn’t really understand lexical scoping; it has just one
namespace for all the variables in a function. If a symbol is the name of
multiple variables in the same function, then the reference appears ambiguous,
even though lexical scoping specifies which value is visible at any given
source location. If the scopes of the two variables are not nested, then the
debugger can resolve the ambiguity by observing that only one variable is
accessible.</P><P>When there are ambiguous variables, the evaluator assigns each one a
small integer identifier. The </P><TT class=code>debug:var</TT><P> function and the
</P><TT class=code>list-locals</TT><P> command use this identifier to distinguish between
ambiguous variables:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>list-locals</TT> <TT class=code>{<TT class=variable>prefix</TT>}</TT><BR>
</DT><DD CLASS="dd-list">This command prints the name and value of all variables in the current
frame whose name has the specified <TT class=variable>prefix</TT>. <TT class=variable>prefix</TT> may be a
string or a symbol. If no <TT class=variable>prefix</TT> is given, then all available
variables are printed. If a variable has a potentially ambiguous name,
then the name is printed with a “<TT class=code>#</TT><TT class=variable>identifier</TT>” suffix, where
<TT class=variable>identifier</TT> is the small integer used to make the name unique.
</DD></DL><P><BR>
<A NAME="@funs112"></A><A NAME="FN:var"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug:</TT><TT class=function-name>var</TT> <TT class=variable>name</TT> <TT class=code>&optional</TT> <TT class=variable>identifier</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the value of the variable in the current frame
with the specified </P><TT class=variable>name</TT><P>. If supplied, </P><TT class=variable>identifier</TT><P>
determines which value to return when there are ambiguous variables.</P><P>When </P><TT class=variable>name</TT><P> is a symbol, it is interpreted as the symbol name of
the variable, i.e. the package is significant. If </P><TT class=variable>name</TT><P> is an
uninterned symbol (gensym), then return the value of the uninterned
variable with the same name. If </P><TT class=variable>name</TT><P> is a string,
</P><TT class=code>debug:var</TT><P> interprets it as the prefix of a variable name, and
must unambiguously complete to the name of a valid variable.</P><P>This function is useful mainly for accessing the value of uninterned
or ambiguous variables, since most variables can be evaluated
directly.
</P></BLOCKQUOTE><!--TOC subsection Variable Value Availability-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc92">3.4.1</A>  Variable Value Availability</H3><!--SEC END --><P>
<A NAME="debug-var-validity"></A>
<A NAME="@concept68"></A>
<A NAME="@concept69"></A>
<A NAME="@concept70"></A></P><P>The value of a variable may be unavailable to the debugger in portions of the
program where Common Lisp says that the variable is defined. If a variable value is
not available, the debugger will not let you read or write that variable. With
one exception, the debugger will never display an incorrect value for a
variable. Rather than displaying incorrect values, the debugger tells you the
value is unavailable.</P><P>The one exception is this: if you interrupt (e.g., with </P><TT class=code>^<I>C</I></TT><P>) or if there is
an unexpected hardware error such as “</P><TT class=code>bus error</TT><P>” (which should only happen
in unsafe code), then the values displayed for arguments to the interrupted
frame might be incorrect.<SUP><A NAME="text4" HREF="#note4">1</A></SUP>
This exception applies only to the interrupted frame: any frame farther down
the stack will be fine.</P><P>The value of a variable may be unavailable for these reasons:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The value of the <TT class=code>debug</TT> optimization quality may have omitted debug
information needed to determine whether the variable is available.
Unless a variable is an argument, its value will only be available when
<TT class=code>debug</TT> is at least <TT class=code>2</TT>.</LI><LI CLASS="li-itemize">The compiler did lifetime analysis and determined that the value was no longer
needed, even though its scope had not been exited. Lifetime analysis is
inhibited when the <TT class=code>debug</TT> optimization quality is <TT class=code>3</TT>.</LI><LI CLASS="li-itemize">The variable’s name is an uninterned symbol (gensym). To save space, the
compiler only dumps debug information about uninterned variables when the
<TT class=code>debug</TT> optimization quality is <TT class=code>3</TT>.</LI><LI CLASS="li-itemize">The frame’s location is unknown (see section <A HREF="#unknown-locations">3.3.6</A>) because
the debugger was entered due to an interrupt or unexpected hardware error.
Under these conditions the values of arguments will be available, but might be
incorrect. This is the exception above.</LI><LI CLASS="li-itemize">The variable was optimized out of existence. Variables with no reads are
always optimized away, even in the interpreter. The degree to which the
compiler deletes variables will depend on the value of the <TT class=code>compile-speed</TT>
optimization quality, but most source-level optimizations are done under all
compilation policies.
</LI></UL><P>Since it is especially useful to be able to get the arguments to a function,
argument variables are treated specially when the </P><TT class=code>speed</TT><P> optimization
quality is less than </P><TT class=code>3</TT><P> and the </P><TT class=code>debug</TT><P> quality is at least </P><TT class=code>1</TT><P>.
With this compilation policy, the values of argument variables are almost
always available everywhere in the function, even at unknown locations. For
non-argument variables, </P><TT class=code>debug</TT><P> must be at least </P><TT class=code>2</TT><P> for values to be
available, and even then, values are only available at known locations.</P><!--TOC subsection Note On Lexical Variable Access-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc93">3.4.2</A>  Note On Lexical Variable Access</H3><!--SEC END --><P>
<A NAME="@concept71"></A></P><P>When the debugger command loop establishes variable bindings for available
variables, these variable bindings have lexical scope and dynamic
extent.<SUP><A NAME="text5" HREF="#note5">2</A></SUP> You can close over them, but such closures
can’t be used as upward funargs.</P><P>You can also set local variables using </P><TT class=code>setq</TT><P>, but if the variable was closed
over in the original source and never set, then setting the variable in the
debugger may not change the value in all the functions the variable is defined
in. Another risk of setting variables is that you may assign a value of a type
that the compiler proved the variable could never take on. This may result in
bad things happening.</P><!--TOC section Source Location Printing-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc94">3.5</A>  Source Location Printing</H2><!--SEC END --><P>
<A NAME="source-locations"></A>
<A NAME="@concept72"></A></P><P>One of CMUCL’s unique capabilities is source level debugging of compiled
code. These commands display the source location for the current frame:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>source</TT> <TT class=code>{<TT class=variable>context</TT>}</TT><BR>
</DT><DD CLASS="dd-list">This command displays the file that the current frame’s function was defined
from (if it was defined from a file), and then the source form responsible for
generating the code that the current frame was executing. If <TT class=variable>context</TT> is
specified, then it is an integer specifying the number of enclosing levels of
list structure to print.</DD><DT CLASS="dt-list"><TT class=code>vsource</TT> <TT class=code>{<TT class=variable>context</TT>}</TT><BR>
</DT><DD CLASS="dd-list">This command is identical to <TT class=code>source</TT>, except that it uses the
global values of <TT class=code>*print-level*</TT> and <TT class=code>*print-length*</TT> instead
of the debugger printing control variables <TT class=code>*debug-print-level*</TT>
and <TT class=code>*debug-print-length*</TT>.
</DD></DL><P>The source form for a location in the code is the innermost list present
in the original source that encloses the form responsible for generating
that code. If the actual source form is not a list, then some enclosing
list will be printed. For example, if the source form was a reference
to the variable </P><TT class=code>*some-random-special*</TT><P>, then the innermost
enclosing evaluated form will be printed. Here are some possible
enclosing forms:
</P><BLOCKQUOTE class=example><PRE>
(let ((a *some-random-special*))
...)
(+ *some-random-special* ...)
</PRE></BLOCKQUOTE><P>If the code at a location was generated from the expansion of a macro or a
source-level compiler optimization, then the form in the original source that
expanded into that code will be printed. Suppose the file
</P><TT class=filename>/usr/me/mystuff.lisp</TT><P> looked like this:
</P><BLOCKQUOTE class=example><PRE>
(defmacro mymac ()
’(myfun))
(defun foo ()
(mymac)
...)
</PRE></BLOCKQUOTE><P>
If </P><TT class=code>foo</TT><P> has called </P><TT class=code>myfun</TT><P>, and is waiting for it to return, then the
</P><TT class=code>source</TT><P> command would print:
</P><BLOCKQUOTE class=example><PRE>
; File: /usr/me/mystuff.lisp
(MYMAC)
</PRE></BLOCKQUOTE><P>
Note that the macro use was printed, not the actual function call form,
</P><TT class=code>(myfun)</TT><P>.</P><P>If enclosing source is printed by giving an argument to </P><TT class=code>source</TT><P> or
</P><TT class=code>vsource</TT><P>, then the actual source form is marked by wrapping it in a list
whose first element is </P><TT class=code>#:***HERE***</TT><P>. In the previous example,
</P><TT class=code>source 1</TT><P> would print:
</P><BLOCKQUOTE class=example><PRE>
; File: /usr/me/mystuff.lisp
(DEFUN FOO ()
(#:***HERE***
(MYMAC))
...)
</PRE></BLOCKQUOTE><!--TOC subsection How the Source is Found-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc95">3.5.1</A>  How the Source is Found</H3><!--SEC END --><P>If the code was defined from Common Lisp by </P><TT class=code>compile</TT><P> or
</P><TT class=code>eval</TT><P>, then the source can always be reliably located. If the
code was defined from a </P><TT class=code>fasl</TT><P> file created by
<A NAME="@funs113"></A></P><TT class=code>compile-file</TT><P>, then the debugger gets the source forms it
prints by reading them from the original source file. This is a
potential problem, since the source file might have moved or changed
since the time it was compiled.</P><P>The source file is opened using the </P><TT class=code>truename</TT><P> of the source file
pathname originally given to the compiler. This is an absolute pathname
with all logical names and symbolic links expanded. If the file can’t
be located using this name, then the debugger gives up and signals an
error.</P><P>If the source file can be found, but has been modified since the time it was
compiled, the debugger prints this warning:
</P><BLOCKQUOTE class=example><PRE>
; File has been modified since compilation:
; <TT class=variable>filename</TT>
; Using form offset instead of character position.
</PRE></BLOCKQUOTE><P>
where </P><TT class=variable>filename</TT><P> is the name of the source file. It then proceeds using a
robust but not foolproof heuristic for locating the source. This heuristic
works if:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">No top-level forms before the top-level form containing the source have been
added or deleted, and</LI><LI CLASS="li-itemize">The top-level form containing the source has not been modified much. (More
precisely, none of the list forms beginning before the source form have been
added or deleted.)
</LI></UL><P>If the heuristic doesn’t work, the displayed source will be wrong, but will
probably be near the actual source. If the “shape” of the top-level form in
the source file is too different from the original form, then an error will be
signaled. When the heuristic is used, the the source location commands are
noticeably slowed.</P><P>Source location printing can also be confused if (after the source was
compiled) a read-macro you used in the code was redefined to expand into
something different, or if a read-macro ever returns the same </P><TT class=code>eq</TT><P>
list twice. If you don’t define read macros and don’t use </P><TT class=code>##</TT><P> in
perverted ways, you don’t need to worry about this.</P><!--TOC subsection Source Location Availability-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc96">3.5.2</A>  Source Location Availability</H3><!--SEC END --><P><A NAME="@concept73"></A>
Source location information is only available when the </P><TT class=code>debug</TT><P>
optimization quality is at least </P><TT class=code>2</TT><P>. If source location information is
unavailable, the source commands will give an error message.</P><P>If source location information is available, but the source location is
unknown because of an interrupt or unexpected hardware error
(see section <A HREF="#unknown-locations">3.3.6</A>), then the command will print:</P><BLOCKQUOTE class=example><PRE>
Unknown location: using block start.
</PRE></BLOCKQUOTE><P>and then proceed to print the source location for the start of the
<EM>basic block</EM> enclosing the code location.
<A NAME="@concept74"></A> <A NAME="@concept75"></A>
It’s a bit complicated to explain exactly what a basic block is, but
here are some properties of the block start location:</P><UL CLASS="itemize"><LI CLASS="li-itemize">The block start location may be the same as the true location.</LI><LI CLASS="li-itemize">The block start location will never be later in the the
program’s flow of control than the true location.</LI><LI CLASS="li-itemize">No conditional control structures (such as <TT class=code>if</TT>,
<TT class=code>cond</TT>, <TT class=code>or</TT>) will intervene between the block start and
the true location (but note that some conditionals present in the
original source could be optimized away.) Function calls <EM>do not</EM>
end basic blocks.</LI><LI CLASS="li-itemize">The head of a loop will be the start of a block.</LI><LI CLASS="li-itemize">The programming language concept of “block structure” and the
Common Lisp <TT class=code>block</TT> special form are totally unrelated to the
compiler’s basic block.
</LI></UL><P>In other words, the true location lies between the printed location and the
next conditional (but watch out because the compiler may have changed the
program on you.)</P><!--TOC section Compiler Policy Control-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc97">3.6</A>  Compiler Policy Control</H2><!--SEC END --><P>
<A NAME="debugger-policy"></A>
<A NAME="@concept76"></A>
<A NAME="@concept77"></A>
<A NAME="@concept78"></A></P><P>The compilation policy specified by </P><TT class=code>optimize</TT><P> declarations affects the
behavior seen in the debugger. The </P><TT class=code>debug</TT><P> quality directly affects the
debugger by controlling the amount of debugger information dumped. Other
optimization qualities have indirect but observable effects due to changes in
the way compilation is done.</P><P>Unlike the other optimization qualities (which are compared in relative value
to evaluate tradeoffs), the </P><TT class=code>debug</TT><P> optimization quality is directly
translated to a level of debug information. This absolute interpretation
allows the user to count on a particular amount of debug information being
available even when the values of the other qualities are changed during
compilation. These are the levels of debug information that correspond to the
values of the </P><TT class=code>debug</TT><P> quality:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>0</TT><BR>
</DT><DD CLASS="dd-list">
Only the function name and enough information to allow the stack to
be parsed.</DD><DT CLASS="dt-list"><TT class=code>> 0</TT><BR>
</DT><DD CLASS="dd-list">
Any level greater than <TT class=code>0</TT> gives level <TT class=code>0</TT> plus all
argument variables. Values will only be accessible if the argument
variable is never set and
<TT class=code>speed</TT> is not <TT class=code>3</TT>. CMUCL allows any real value for optimization
qualities. It may be useful to specify <TT class=code>0.5</TT> to get backtrace argument
display without argument documentation.</DD><DT CLASS="dt-list"><TT class=code>1</TT><BR>
</DT><DD CLASS="dd-list"> Level <TT class=code>1</TT> provides argument documentation
(printed arglists) and derived argument/result type information.
This makes <A NAME="@funs114"></A><TT class=code>describe</TT> more informative, and allows the
compiler to do compile-time argument count and type checking for any
calls compiled at run-time.</DD><DT CLASS="dt-list"><TT class=code>2</TT><BR>
</DT><DD CLASS="dd-list">
Level <TT class=code>1</TT> plus all interned local variables, source location
information, and lifetime information that tells the debugger when arguments
are available (even when <TT class=code>speed</TT> is <TT class=code>3</TT> or the argument is set.) This is
the default.</DD><DT CLASS="dt-list"><TT class=code>> 2</TT><BR>
</DT><DD CLASS="dd-list">
Any level greater than <TT class=code>2</TT> gives level <TT class=code>2</TT> and in addition
disables tail-call optimization, so that the backtrace will contain
frames for all invoked functions, even those in tail positions.</DD><DT CLASS="dt-list"><TT class=code>3</TT><BR>
</DT><DD CLASS="dd-list">
Level <TT class=code>2</TT> plus all uninterned variables. In addition, lifetime
analysis is disabled (even when <TT class=code>speed</TT> is <TT class=code>3</TT>), ensuring
that all variable values are available at any known location within
the scope of the binding. This has a speed penalty in addition to the
obvious space penalty.
</DD></DL><P>As you can see, if the </P><TT class=code>speed</TT><P> quality is </P><TT class=code>3</TT><P>, debugger performance is
degraded. This effect comes from the elimination of argument variable
special-casing (see section <A HREF="#debug-var-validity">3.4.1</A>.) Some degree of
speed/debuggability tradeoff is unavoidable, but the effect is not too drastic
when </P><TT class=code>debug</TT><P> is at least </P><TT class=code>2</TT><P>.</P><P><A NAME="@concept79"></A>
<A NAME="@concept80"></A>
In addition to </P><TT class=code>inline</TT><P> and </P><TT class=code>notinline</TT><P> declarations, the relative values
of the </P><TT class=code>speed</TT><P> and </P><TT class=code>space</TT><P> qualities also change whether functions are
inline expanded (see section <A HREF="#inline-expansion">5.8</A>.) If a function is inline
expanded, then there will be no frame to represent the call, and the arguments
will be treated like any other local variable. Functions may also be
“semi-inline”, in which case there is a frame to represent the call, but the
call is to an optimized local version of the function, not to the original
function.</P><!--TOC section Exiting Commands-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc98">3.7</A>  Exiting Commands</H2><!--SEC END --><P>These commands get you out of the debugger.</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>quit</TT><BR>
</DT><DD CLASS="dd-list">
Throw to top level.</DD><DT CLASS="dt-list"><TT class=code>restart</TT> <TT class=code>{<TT class=variable>n</TT>}</TT><BR>
</DT><DD CLASS="dd-list">Invokes the <TT class=variable>n</TT>th restart case as displayed by the <TT class=code>error</TT>
command. If <TT class=variable>n</TT> is not specified, the available restart cases are
reported.</DD><DT CLASS="dt-list"><TT class=code>go</TT><BR>
</DT><DD CLASS="dd-list">
Calls <TT class=code>continue</TT> on the condition given to <TT class=code>debug</TT>. If there is no
restart case named <TT class=variable>continue</TT>, then an error is signaled.</DD><DT CLASS="dt-list"><TT class=code>abort</TT><BR>
</DT><DD CLASS="dd-list">
Calls <TT class=code>abort</TT> on the condition given to <TT class=code>debug</TT>. This is
useful for popping debug command loop levels or aborting to top level,
as the case may be.</DD></DL><!--TOC section Information Commands-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc99">3.8</A>  Information Commands</H2><!--SEC END --><P>Most of these commands print information about the current frame or
function, but a few show general information.</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>help</TT>, <TT class=code>?</TT><BR>
</DT><DD CLASS="dd-list">
Displays a synopsis of debugger commands.</DD><DT CLASS="dt-list"><TT class=code>describe</TT><BR>
</DT><DD CLASS="dd-list">
Calls <TT class=code>describe</TT> on the current function, displays number of local
variables, and indicates whether the function is compiled or interpreted.</DD><DT CLASS="dt-list"><TT class=code>print</TT><BR>
</DT><DD CLASS="dd-list">
Displays the current function call as it would be displayed by moving to
this frame.</DD><DT CLASS="dt-list"><TT class=code>vprint</TT> (or <TT class=code>pp</TT>) <TT class=code>{<TT class=variable>verbosity</TT>}</TT><BR>
</DT><DD CLASS="dd-list">Displays the current function call using <TT class=code>*print-level*</TT> and
<TT class=code>*print-length*</TT> instead of <TT class=code>*debug-print-level*</TT> and
<TT class=code>*debug-print-length*</TT>. <TT class=variable>verbosity</TT> is a small integer
(default 2) that controls other dimensions of verbosity.</DD><DT CLASS="dt-list"><TT class=code>error</TT><BR>
</DT><DD CLASS="dd-list">
Prints the condition given to <TT class=code>invoke-debugger</TT> and the active
proceed cases.</DD><DT CLASS="dt-list"><TT class=code>backtrace</TT> <TT class=code>{<TT class=variable>n</TT>}</TT><BR>
</DT><DD CLASS="dd-list"><BR>
Displays all the frames from the current to the bottom. Only shows
<TT class=variable>n</TT> frames if specified. The printing is controlled by
<TT class=code>*debug-print-level*</TT> and <TT class=code>*debug-print-length*</TT>.</DD></DL><!--TOC section Breakpoint Commands-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc100">3.9</A>  Breakpoint Commands</H2><!--SEC END --><P><A NAME="@concept81"></A></P><P>CMUCL supports setting of breakpoints inside compiled functions and
stepping of compiled code. Breakpoints can only be set at at known
locations (see section <A HREF="#unknown-locations">3.3.6</A>), so these commands are largely
useless unless the </P><TT class=code>debug</TT><P> optimize quality is at least </P><TT class=code>2</TT><P>
(see section <A HREF="#debugger-policy">3.6</A>). These commands manipulate breakpoints:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>breakpoint</TT> <TT class=variable>location</TT> <TT class=code>{<TT class=variable>option</TT> <TT class=variable>value</TT>}</TT><SUP>*</SUP><BR>
</DT><DD CLASS="dd-list">
Set a breakpoint in some function. <TT class=variable>location</TT> may be an integer
code location number (as displayed by <TT class=code>list-locations</TT>) or a
keyword. The keyword can be used to indicate setting a breakpoint at
the function start (<TT class=code>:start</TT>, <TT class=code>:s</TT>) or function end
(<TT class=code>:end</TT>, <TT class=code>:e</TT>). The <TT class=code>breakpoint</TT> command has
<TT class=code>:condition</TT>, <TT class=code>:break</TT>, <TT class=code>:print</TT> and <TT class=code>:function</TT>
options which work similarly to the <TT class=code>trace</TT> options.</DD><DT CLASS="dt-list"><TT class=code>list-locations</TT> (or <TT class=code>ll</TT>) <TT class=code>{<TT class=variable>function</TT>}</TT><BR>
</DT><DD CLASS="dd-list">List all the code locations in the current frame’s function, or in
<TT class=variable>function</TT> if it is supplied. The display format is the code
location number, a colon and then the source form for that location:
<BLOCKQUOTE class=example><PRE>
3: (1- N)
</PRE></BLOCKQUOTE>
If consecutive locations have the same source, then a numeric range like
<TT class=code>3-5:</TT> will be printed. For example, a default function call has a
known location both immediately before and after the call, which would
result in two code locations with the same source. The listed function
becomes the new default function for breakpoint setting (via the
<TT class=code>breakpoint</TT>) command.</DD><DT CLASS="dt-list"><TT class=code>list-breakpoints</TT> (or <TT class=code>lb</TT>)<BR>
</DT><DD CLASS="dd-list">List all currently active breakpoints with their breakpoint number.</DD><DT CLASS="dt-list"><TT class=code>delete-breakpoint</TT> (or <TT class=code>db</TT>) <TT class=code>{<TT class=variable>number</TT>}</TT><BR>
</DT><DD CLASS="dd-list">Delete a breakpoint specified by its breakpoint number. If no number is
specified, delete all breakpoints.</DD><DT CLASS="dt-list"><TT class=code>step</TT><BR>
</DT><DD CLASS="dd-list">Step to the next possible breakpoint location in the current function.
This always steps over function calls, instead of stepping into them
</DD></DL><!--TOC subsection Breakpoint Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc101">3.9.1</A>  Breakpoint Example</H3><!--SEC END --><P>Consider this definition of the factorial function:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ! (n)
(if (zerop n)
1
(* n (! (1- n)))))
</PRE></BLOCKQUOTE><P>This debugger session demonstrates the use of breakpoints:</P><BLOCKQUOTE class=example><PRE>
common-lisp-user> (break) ; Invoke debugger
Break
Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level.
Debug (type H for help)
(INTERACTIVE-EVAL (BREAK))
0] ll #’!
0: #’(LAMBDA (N) (BLOCK ! (IF # 1 #)))
1: (ZEROP N)
2: (* N (! (1- N)))
3: (1- N)
4: (! (1- N))
5: (* N (! (1- N)))
6: #’(LAMBDA (N) (BLOCK ! (IF # 1 #)))
0] br 2
(* N (! (1- N)))
1: 2 in !
Added.
0] q
common-lisp-user> (! 10) ; Call the function
*Breakpoint hit*
Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level.
Debug (type H for help)
(! 10) ; We are now in first call (arg 10) before the multiply
Source: (* N (! (1- N)))
3] st
*Step*
(! 10) ; We have finished evaluation of (1- n)
Source: (1- N)
3] st
*Breakpoint hit*
Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level.
Debug (type H for help)
(! 9) ; We hit the breakpoint in the recursive call
Source: (* N (! (1- N)))
3]
</PRE></BLOCKQUOTE><!--TOC section Function Tracing-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc102">3.10</A>  Function Tracing</H2><!--SEC END --><P>
<A NAME="@concept82"></A>
<A NAME="@concept83"></A></P><P>The tracer causes selected functions to print their arguments and
their results whenever they are called. Options allow conditional
printing of the trace information and conditional breakpoints on
function entry or exit.</P><P><BR>
<A NAME="@funs115"></A><A NAME="FN:trace"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>trace</TT> <TT class=code>{option global-value}</TT><SUP>*</SUP> <TT class=code>{name <TT class=code>{option
value}</TT><SUP>*</SUP>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>trace</TT><P> is a debugging tool that prints information when
specified functions are called. In its simplest form:
</P><BLOCKQUOTE class=example><PRE>
(trace <TT class=variable>name-1</TT> <TT class=variable>name-2</TT> ...)
</PRE></BLOCKQUOTE><TT class=code>trace</TT><P> causes a printout on <A NAME="@vars27"></A></P><TT class=code>*trace-output*</TT><P> each time
that one of the named functions is entered or returns (the
</P><TT class=variable>names</TT><P> are not evaluated.) Trace output is indented according
to the number of pending traced calls, and this trace depth is
printed at the beginning of each line of output. Printing verbosity
of arguments and return values is controlled by
<A NAME="@vars28"></A></P><TT class=code>*debug-print-level*</TT><P> and <A NAME="@vars29"></A></P><TT class=code>*debug-print-length*</TT><P>.</P><P>Local functions defined by </P><TT class=code>flet</TT><P> and </P><TT class=code>labels</TT><P> can be
traced using the syntax </P><TT class=code>(flet f f1 f2 ...)</TT><P> or </P><TT class=code>(labels f
f1 f2 ...)</TT><P> where </P><TT class=code>f</TT><P> is the </P><TT class=code>flet</TT><P> or </P><TT class=code>labels</TT><P>
function we want to trace and </P><TT class=code>f1</TT><P>, </P><TT class=code>f2</TT><P>, are the
functions containing the local function </P><TT class=code>f</TT><P>.
Invidiual methods can also be traced using the syntax </P><TT class=code>(method
<TT class=variable>name</TT> <TT class=variable>qualifiers</TT> <TT class=variable>specializers</TT>)</TT><P>.
See <A HREF="#sec:method-tracing">2.23.7</A> for more information.</P><P>If no </P><TT class=variable>names</TT><P> or </P><TT class=variable>options</TT><P> are are given, </P><TT class=code>trace</TT><P>
returns the list of all currently traced functions,
</P><TT class=code>*traced-function-list*</TT><P>.</P><P>Trace options can cause the normal printout to be suppressed, or
cause extra information to be printed. Each option is a pair of an
option keyword and a value form. Options may be interspersed with
function names. Options only affect tracing of the function whose
name they appear immediately after. Global options are specified
before the first name, and affect all functions traced by a given
use of </P><TT class=code>trace</TT><P>. If an already traced function is traced again,
any new options replace the old options. The following options are
defined:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:condition</TT> <TT class=variable>form</TT>, <TT class=code>:condition-after</TT> <TT class=variable>form</TT>,
<TT class=code>:condition-all</TT> <TT class=variable>form</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>:condition</TT> is specified,
then <TT class=code>trace</TT> does nothing unless <TT class=variable>form</TT> evaluates to true
at the time of the call. <TT class=code>:condition-after</TT> is similar, but
suppresses the initial printout, and is tested when the function
returns. <TT class=code>:condition-all</TT> tries both before and after.</DD><DT CLASS="dt-list"><TT class=code>:wherein</TT> <TT class=variable>names</TT><BR>
</DT><DD CLASS="dd-list"> If specified, <TT class=variable>names</TT> is a
function name or list of names. <TT class=code>trace</TT> does nothing unless
a call to one of those functions encloses the call to this
function (i.e. it would appear in a backtrace.) Anonymous
functions have string names like <TT class=code>"DEFUN FOO"</TT>. Individual
methods can also be traced. See section <A HREF="#sec:method-tracing">2.23.7</A>.</DD><DT CLASS="dt-list"><TT class=code>:wherein-only</TT> <TT class=variable>names</TT><BR>
</DT><DD CLASS="dd-list"> If specified, this is just
like <TT class=code>:wherein</TT>, but trace produces output only if the
immediate caller of the traced function is one of the functions
listed in <TT class=variable>names</TT>.</DD><DT CLASS="dt-list"><TT class=code>:break</TT> <TT class=variable>form</TT>, <TT class=code>:break-after</TT> <TT class=variable>form</TT>,
<TT class=code>:break-all</TT> <TT class=variable>form</TT><BR>
</DT><DD CLASS="dd-list"> If specified, and <TT class=variable>form</TT> evaluates
to true, then the debugger is invoked at the start of the
function, at the end of the function, or both, according to the
respective option.</DD><DT CLASS="dt-list"><TT class=code>:print</TT> <TT class=variable>form</TT>, <TT class=code>:print-after</TT> <TT class=variable>form</TT>,
<TT class=code>:print-all</TT> <TT class=variable>form</TT><BR>
</DT><DD CLASS="dd-list"> In addition to the usual printout, the
result of evaluating <TT class=variable>form</TT> is printed at the start of the
function, at the end of the function, or both, according to the
respective option. Multiple print options cause multiple values
to be printed.</DD><DT CLASS="dt-list"><TT class=code>:function</TT> <TT class=variable>function-form</TT><BR>
</DT><DD CLASS="dd-list"> This is a not really an
option, but rather another way of specifying what function to
trace. The <TT class=variable>function-form</TT> is evaluated immediately, and the
resulting function is traced.</DD><DT CLASS="dt-list"><TT class=code>:encapsulate <TT class=code>{:default | t | nil}</TT></TT><BR>
</DT><DD CLASS="dd-list"> In CMUCL,
tracing can be done either by temporarily redefining the function
name (encapsulation), or using breakpoints. When breakpoints are
used, the function object itself is destructively modified to
cause the tracing action. The advantage of using breakpoints is
that tracing works even when the function is anonymously called
via <TT class=code>funcall</TT>.<P>When </P><TT class=code>:encapsulate</TT><P> is true, tracing is done via encapsulation.
</P><TT class=code>:default</TT><P> is the default, and means to use encapsulation for
interpreted functions and funcallable instances, breakpoints
otherwise. When encapsulation is used, forms are <I>not</I>
evaluated in the function’s lexical environment, but
</P><TT class=code>debug:arg</TT><P> can still be used.</P><P>Note that if you trace using </P><TT class=code>:encapsulate</TT><P>, you will
only get a trace or breakpoint at the outermost call to the traced
function, not on recursive calls.</P></DD></DL><P>In the case of functions where the known return convention is used
to optimize, encapsulation may be necessary in order to make
tracing work at all. The symptom of this occurring is an error
stating
</P><BLOCKQUOTE class=example><PRE>
Error in function <TT class=variable>foo</TT>: :FUNCTION-END breakpoints are
currently unsupported for the known return convention.
</PRE></BLOCKQUOTE><P>
in such cases we recommend using </P><TT class=code>(trace <TT class=variable>foo</TT> :encapsulate
t)</TT><P><A NAME="@concept84"></A>
<A NAME="@concept85"></A>
<A NAME="@concept86"></A>
<A NAME="@concept87"></A>
<A NAME="@concept88"></A></P><TT class=code>:condition</TT><P>, </P><TT class=code>:break</TT><P> and </P><TT class=code>:print</TT><P> forms are evaluated in
the lexical environment of the called function; </P><TT class=code>debug:var</TT><P> and
</P><TT class=code>debug:arg</TT><P> can be used. The </P><TT class=code>-after</TT><P> and </P><TT class=code>-all</TT><P>
forms are evaluated in the null environment.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs116"></A><A NAME="FN:untrace"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>untrace</TT> <TT class=code>&rest</TT> <TT class=variable>function-names</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro turns off tracing for the specified functions, and
removes their names from </P><TT class=code>*traced-function-list*</TT><P>. If no
</P><TT class=variable>function-names</TT><P> are given, then all currently traced functions
are untraced.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars30"></A><A NAME="VR:traced-function-list"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*traced-function-list*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A list of function names maintained and used by </P><TT class=code>trace</TT><P>,
</P><TT class=code>untrace</TT><P>, and </P><TT class=code>untrace-all</TT><P>. This list should contain
the names of all functions currently being traced.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars31"></A><A NAME="VR:max-trace-indentation"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*max-trace-indentation*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The maximum number of spaces which should be used to indent trace
printout. This variable is initially set to 40.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars32"></A><A NAME="VR:trace-encapsulate-package-names"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>debug:</TT><TT class=function-name>*trace-encapsulate-package-names*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A list of package names. Functions from these packages are traced
using encapsulation instead of function-end breakpoints. This list
should at least include those packages containing functions used
directly or indirectly in the implementation of </P><TT class=code>trace</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Encapsulation Functions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc103">3.10.1</A>  Encapsulation Functions</H3><!--SEC END --><P>
<A NAME="@concept89"></A>
<A NAME="@concept90"></A></P><P>The encapsulation functions provide a mechanism for intercepting the
arguments and results of a function. </P><TT class=code>encapsulate</TT><P> changes the
function definition of a symbol, and saves it so that it can be
restored later. The new definition normally calls the original
definition. The Common Lisp <A NAME="@funs117"></A></P><TT class=code>fdefinition</TT><P> function always returns
the original definition, stripping off any encapsulation.</P><P>The original definition of the symbol can be restored at any time by
the </P><TT class=code>unencapsulate</TT><P> function. </P><TT class=code>encapsulate</TT><P> and </P><TT class=code>unencapsulate</TT><P>
allow a symbol to be multiply encapsulated in such a way that different
encapsulations can be completely transparent to each other.</P><P>Each encapsulation has a type which may be an arbitrary lisp object.
If a symbol has several encapsulations of different types, then any
one of them can be removed without affecting more recent ones.
A symbol may have more than one encapsulation of the same type, but
only the most recent one can be undone.</P><P><BR>
<A NAME="@funs118"></A><A NAME="FN:encapsulate"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>encapsulate</TT> <TT class=variable>symbol</TT> <TT class=variable>type</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Saves the current definition of </P><TT class=variable>symbol</TT><P>, and replaces it with a
function which returns the result of evaluating the form,
</P><TT class=variable>body</TT><P>. </P><TT class=variable>Type</TT><P> is an arbitrary lisp object which is the
type of encapsulation.</P><P>When the new function is called, the following variables are bound
for the evaluation of </P><TT class=variable>body</TT><P>:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>extensions:argument-list</TT><BR>
</DT><DD CLASS="dd-list"> A list of the arguments to
the function.</DD><DT CLASS="dt-list"><TT class=code>extensions:basic-definition</TT><BR>
</DT><DD CLASS="dd-list"> The unencapsulated
definition of the function.
</DD></DL><P>
The unencapsulated definition may be called with the original
arguments by including the form
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(apply extensions:basic-definition extensions:argument-list)
</PRE></BLOCKQUOTE><TT class=code>encapsulate</TT><P> always returns </P><TT class=variable>symbol</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs119"></A><A NAME="FN:unencapsulate"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>unencapsulate</TT> <TT class=variable>symbol</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Undoes </P><TT class=variable>symbol</TT><P>’s most recent encapsulation of type </P><TT class=variable>type</TT><P>.
</P><TT class=variable>Type</TT><P> is compared with </P><TT class=code>eq</TT><P>. Encapsulations of other
types are left in place.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs120"></A><A NAME="FN:encapsulated-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>encapsulated-p</TT> <TT class=variable>symbol</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Returns </P><TT class=code>t</TT><P> if </P><TT class=variable>symbol</TT><P> has an encapsulation of type
</P><TT class=variable>type</TT><P>. Returns </P><TT class=code>nil</TT><P> otherwise. </P><TT class=variable>type</TT><P> is compared with
</P><TT class=code>eq</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Tracing Examples-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc104">3.10.2</A>  Tracing Examples</H3><!--SEC END --><P>
Here is an example of tracing with some of the possible options.
For simplicity, this is the function:
</P><BLOCKQUOTE class=example><PRE>
(defun fact (n)
(declare (double-float n) (optimize speed))
(if (zerop n)
1d0
(* n (fact (1- n)))))
(compile ’fact)
</PRE></BLOCKQUOTE><P>This example shows how to use the :condition option:
</P><BLOCKQUOTE class=example><PRE>
(trace fact :condition (= 4d0 (debug:arg 0)))
(fact 10d0) ->
0: (FACT 4.0d0)
0: FACT returned 24.0d0
3628800.0d0
</PRE></BLOCKQUOTE><P>
As we can see, we produced output when the condition was satisfied.</P><P>Here’s another example:
</P><BLOCKQUOTE class=example><PRE>
(untrace)
(trace fact :break (= 4d0 (debug:arg 0)))
(fact 10d0) ->
0: (FACT 5.0d0)
1: (FACT 4.0d0)
Breaking before traced call to FACT:
[Condition of type SIMPLE-CONDITION]
Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level.
Debug (type H for help)
</PRE></BLOCKQUOTE><P>
In this example, we see that normal tracing occurs until we the
argument reaches 4d0, at which point, we break into the debugger.</P><!--TOC section Specials-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc105">3.11</A>  Specials</H2><!--SEC END --><P>
These are the special variables that control the debugger action.</P><P><BR>
<A NAME="@vars33"></A><A NAME="VR:debug-print-level"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>debug:</TT><TT class=function-name>*debug-print-level*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars34"></A><A NAME="VR:debug-print-length"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>debug:</TT><TT class=function-name>*debug-print-length*</TT>
</DIV><TT class=code>*print-level*</TT><P> and </P><TT class=code>*print-length*</TT><P> are bound to these
values during the execution of some debug commands. When evaluating
arbitrary expressions in the debugger, the normal values of
</P><TT class=code>*print-level*</TT><P> and </P><TT class=code>*print-length*</TT><P> are in effect. These
variables are initially set to 3 and 5, respectively.
</P></BLOCKQUOTE><!--NAME debugger.html-->
<!--BEGIN NOTES chapter-->
<HR CLASS="ffootnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note4" HREF="#text4">1</A></DT><DD CLASS="dd-thefootnotes">Since the location of an interrupt or hardware
error will always be an unknown location (see section <A HREF="#unknown-locations">3.3.6</A>),
non-argument variable values will never be available in the interrupted frame.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note5" HREF="#text5">2</A></DT><DD CLASS="dd-thefootnotes">The variable bindings are actually created using the Common Lisp
<TT class=code>symbol-macrolet</TT> special form.
</DD></DL>
<!--END NOTES-->
<!--TOC chapter The Compiler-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc106">Chapter 4</A>  The Compiler</H1><!--SEC END --><!--TOC section Compiler Introduction-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc107">4.1</A>  Compiler Introduction</H2><!--SEC END --><P>This chapter contains information about the compiler that every CMUCL user
should be familiar with. Chapter <A HREF="#advanced-compiler">5</A> goes into greater
depth, describing ways to use more advanced features.</P><P>The CMUCL compiler (also known as Python, not to be confused
with the programming language of the same name) has many features
that are seldom or never supported by conventional Common Lisp
compilers:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Source level debugging of compiled code (see chapter
<A HREF="#debugger">3</A>.)</LI><LI CLASS="li-itemize">Type error compiler warnings for type errors detectable at
compile time.</LI><LI CLASS="li-itemize">Compiler error messages that provide a good indication of where
the error appeared in the source.</LI><LI CLASS="li-itemize">Full run-time checking of all potential type errors, with
optimization of type checks to minimize the cost.</LI><LI CLASS="li-itemize">Scheme-like features such as proper tail recursion and extensive
source-level optimization.</LI><LI CLASS="li-itemize">Advanced tuning and optimization features such as comprehensive
efficiency notes, flow analysis, and untagged number representations
(see chapter <A HREF="#advanced-compiler">5</A>.)
</LI></UL><!--TOC section Calling the Compiler-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc108">4.2</A>  Calling the Compiler</H2><!--SEC END --><P>
<A NAME="@concept91"></A></P><P>Functions may be compiled using </P><TT class=code>compile</TT><P>, </P><TT class=code>compile-file</TT><P>, or
</P><TT class=code>compile-from-stream</TT><P>. </P><P><BR>
<A NAME="@funs121"></A><A NAME="FN:compile"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>compile</TT> <TT class=variable>name</TT> <TT class=code>&optional</TT> <TT class=variable>definition</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function compiles the function whose name is </P><TT class=variable>name</TT><P>. If
</P><TT class=variable>name</TT><P> is </P><TT class=code>nil</TT><P>, the compiled function object is returned. If
</P><TT class=variable>definition</TT><P> is supplied, it should be a lambda expression that
is to be compiled and then placed in the function cell of
</P><TT class=variable>name</TT><P>. As per the proposed X3J13 cleanup
“compile-argument-problems”, </P><TT class=variable>definition</TT><P> may also be an
interpreted function.</P><P>The return values are as per the proposed X3J13 cleanup
“compiler-diagnostics”. The first value is the function name or
function object. The second value is </P><TT class=code>nil</TT><P> if no compiler
diagnostics were issued, and </P><TT class=code>t</TT><P> otherwise. The third value is
</P><TT class=code>nil</TT><P> if no compiler diagnostics other than style warnings were
issued. A non-</P><TT class=code>nil</TT><P> value indicates that there were “serious”
compiler diagnostics issued, or that other conditions of type
<A NAME="@types19"></A></P><TT class=code>error</TT><P> or <A NAME="@types20"></A></P><TT class=code>warning</TT><P> (but not
<A NAME="@types21"></A></P><TT class=code>style-warning</TT><P>) were signaled during compilation.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs122"></A><A NAME="FN:compile-file"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>compile-file</TT>
<TT class=variable>input-pathname</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:output-file</TT> <TT class=code>:error-file</TT> <TT class=code>:trace-file</TT></SPAN><BR>
<TT class=code>:error-output</TT> <TT class=code>:verbose</TT> <TT class=code>:print</TT> <TT class=code>:progress</TT><BR>
<TT class=code>:load</TT> <TT class=code>:block-compile</TT> <TT class=code>:entry-points</TT><BR>
<TT class=code>:byte-compile</TT> <TT class=code>:xref</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The CMUCL </P><TT class=code>compile-file</TT><P> is extended through the addition of
several new keywords and an additional interpretation of
</P><TT class=variable>input-pathname</TT><P>:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=variable>input-pathname</TT><BR>
</DT><DD CLASS="dd-list"> If this argument is a list of input
files, rather than a single input pathname, then all the source
files are compiled into a single object file. In this case, the
name of the first file is used to determine the default output
file names. This is especially useful in combination with
<TT class=variable>block-compile</TT>.</DD><DT CLASS="dt-list"><TT class=code>:output-file</TT><BR>
</DT><DD CLASS="dd-list"> This argument specifies the name of the
output file. <TT class=code>t</TT> gives the default name, <TT class=code>nil</TT> suppresses
the output file.</DD><DT CLASS="dt-list"><TT class=code>:error-file</TT><BR>
</DT><DD CLASS="dd-list"> A listing of all the error output is
directed to this file. If there are no errors, then no error file
is produced (and any existing error file is deleted.) <TT class=code>t</TT>
gives "<TT class=variable>name</TT><TT class=code>.err</TT>" (the default), and <TT class=code>nil</TT>
suppresses the output file.</DD><DT CLASS="dt-list"><TT class=code>:error-output</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT> (the default), then error
output is sent to <TT class=code>*error-output*</TT>. If a stream, then output
is sent to that stream instead. If <TT class=code>nil</TT>, then error output is
suppressed. Note that this error output is in addition to (but
the same as) the output placed in the <TT class=variable>error-file</TT>.</DD><DT CLASS="dt-list"><TT class=code>:verbose</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT> (the default), then the compiler
prints to error output at the start and end of compilation of each
file. See <A NAME="@vars35"></A><TT class=code>*compile-verbose*</TT>.</DD><DT CLASS="dt-list"><TT class=code>:print</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT> (the default), then the compiler
prints to error output when each function is compiled. See
<A NAME="@vars36"></A><TT class=code>*compile-print*</TT>.</DD><DT CLASS="dt-list"><TT class=code>:progress</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT> (default <TT class=code>nil</TT>), then the
compiler prints to error output progress information about the
phases of compilation of each function. This is a CMUCL extension
that is useful mainly in large block compilations. See
<A NAME="@vars37"></A><TT class=code>*compile-progress*</TT>.</DD><DT CLASS="dt-list"><TT class=code>:trace-file</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT>, several of the intermediate
representations (including annotated assembly code) are dumped out
to this file. <TT class=code>t</TT> gives "<TT class=variable>name</TT><TT class=code>.trace</TT>". Trace
output is off by default. See section <A HREF="#trace-files">5.12.5</A>.</DD><DT CLASS="dt-list"><TT class=code>:load</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT>, load the resulting output file.</DD><DT CLASS="dt-list"><TT class=code>:block-compile</TT><BR>
</DT><DD CLASS="dd-list"> Controls the compile-time resolution of
function calls. By default, only self-recursive calls are
resolved, unless an <TT class=code>ext:block-start</TT> declaration appears in
the source file. See section <A HREF="#compile-file-block">5.7.3</A>.</DD><DT CLASS="dt-list"><TT class=code>:entry-points</TT><BR>
</DT><DD CLASS="dd-list"> If non-<TT class=code>nil</TT>, then this is a list of the
names of all functions in the file that should have global
definitions installed (because they are referenced in other
files.) See section <A HREF="#compile-file-block">5.7.3</A>.</DD><DT CLASS="dt-list"><TT class=code>:byte-compile</TT><BR>
</DT><DD CLASS="dd-list"> If <TT class=code>t</TT>, compiling to a compact
interpreted byte code is enabled. Possible values are <TT class=code>t</TT>,
<TT class=code>nil</TT>, and <TT class=code>:maybe</TT> (the default.) See
<A NAME="@vars38"></A><TT class=code>*byte-compile-default*</TT> and see section <A HREF="#byte-compile">5.9</A>.</DD><DT CLASS="dt-list"><TT class=code>:xref</TT><BR>
</DT><DD CLASS="dd-list"> If non-<TT class=code>nil</TT>, enable recording of cross-reference
information. The default is the value of
<TT class=code>c:*record-xref-info*</TT>. See section <A HREF="#xref">12</A>. Note that the
compiled fasl file will also contain cross-reference information
and loading the fasl later will populate the cross-reference database.
</DD></DL><P>The return values are as per the proposed X3J13 cleanup
“compiler-diagnostics”. The first value from </P><TT class=code>compile-file</TT><P>
is the truename of the output file, or </P><TT class=code>nil</TT><P> if the file could
not be created. The interpretation of the second and third values
is described above for </P><TT class=code>compile</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars39"></A><A NAME="VR:compile-verbose"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*compile-verbose*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars40"></A><A NAME="VR:compile-print"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*compile-print*</TT>
</DIV><P><A NAME="@vars41"></A><A NAME="VR:compile-progress"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*compile-progress*</TT>
</DIV><P>These variables determine the default values for the </P><TT class=code>:verbose</TT><P>,
</P><TT class=code>:print</TT><P> and </P><TT class=code>:progress</TT><P> arguments to </P><TT class=code>compile-file</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs123"></A><A NAME="FN:compile-from-stream"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>compile-from-stream</TT> <TT class=variable>input-stream</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:error-stream</TT></SPAN><BR>
<TT class=code>:trace-stream</TT><BR>
<TT class=code>:block-compile</TT> <TT class=code>:entry-points</TT><BR>
<TT class=code>:byte-compile</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function is similar to </P><TT class=code>compile-file</TT><P>, but it takes all
its arguments as streams. It reads Common Lisp code from
</P><TT class=variable>input-stream</TT><P> until end of file is reached, compiling into the
current environment. This function returns the same two values as
the last two values of </P><TT class=code>compile</TT><P>. No output files are
produced.
</P></BLOCKQUOTE><!--TOC section Compilation Units-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc109">4.3</A>  Compilation Units</H2><!--SEC END --><P>
<A NAME="@concept92"></A></P><P>CMUCL supports the </P><TT class=code>with-compilation-unit</TT><P> macro added to the
language by the X3J13 “with-compilation-unit” compiler cleanup
issue. This provides a mechanism for eliminating spurious undefined
warnings when there are forward references across files, and also
provides a standard way to access compiler extensions.</P><P><BR>
<A NAME="@funs124"></A><A NAME="FN:with-compilation-unit"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>with-compilation-unit</TT> (<TT class=code>{<TT class=variable>key</TT> <TT class=variable>value</TT>}</TT><SUP>*</SUP>) <TT class=code>{<TT class=variable>form</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro evaluates the </P><TT class=variable>forms</TT><P> in an environment that causes
warnings for undefined variables, functions and types to be delayed
until all the forms have been evaluated. Each keyword </P><TT class=variable>value</TT><P>
is an evaluated form. These keyword options are recognized:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:override</TT><BR>
</DT><DD CLASS="dd-list"> If uses of <TT class=code>with-compilation-unit</TT> are
dynamically nested, the outermost use will take precedence,
suppressing printing of undefined warnings by inner uses.
However, when the <TT class=code>override</TT> option is true this shadowing is
inhibited; an inner use will print summary warnings for the
compilations within the inner scope.</DD><DT CLASS="dt-list"><TT class=code>:optimize</TT><BR>
</DT><DD CLASS="dd-list"> This is a CMUCL extension that specifies of the
“global” compilation policy for the dynamic extent of the body.
The argument should evaluate to an <TT class=code>optimize</TT> declare form,
like:
<BLOCKQUOTE CLASS=lisp> <PRE>
(optimize (speed 3) (safety 0))
</PRE></BLOCKQUOTE>
See section <A HREF="#optimize-declaration">4.7.1</A></DD><DT CLASS="dt-list"><TT class=code>:optimize-interface</TT><BR>
</DT><DD CLASS="dd-list"> Similar to <TT class=code>:optimize</TT>, but
specifies the compilation policy for function interfaces (argument
count and type checking) for the dynamic extent of the body.
See section <A HREF="#optimize-interface-declaration">4.7.2</A>.</DD><DT CLASS="dt-list"><TT class=code>:context-declarations</TT><BR>
</DT><DD CLASS="dd-list"> This is a CMUCL extension that
pattern-matches on function names, automatically splicing in any
appropriate declarations at the head of the function definition.
See section <A HREF="#context-declarations">5.7.5</A>.
</DD></DL></BLOCKQUOTE><!--TOC subsection Undefined Warnings-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc110">4.3.1</A>  Undefined Warnings</H3><!--SEC END --><P><A NAME="@concept93"></A>
Warnings about undefined variables, functions and types are delayed until the
end of the current compilation unit. The compiler entry functions
(</P><TT class=code>compile</TT><P>, etc.) implicitly use </P><TT class=code>with-compilation-unit</TT><P>, so undefined
warnings will be printed at the end of the compilation unless there is an
enclosing </P><TT class=code>with-compilation-unit</TT><P>. In order the gain the benefit of this
mechanism, you should wrap a single </P><TT class=code>with-compilation-unit</TT><P> around the calls
to </P><TT class=code>compile-file</TT><P>, i.e.:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(with-compilation-unit ()
(compile-file "file1")
(compile-file "file2")
...)
</PRE></BLOCKQUOTE><P>Unlike for functions and types, undefined warnings for variables are
not suppressed when a definition (e.g. </P><TT class=code>defvar</TT><P>) appears after
the reference (but in the same compilation unit.) This is because
doing special declarations out of order just doesn’t
work—although early references will be compiled as special,
bindings will be done lexically.</P><P>Undefined warnings are printed with full source context
(see section <A HREF="#error-messages">4.4</A>), which tremendously simplifies the problem
of finding undefined references that resulted from macroexpansion.
After printing detailed information about the undefined uses of each
name, </P><TT class=code>with-compilation-unit</TT><P> also prints summary listings of the
names of all the undefined functions, types and variables.</P><P><BR>
<A NAME="@vars42"></A><A NAME="VR:undefined-warning-limit"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*undefined-warning-limit*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable controls the number of undefined warnings for each
distinct name that are printed with full source context when the
compilation unit ends. If there are more undefined references than
this, then they are condensed into a single warning:
</P><BLOCKQUOTE class=example><PRE>
Warning: <TT class=variable>count</TT> more uses of undefined function <TT class=variable>name</TT>.
</PRE></BLOCKQUOTE><P>
When the value is </P><TT class=code>0</TT><P>, then the undefined warnings are not
broken down by name at all: only the summary listing of undefined
names is printed.
</P></BLOCKQUOTE><!--TOC section Interpreting Error Messages-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc111">4.4</A>  Interpreting Error Messages</H2><!--SEC END --><P>
<A NAME="error-messages"></A>
<A NAME="@concept94"></A>
<A NAME="@concept95"></A></P><P>One of Python’s unique features is the level of source location
information it provides in error messages. The error messages contain
a lot of detail in a terse format, to they may be confusing at first.
Error messages will be illustrated using this example program:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defmacro zoq (x)
‘(roq (ploq (+ ,x 3))))
(defun foo (y)
(declare (symbol y))
(zoq y))
</PRE></BLOCKQUOTE><P>
The main problem with this program is that it is trying to add </P><TT class=code>3</TT><P> to a
symbol. Note also that the functions </P><TT class=code>roq</TT><P> and </P><TT class=code>ploq</TT><P> aren’t defined
anywhere.</P><!--TOC subsection The Parts of the Error Message-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc112">4.4.1</A>  The Parts of the Error Message</H3><!--SEC END --><P>The compiler will produce this warning:</P><BLOCKQUOTE class=example><PRE>
File: /usr/me/stuff.lisp
In: DEFUN FOO
(ZOQ Y)
–> ROQ PLOQ +
==>
Y
Warning: Result is a SYMBOL, not a NUMBER.
</PRE></BLOCKQUOTE><P>In this example we see each of the six possible parts of a compiler error
message:</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>File: /usr/me/stuff.lisp</TT><BR>
</DT><DD CLASS="dd-list"> This is the <TT class=variable>file</TT> that
the compiler read the relevant code from. The file name is
displayed because it may not be immediately obvious when there is an
error during compilation of a large system, especially when
<TT class=code>with-compilation-unit</TT> is used to delay undefined warnings.</DD><DT CLASS="dt-list"><TT class=code>In: DEFUN FOO</TT><BR>
</DT><DD CLASS="dd-list"> This is the <TT class=variable>definition</TT> or
top-level form responsible for the error. It is obtained by taking
the first two elements of the enclosing form whose first element is
a symbol beginning with “<TT class=code>DEF</TT>”. If there is no enclosing
<TT class=variable>def</TT>mumble, then the outermost form is used. If there are
multiple <TT class=variable>def</TT>mumbles, then they are all printed from the
out in, separated by <TT class=code>=></TT>’s. In this example, the problem
was in the <TT class=code>defun</TT> for <TT class=code>foo</TT>.</DD><DT CLASS="dt-list"><TT class=code>(ZOQ Y)</TT><BR>
</DT><DD CLASS="dd-list"> This is the <EM>original source</EM> form
responsible for the error. Original source means that the form
directly appeared in the original input to the compiler, i.e. in the
lambda passed to <TT class=code>compile</TT> or the top-level form read from the
source file. In this example, the expansion of the <TT class=code>zoq</TT> macro
was responsible for the error.</DD><DT CLASS="dt-list"><TT class=code>–> ROQ PLOQ +</TT><BR>
</DT><DD CLASS="dd-list"> This is the <EM>processing path</EM>
that the compiler used to produce the errorful code. The processing
path is a representation of the evaluated forms enclosing the actual
source that the compiler encountered when processing the original
source. The path is the first element of each form, or the form
itself if the form is not a list. These forms result from the
expansion of macros or source-to-source transformation done by the
compiler. In this example, the enclosing evaluated forms are the
calls to <TT class=code>roq</TT>, <TT class=code>ploq</TT> and <TT class=code>+</TT>. These calls resulted
from the expansion of the <TT class=code>zoq</TT> macro.</DD><DT CLASS="dt-list"><TT class=code>==> Y</TT><BR>
</DT><DD CLASS="dd-list"> This is the <EM>actual source</EM> responsible for
the error. If the actual source appears in the explanation, then we
print the next enclosing evaluated form, instead of printing the
actual source twice. (This is the form that would otherwise have
been the last form of the processing path.) In this example, the
problem is with the evaluation of the reference to the variable
<TT class=code>y</TT>.</DD><DT CLASS="dt-list"><TT class=code>Warning: Result is a SYMBOL, not a NUMBER.</TT><BR>
</DT><DD CLASS="dd-list"> This is
the <TT class=variable>explanation</TT> the problem. In this example, the problem is
that <TT class=code>y</TT> evaluates to a <TT class=code>symbol</TT>, but is in a context
where a number is required (the argument to <TT class=code>+</TT>).
</DD></DL><P>Note that each part of the error message is distinctively marked:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
<TT class=code>File:</TT> and <TT class=code>In:</TT> mark the file and definition,
respectively.</LI><LI CLASS="li-itemize">The original source is an indented form with no prefix.</LI><LI CLASS="li-itemize">Each line of the processing path is prefixed with <TT class=code>–></TT>.</LI><LI CLASS="li-itemize">The actual source form is indented like the original source, but
is marked by a preceding <TT class=code>==></TT> line. This is like the
“macroexpands to” notation used in <I>Common Lisp: The Language</I>.</LI><LI CLASS="li-itemize">The explanation is prefixed with the error severity
(see section <A HREF="#error-severity">4.4.4</A>), either <TT class=code>Error:</TT>, <TT class=code>Warning:</TT>, or
<TT class=code>Note:</TT>.
</LI></UL><P>Each part of the error message is more specific than the preceding
one. If consecutive error messages are for nearby locations, then the
front part of the error messages would be the same. In this case, the
compiler omits as much of the second message as in common with the
first. For example:</P><BLOCKQUOTE class=example><PRE>
File: /usr/me/stuff.lisp
In: DEFUN FOO
(ZOQ Y)
–> ROQ
==>
(PLOQ (+ Y 3))
Warning: Undefined function: PLOQ
==>
(ROQ (PLOQ (+ Y 3)))
Warning: Undefined function: ROQ
</PRE></BLOCKQUOTE><P>In this example, the file, definition and original source are
identical for the two messages, so the compiler omits them in the
second message. If consecutive messages are entirely identical, then
the compiler prints only the first message, followed by:</P><BLOCKQUOTE class=example><PRE>
[Last message occurs <TT class=variable>repeats</TT> times]
</PRE></BLOCKQUOTE><P>where </P><TT class=variable>repeats</TT><P> is the number of times the message was given.</P><P>If the source was not from a file, then no file line is printed. If
the actual source is the same as the original source, then the
processing path and actual source will be omitted. If no forms
intervene between the original source and the actual source, then the
processing path will also be omitted.</P><!--TOC subsection The Original and Actual Source-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc113">4.4.2</A>  The Original and Actual Source</H3><!--SEC END --><P>
<A NAME="@concept96"></A>
<A NAME="@concept97"></A></P><P>The <EM>original source</EM> displayed will almost always be a list. If the actual
source for an error message is a symbol, the original source will be the
immediately enclosing evaluated list form. So even if the offending symbol
does appear in the original source, the compiler will print the enclosing list
and then print the symbol as the actual source (as though the symbol were
introduced by a macro.)</P><P>When the <EM>actual source</EM> is displayed (and is not a symbol), it will always
be code that resulted from the expansion of a macro or a source-to-source
compiler optimization. This is code that did not appear in the original
source program; it was introduced by the compiler.</P><P>Keep in mind that when the compiler displays a source form in an error message,
it always displays the most specific (innermost) responsible form. For
example, compiling this function:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun bar (x)
(let (a)
(declare (fixnum a))
(setq a (foo x))
a))
</PRE></BLOCKQUOTE><P>gives this error message:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN BAR
(LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)
Warning: The binding of A is not a FIXNUM:
NIL
</PRE></BLOCKQUOTE><P>This error message is not saying “there’s a problem somewhere in this
</P><TT class=code>let</TT><P>”—it is saying that there is a problem with the
</P><TT class=code>let</TT><P> itself. In this example, the problem is that </P><TT class=code>a</TT><P>’s
</P><TT class=code>nil</TT><P> initial value is not a </P><TT class=code>fixnum</TT><P>.</P><!--TOC subsection The Processing Path-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc114">4.4.3</A>  The Processing Path</H3><!--SEC END --><P>
<A NAME="@concept98"></A>
<A NAME="@concept99"></A>
<A NAME="@concept100"></A></P><P>The processing path is mainly useful for debugging macros, so if you don’t
write macros, you can ignore the processing path. Consider this example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (n)
(dotimes (i n *undefined*)))
</PRE></BLOCKQUOTE><P>Compiling results in this error message:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(DOTIMES (I N *UNDEFINED*))
–> DO BLOCK LET TAGBODY RETURN-FROM
==>
(PROGN *UNDEFINED*)
Warning: Undefined variable: *UNDEFINED*
</PRE></BLOCKQUOTE><P>Note that </P><TT class=code>do</TT><P> appears in the processing path. This is because </P><TT class=code>dotimes</TT><P>
expands into:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(do ((i 0 (1+ i)) (#:g1 n))
((>= i #:g1) *undefined*)
(declare (type unsigned-byte i)))
</PRE></BLOCKQUOTE><P>The rest of the processing path results from the expansion of </P><TT class=code>do</TT><P>:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(block nil
(let ((i 0) (#:g1 n))
(declare (type unsigned-byte i))
(tagbody (go #:g3)
#:g2 (psetq i (1+ i))
#:g3 (unless (>= i #:g1) (go #:g2))
(return-from nil (progn *undefined*)))))
</PRE></BLOCKQUOTE><P>In this example, the compiler descended into the </P><TT class=code>block</TT><P>,
</P><TT class=code>let</TT><P>, </P><TT class=code>tagbody</TT><P> and </P><TT class=code>return-from</TT><P> to reach the
</P><TT class=code>progn</TT><P> printed as the actual source. This is a place where the
“actual source appears in explanation” rule was applied. The
innermost actual source form was the symbol </P><TT class=code>*undefined*</TT><P> itself,
but that also appeared in the explanation, so the compiler backed out
one level.</P><!--TOC subsection Error Severity-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc115">4.4.4</A>  Error Severity</H3><!--SEC END --><P>
<A NAME="error-severity"></A>
<A NAME="@concept101"></A>
<A NAME="@concept102"></A></P><P>There are three levels of compiler error severity:</P><DL CLASS="list"><DT CLASS="dt-list">
Error<BR>
</DT><DD CLASS="dd-list"> This severity is used when the compiler encounters a
problem serious enough to prevent normal processing of a form.
Instead of compiling the form, the compiler compiles a call to
<TT class=code>error</TT>. Errors are used mainly for signaling syntax errors.
If an error happens during macroexpansion, the compiler will handle
it. The compiler also handles and attempts to proceed from read
errors.</DD><DT CLASS="dt-list">Warning<BR>
</DT><DD CLASS="dd-list"> Warnings are used when the compiler can prove that
something bad will happen if a portion of the program is executed,
but the compiler can proceed by compiling code that signals an error
at runtime if the problem has not been fixed:
<UL CLASS="itemize"><LI CLASS="li-itemize">Violation of type declarations, or</LI><LI CLASS="li-itemize">Function calls that have the wrong number of arguments or
malformed keyword argument lists, or</LI><LI CLASS="li-itemize">Referencing a variable declared <TT class=code>ignore</TT>, or unrecognized
declaration specifiers.
</LI></UL><P>In the language of the Common Lisp standard, these are situations where
the compiler can determine that a situation with undefined
consequences or that would cause an error to be signaled would
result at runtime.</P></DD><DT CLASS="dt-list">Note<BR>
</DT><DD CLASS="dd-list"> Notes are used when there is something that seems a bit
odd, but that might reasonably appear in correct programs.
</DD></DL><P>Note that the compiler does not fully conform to the proposed X3J13
“compiler-diagnostics” cleanup. Errors, warnings and notes mostly
correspond to errors, warnings and style-warnings, but many things
that the cleanup considers to be style-warnings are printed as
warnings rather than notes. Also, warnings, style-warnings and most
errors aren’t really signaled using the condition system.</P><!--TOC subsection Errors During Macroexpansion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc116">4.4.5</A>  Errors During Macroexpansion</H3><!--SEC END --><P>
<A NAME="@concept103"></A></P><P>The compiler handles errors that happen during macroexpansion, turning
them into compiler errors. If you want to debug the error (to debug a
macro), you can set </P><TT class=code>*break-on-signals*</TT><P> to </P><TT class=code>error</TT><P>. For
example, this definition:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (e l)
(do ((current l (cdr current))
((atom current) nil))
(when (eq (car current) e) (return current))))
</PRE></BLOCKQUOTE><P>gives this error:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)) )
Error: (during macroexpansion)
Error in function LISP::DO-DO-BODY.
DO step variable is not a symbol: (ATOM CURRENT)
</PRE></BLOCKQUOTE><!--TOC subsection Read Errors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc117">4.4.6</A>  Read Errors</H3><!--SEC END --><P>
<A NAME="@concept104"></A></P><P>The compiler also handles errors while reading the source. For example:</P><BLOCKQUOTE class=example><PRE>
Error: Read error at 2:
"(,/\foo)"
Error in function LISP::COMMA-MACRO.
Comma not inside a backquote.
</PRE></BLOCKQUOTE><P>The “</P><TT class=code>at 2</TT><P>” refers to the character position in the source file at
which the error was signaled, which is generally immediately after the
erroneous text. The next line, “</P><TT class=code>(,/\foo)</TT><P>”, is the line in
the source that contains the error file position. The “</P><TT class=code>/\ </TT><P>”
indicates the error position within that line (in this example,
immediately after the offending comma.)</P><P>When in Hemlock (or any other EMACS-like editor), you can go to a
character position with:</P><BLOCKQUOTE class=example><PRE>
M-< C-u <TT class=variable>position</TT> C-f
</PRE></BLOCKQUOTE><P>Note that if the source is from a Hemlock buffer, then the position
is relative to the start of the compiled region or </P><TT class=code>defun</TT><P>, not the
file or buffer start.</P><P>After printing a read error message, the compiler attempts to recover from the
error by backing up to the start of the enclosing top-level form and reading
again with </P><TT class=code>*read-suppress*</TT><P> true. If the compiler can recover from the
error, then it substitutes a call to </P><TT class=code>cerror</TT><P> for the unreadable form and
proceeds to compile the rest of the file normally.</P><P>If there is a read error when the file position is at the end of the file
(i.e., an unexpected EOF error), then the error message looks like this:</P><BLOCKQUOTE class=example><PRE>
Error: Read error in form starting at 14:
"(defun test ()"
Error in function LISP::FLUSH-WHITESPACE.
EOF while reading #<Stream for file "/usr/me/test.lisp">
</PRE></BLOCKQUOTE><P>In this case, “</P><TT class=code>starting at 14</TT><P>” indicates the character
position at which the compiler started reading, i.e. the position
before the start of the form that was missing the closing delimiter.
The line "</P><TT class=code>(defun test ()</TT><P>" is first line after the starting
position that the compiler thinks might contain the unmatched open
delimiter.</P><!--TOC subsection Error Message Parameterization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc118">4.4.7</A>  Error Message Parameterization</H3><!--SEC END --><P>
<A NAME="@concept105"></A>
<A NAME="@concept106"></A></P><P>There is some control over the verbosity of error messages. See also
<A NAME="@vars43"></A></P><TT class=code>*undefined-warning-limit*</TT><P>, </P><TT class=code>*efficiency-note-limit*</TT><P> and
<A NAME="@vars44"></A></P><TT class=code>*efficiency-note-cost-threshold*</TT><P>.</P><P><BR>
<A NAME="@vars45"></A><A NAME="VR:enclosing-source-cutoff"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*enclosing-source-cutoff*</TT>
</DIV><BLOCKQUOTE CLASS="quote"> <P>This variable specifies the number of enclosing actual source forms
that are printed in full, rather than in the abbreviated processing
path format. Increasing the value from its default of </P><TT class=code>1</TT><P>
allows you to see more of the guts of the macroexpanded source,
which is useful when debugging macros.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars46"></A><A NAME="VR:error-print-length"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*error-print-length*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars47"></A><A NAME="VR:error-print-level"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*error-print-level*</TT>
</DIV><P>These variables are the print level and print length used in
printing error messages. The default values are </P><TT class=code>5</TT><P> and
</P><TT class=code>3</TT><P>. If null, the global values of </P><TT class=code>*print-level*</TT><P> and
</P><TT class=code>*print-length*</TT><P> are used.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs125"></A><A NAME="FN:def-source-context"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>def-source-context</TT> <TT class=variable>name</TT> <TT class=variable>lambda-list</TT> <TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro defines how to extract an abbreviated source context from
the </P><TT class=variable>name</TT><P>d form when it appears in the compiler input.
</P><TT class=variable>lambda-list</TT><P> is a </P><TT class=code>defmacro</TT><P> style lambda-list used to
parse the arguments. The </P><TT class=variable>body</TT><P> should return a list of
subforms that can be printed on about one line. There are
predefined methods for </P><TT class=code>defstruct</TT><P>, </P><TT class=code>defmethod</TT><P>, etc. If
no method is defined, then the first two subforms are returned.
Note that this facility implicitly determines the string name
associated with anonymous functions.
</P></BLOCKQUOTE><!--TOC section Types in Python-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc119">4.5</A>  Types in Python</H2><!--SEC END --><P>
<A NAME="@concept107"></A></P><P>A big difference between Python and all other Common Lisp compilers
is the approach to type checking and amount of knowledge about types:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Python treats type declarations much differently that other
Lisp compilers do. Python doesn’t blindly believe type
declarations; it considers them assertions about the program that
should be checked.</LI><LI CLASS="li-itemize">Python also has a tremendously greater knowledge of the
Common Lisp type system than other compilers. Support is incomplete
only for the <TT class=code>not</TT>, <TT class=code>and</TT> and <TT class=code>satisfies</TT> types.
</LI></UL><P>
See also sections <A HREF="#advanced-type-stuff">5.2</A> and <A HREF="#type-inference">5.3</A>.</P><!--TOC subsection Compile Time Type Errors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc120">4.5.1</A>  Compile Time Type Errors</H3><!--SEC END --><P>
<A NAME="@concept108"></A>
<A NAME="@concept109"></A></P><P>If the compiler can prove at compile time that some portion of the
program cannot be executed without a type error, then it will give a
warning at compile time. It is possible that the offending code would
never actually be executed at run-time due to some higher level
consistency constraint unknown to the compiler, so a type warning
doesn’t always indicate an incorrect program. For example, consider
this code fragment:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun raz (foo)
(let ((x (case foo
(:this 13)
(:that 9)
(:the-other 42))))
(declare (fixnum x))
(foo x)))
</PRE></BLOCKQUOTE><P>Compilation produces this warning:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN RAZ
(CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))
–> LET COND IF COND IF COND IF
==>
(COND)
Warning: This is not a FIXNUM:
NIL
</PRE></BLOCKQUOTE><P>In this case, the warning is telling you that if </P><TT class=code>foo</TT><P> isn’t any
of </P><TT class=code>:this</TT><P>, </P><TT class=code>:that</TT><P> or </P><TT class=code>:the-other</TT><P>, then </P><TT class=code>x</TT><P> will be
initialized to </P><TT class=code>nil</TT><P>, which the </P><TT class=code>fixnum</TT><P> declaration makes
illegal. The warning will go away if </P><TT class=code>ecase</TT><P> is used instead of
</P><TT class=code>case</TT><P>, or if </P><TT class=code>:the-other</TT><P> is changed to </P><TT class=code>t</TT><P>.</P><P>This sort of spurious type warning happens moderately often in the
expansion of complex macros and in inline functions. In such cases,
there may be dead code that is impossible to correctly execute. The
compiler can’t always prove this code is dead (could never be
executed), so it compiles the erroneous code (which will always signal
an error if it is executed) and gives a warning.</P><P><BR>
<A NAME="@funs126"></A><A NAME="FN:required-argument"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>required-argument</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function can be used as the default value for keyword arguments
that must always be supplied. Since it is known by the compiler to
never return, it will avoid any compile-time type warnings that
would result from a default value inconsistent with the declared
type. When this function is called, it signals an error indicating
that a required keyword argument was not supplied. This function is
also useful for </P><TT class=code>defstruct</TT><P> slot defaults corresponding to
required arguments. See section <A HREF="#empty-type">5.2.5</A>.</P><P>Although this function is a CMUCL extension, it is relatively harmless
to use it in otherwise portable code, since you can easily define it
yourself:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun required-argument ()
(error "A required keyword argument was not supplied."))
</PRE></BLOCKQUOTE></BLOCKQUOTE><P>Type warnings are inhibited when the
</P><TT class=code>extensions:inhibit-warnings</TT><P> optimization quality is </P><TT class=code>3</TT><P>
(see section <A HREF="#compiler-policy">4.7</A>.) This can be used in a local declaration
to inhibit type warnings in a code fragment that has spurious
warnings.</P><!--TOC subsection Precise Type Checking-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc121">4.5.2</A>  Precise Type Checking</H3><!--SEC END --><P>
<A NAME="precise-type-checks"></A>
<A NAME="@concept110"></A>
<A NAME="@concept111"></A></P><P>With the default compilation policy, all type
assertions<SUP><A NAME="text6" HREF="#note6">1</A></SUP> are precisely
checked. Precise checking means that the check is done as though
</P><TT class=code>typep</TT><P> had been called with the exact type specifier that
appeared in the declaration. Python uses </P><TT class=variable>policy</TT><P> to determine
whether to trust type assertions (see section <A HREF="#compiler-policy">4.7</A>). Type
assertions from declarations are indistinguishable from the type
assertions on arguments to built-in functions. In Python, adding
type declarations makes code safer.</P><P>If a variable is declared to be </P><TT class=code>(integer 3 17)</TT><P>, then its
value must always always be an integer between </P><TT class=code>3</TT><P> and </P><TT class=code>17</TT><P>.
If multiple type declarations apply to a single variable, then all the
declarations must be correct; it is as though all the types were
intersected producing a single </P><TT class=code>and</TT><P> type specifier.</P><P>Argument type declarations are automatically enforced. If you declare
the type of a function argument, a type check will be done when that
function is called. In a function call, the called function does the
argument type checking, which means that a more restrictive type
assertion in the calling function (e.g., from </P><TT class=code>the</TT><P>) may be lost.</P><P>The types of structure slots are also checked. The value of a
structure slot must always be of the type indicated in any </P><TT class=code>:type</TT><P>
slot option.<SUP><A NAME="text7" HREF="#note7">2</A></SUP> Because of precise type checking,
the arguments to slot accessors are checked to be the correct type of
structure.</P><P>In traditional Common Lisp compilers, not all type assertions are
checked, and type checks are not precise. Traditional compilers
blindly trust explicit type declarations, but may check the argument
type assertions for built-in functions. Type checking is not precise,
since the argument type checks will be for the most general type legal
for that argument. In many systems, type declarations suppress what
little type checking is being done, so adding type declarations makes
code unsafe. This is a problem since it discourages writing type
declarations during initial coding. In addition to being more error
prone, adding type declarations during tuning also loses all the
benefits of debugging with checked type assertions.</P><P>To gain maximum benefit from Python’s type checking, you should
always declare the types of function arguments and structure slots as
precisely as possible. This often involves the use of </P><TT class=code>or</TT><P>,
</P><TT class=code>member</TT><P> and other list-style type specifiers. Paradoxically,
even though adding type declarations introduces type checks, it
usually reduces the overall amount of type checking. This is
especially true for structure slot type declarations.</P><P>Python uses the </P><TT class=code>safety</TT><P> optimization quality (rather than
presence or absence of declarations) to choose one of three levels of
run-time type error checking: see section <A HREF="#optimize-declaration">4.7.1</A>.
See section <A HREF="#advanced-type-stuff">5.2</A> for more information about types in
Python.</P><!--TOC subsection Weakened Type Checking-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc122">4.5.3</A>  Weakened Type Checking</H3><!--SEC END --><P>
<A NAME="weakened-type-checks"></A>
<A NAME="@concept112"></A>
<A NAME="@concept113"></A></P><P>When the value for the </P><TT class=code>speed</TT><P> optimization quality is greater
than </P><TT class=code>safety</TT><P>, and </P><TT class=code>safety</TT><P> is not </P><TT class=code>0</TT><P>, then type
checking is weakened to reduce the speed and space penalty. In
structure-intensive code this can double the speed, yet still catch
most type errors. Weakened type checks provide a level of safety
similar to that of “safe” code in other Common Lisp compilers.</P><P>A type check is weakened by changing the check to be for some
convenient supertype of the asserted type. For example,
</P><TT class=code>(integer 3 17)</TT><P> is changed to </P><TT class=code>fixnum</TT><P>,
</P><TT class=code>(simple-vector 17)</TT><P> to </P><TT class=code>simple-vector</TT><P>, and structure
types are changed to </P><TT class=code>structure</TT><P>. A complex check like:
</P><BLOCKQUOTE class=example><PRE>
(or node hunk (member :foo :bar :baz))
</PRE></BLOCKQUOTE><P>
will be omitted entirely (i.e., the check is weakened to </P><TT class=code>*</TT><P>.) If
a precise check can be done for no extra cost, then no weakening is
done.</P><P>Although weakened type checking is similar to type checking done by
other compilers, it is sometimes safer and sometimes less safe.
Weakened checks are done in the same places is precise checks, so all
the preceding discussion about where checking is done still applies.
Weakened checking is sometimes somewhat unsafe because although the
check is weakened, the precise type is still input into type
inference. In some contexts this will result in type inferences not
justified by the weakened check, and hence deletion of some type
checks that would be done by conventional compilers.</P><P>For example, if this code was compiled with weakened checks:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct foo
(a nil :type simple-string))
(defstruct bar
(a nil :type single-float))
(defun myfun (x)
(declare (type bar x))
(* (bar-a x) 3.0))
</PRE></BLOCKQUOTE><P>and </P><TT class=code>myfun</TT><P> was passed a </P><TT class=code>foo</TT><P>, then no type error would be
signaled, and we would try to multiply a </P><TT class=code>simple-vector</TT><P> as
though it were a float (with unpredictable results.) This is because
the check for </P><TT class=code>bar</TT><P> was weakened to </P><TT class=code>structure</TT><P>, yet when
compiling the call to </P><TT class=code>bar-a</TT><P>, the compiler thinks it knows it
has a </P><TT class=code>bar</TT><P>.</P><P>Note that normally even weakened type checks report the precise type
in error messages. For example, if </P><TT class=code>myfun</TT><P>’s </P><TT class=code>bar</TT><P> check is
weakened to </P><TT class=code>structure</TT><P>, and the argument is </P><TT class=code>nil</TT><P>, then the
error will be:</P><BLOCKQUOTE class=example><PRE>
Type-error in MYFUN:
NIL is not of type BAR
</PRE></BLOCKQUOTE><P>However, there is some speed and space cost for signaling a precise
error, so the weakened type is reported if the </P><TT class=code>speed</TT><P>
optimization quality is </P><TT class=code>3</TT><P> or </P><TT class=code>debug</TT><P> quality is less than
</P><TT class=code>1</TT><P>:</P><BLOCKQUOTE class=example><PRE>
Type-error in MYFUN:
NIL is not of type STRUCTURE
</PRE></BLOCKQUOTE><P>See section <A HREF="#optimize-declaration">4.7.1</A> for further discussion of the
</P><TT class=code>optimize</TT><P> declaration.</P><!--TOC section Getting Existing Programs to Run-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc123">4.6</A>  Getting Existing Programs to Run</H2><!--SEC END --><P>
<A NAME="@concept114"></A>
<A NAME="@concept115"></A>
<A NAME="@concept116"></A></P><P>Since Python does much more comprehensive type checking than other
Lisp compilers, Python will detect type errors in many programs
that have been debugged using other compilers. These errors are
mostly incorrect declarations, although compile-time type errors can
find actual bugs if parts of the program have never been tested.</P><P>Some incorrect declarations can only be detected by run-time type
checking. It is very important to initially compile programs with
full type checks and then test this version. After the checking
version has been tested, then you can consider weakening or
eliminating type checks. <B>This applies even to previously debugged
programs.</B> Python does much more type inference than other
Common Lisp compilers, so believing an incorrect declaration does much
more damage.</P><P>The most common problem is with variables whose initial value doesn’t
match the type declaration. Incorrect initial values will always be
flagged by a compile-time type error, and they are simple to fix once
located. Consider this code fragment:</P><BLOCKQUOTE class=example><PRE>
(prog (foo)
(declare (fixnum foo))
(setq foo ...)
...)
</PRE></BLOCKQUOTE><P>Here the variable </P><TT class=code>foo</TT><P> is given an initial value of </P><TT class=code>nil</TT><P>, but
is declared to be a </P><TT class=code>fixnum</TT><P>. Even if it is never read, the
initial value of a variable must match the declared type. There are
two ways to fix this problem. Change the declaration:</P><BLOCKQUOTE class=example><PRE>
(prog (foo)
(declare (type (or fixnum null) foo))
(setq foo ...)
...)
</PRE></BLOCKQUOTE><P>or change the initial value:</P><BLOCKQUOTE class=example><PRE>
(prog ((foo 0))
(declare (fixnum foo))
(setq foo ...)
...)
</PRE></BLOCKQUOTE><P>It is generally preferable to change to a legal initial value rather
than to weaken the declaration, but sometimes it is simpler to weaken
the declaration than to try to make an initial value of the
appropriate type.</P><P>Another declaration problem occasionally encountered is incorrect
declarations on </P><TT class=code>defmacro</TT><P> arguments. This probably usually
happens when a function is converted into a macro. Consider this
macro:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defmacro my-1+ (x)
(declare (fixnum x))
‘(the fixnum (1+ ,x)))
</PRE></BLOCKQUOTE><P>Although legal and well-defined Common Lisp, this meaning of this
definition is almost certainly not what the writer intended. For
example, this call is illegal:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(my-1+ (+ 4 5))
</PRE></BLOCKQUOTE><P>The call is illegal because the argument to the macro is </P><TT class=code>(+ 4
5)</TT><P>, which is a </P><TT class=code>list</TT><P>, not a </P><TT class=code>fixnum</TT><P>. Because of
macro semantics, it is hardly ever useful to declare the types of
macro arguments. If you really want to assert something about the
type of the result of evaluating a macro argument, then put a
</P><TT class=code>the</TT><P> in the expansion:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defmacro my-1+ (x)
‘(the fixnum (1+ (the fixnum ,x))))
</PRE></BLOCKQUOTE><P>In this case, it would be stylistically preferable to change this
macro back to a function and declare it inline. Macros have no
efficiency advantage over inline functions when using Python.
See section <A HREF="#inline-expansion">5.8</A>.</P><P>Some more subtle problems are caused by incorrect declarations that
can’t be detected at compile time. Consider this code:</P><BLOCKQUOTE class=example><PRE>
(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))
(declare (fixnum pos))
...)
</PRE></BLOCKQUOTE><P>Although </P><TT class=code>pos</TT><P> is almost always a </P><TT class=code>fixnum</TT><P>, it is </P><TT class=code>nil</TT><P>
at the end of the loop. If this example is compiled with full type
checks (the default), then running it will signal a type error at the
end of the loop. If compiled without type checks, the program will go
into an infinite loop (or perhaps </P><TT class=code>position</TT><P> will complain
because </P><TT class=code>(1+ nil)</TT><P> isn’t a sensible start.) Why? Because if
you compile without type checks, the compiler just quietly believes
the type declaration. Since </P><TT class=code>pos</TT><P> is always a </P><TT class=code>fixnum</TT><P>, it
is never </P><TT class=code>nil</TT><P>, so </P><TT class=code>(null pos)</TT><P> is never true, and the loop
exit test is optimized away. Such errors are sometimes flagged by
unreachable code notes (see section <A HREF="#dead-code-notes">5.4.5</A>), but it is still
important to initially compile any system with full type checks, even
if the system works fine when compiled using other compilers.</P><P>In this case, the fix is to weaken the type declaration to
</P><TT class=code>(or fixnum null)</TT><P>.<SUP><A NAME="text8" HREF="#note8">3</A></SUP>
Note that there is usually little performance penalty for weakening a
declaration in this way. Any numeric operations in the body can still
assume the variable is a </P><TT class=code>fixnum</TT><P>, since </P><TT class=code>nil</TT><P> is not a legal
numeric argument. Another possible fix would be to say:</P><BLOCKQUOTE class=example><PRE>
(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))
(let ((pos pos))
(declare (fixnum pos))
...))
</PRE></BLOCKQUOTE><P>This would be preferable in some circumstances, since it would allow a
non-standard representation to be used for the local </P><TT class=code>pos</TT><P>
variable in the loop body (see section <A HREF="#ND-variables">5.11.3</A>.)</P><P>In summary, remember that <EM>all</EM> values that a variable <EM>ever</EM>
has must be of the declared type, and that you should test using safe
code initially.</P><!--TOC section Compiler Policy-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc124">4.7</A>  Compiler Policy</H2><!--SEC END --><P>
<A NAME="compiler-policy"></A>
<A NAME="@concept117"></A>
<A NAME="@concept118"></A></P><P>The policy is what tells the compiler </P><TT class=variable>how</TT><P> to compile a program.
This is logically (and often textually) distinct from the program
itself. Broad control of policy is provided by the </P><TT class=code>optimize</TT><P>
declaration; other declarations and variables control more specific
aspects of compilation.</P><!--TOC subsection The Optimize Declaration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc125">4.7.1</A>  The Optimize Declaration</H3><!--SEC END --><P>
<A NAME="optimize-declaration"></A>
<A NAME="@concept119"></A>
<A NAME="@concept120"></A></P><P>The </P><TT class=code>optimize</TT><P> declaration recognizes six different
</P><TT class=variable>qualities</TT><P>. The qualities are conceptually independent aspects
of program performance. In reality, increasing one quality tends to
have adverse effects on other qualities. The compiler compares the
relative values of qualities when it needs to make a trade-off; i.e.,
if </P><TT class=code>speed</TT><P> is greater than </P><TT class=code>safety</TT><P>, then improve speed at
the cost of safety.</P><P>The default for all qualities (except </P><TT class=code>debug</TT><P>) is </P><TT class=code>1</TT><P>.
Whenever qualities are equal, ties are broken according to a broad
idea of what a good default environment is supposed to be. Generally
this downplays </P><TT class=code>speed</TT><P>, </P><TT class=code>compile-speed</TT><P> and </P><TT class=code>space</TT><P> in
favor of </P><TT class=code>safety</TT><P> and </P><TT class=code>debug</TT><P>. Novice and casual users
should stick to the default policy. Advanced users often want to
improve speed and memory usage at the cost of safety and
debuggability.</P><P>If the value for a quality is </P><TT class=code>0</TT><P> or </P><TT class=code>3</TT><P>, then it may have a
special interpretation. A value of </P><TT class=code>0</TT><P> means “totally
unimportant”, and a </P><TT class=code>3</TT><P> means “ultimately important.” These
extreme optimization values enable “heroic” compilation strategies
that are not always desirable and sometimes self-defeating.
Specifying more than one quality as </P><TT class=code>3</TT><P> is not desirable, since
it doesn’t tell the compiler which quality is most important.</P><P>These are the optimization qualities:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>speed</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept121"></A>How fast the
program should is run. <TT class=code>speed 3</TT> enables some optimizations
that hurt debuggability.</DD><DT CLASS="dt-list"><TT class=code>compilation-speed</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept122"></A>How fast the compiler should run. Note that increasing
this above <TT class=code>safety</TT> weakens type checking.</DD><DT CLASS="dt-list"><TT class=code>space</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept123"></A>How much space
the compiled code should take up. Inline expansion is mostly
inhibited when <TT class=code>space</TT> is greater than <TT class=code>speed</TT>. A value
of <TT class=code>0</TT> enables promiscuous inline expansion. Wide use of a
<TT class=code>0</TT> value is not recommended, as it may waste so much space
that run time is slowed. See section <A HREF="#inline-expansion">5.8</A> for a discussion
of inline expansion.</DD><DT CLASS="dt-list"><TT class=code>debug</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept124"></A>How debuggable
the program should be. The quality is treated differently from the
other qualities: each value indicates a particular level of debugger
information; it is not compared with the other qualities.
See section <A HREF="#debugger-policy">3.6</A> for more details.</DD><DT CLASS="dt-list"><TT class=code>safety</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept125"></A>How much
error checking should be done. If <TT class=code>speed</TT>, <TT class=code>space</TT> or
<TT class=code>compilation-speed</TT> is more important than <TT class=code>safety</TT>, then
type checking is weakened (see section <A HREF="#weakened-type-checks">4.5.3</A>). If
<TT class=code>safety</TT> if <TT class=code>0</TT>, then no run time error checking is done.
In addition to suppressing type checks, <TT class=code>0</TT> also suppresses
argument count checking, unbound-symbol checking and array bounds
checks.</DD><DT CLASS="dt-list"><TT class=code>extensions:inhibit-warnings</TT><BR>
</DT><DD CLASS="dd-list"> <A NAME="@concept126"></A>This is a CMUCL extension that determines how
little (or how much) diagnostic output should be printed during
compilation. This quality is compared to other qualities to
determine whether to print style notes and warnings concerning those
qualities. If <TT class=code>speed</TT> is greater than <TT class=code>inhibit-warnings</TT>,
then notes about how to improve speed will be printed, etc. The
default value is <TT class=code>1</TT>, so raising the value for any standard
quality above its default enables notes for that quality. If
<TT class=code>inhibit-warnings</TT> is <TT class=code>3</TT>, then all notes and most
non-serious warnings are inhibited. This is useful with
<TT class=code>declare</TT> to suppress warnings about unavoidable problems.
</DD></DL><!--TOC subsection The Optimize-Interface Declaration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc126">4.7.2</A>  The Optimize-Interface Declaration</H3><!--SEC END --><P>
<A NAME="optimize-interface-declaration"></A>
<A NAME="@concept127"></A>
<A NAME="@concept128"></A></P><P>The </P><TT class=code>extensions:optimize-interface</TT><P> declaration is identical in
syntax to the </P><TT class=code>optimize</TT><P> declaration, but it specifies the policy
used during compilation of code the compiler automatically generates
to check the number and type of arguments supplied to a function. It
is useful to specify this policy separately, since even thoroughly
debugged functions are vulnerable to being passed the wrong arguments.
The </P><TT class=code>optimize-interface</TT><P> declaration can specify that arguments
should be checked even when the general </P><TT class=code>optimize</TT><P> policy is
unsafe.</P><P>Note that this argument checking is the checking of user-supplied
arguments to any functions defined within the scope of the
declaration, </P><TT class=code>not</TT><P> the checking of arguments to Common Lisp
primitives that appear in those definitions.</P><P>The idea behind this declaration is that it allows the definition of
functions that appear fully safe to other callers, but that do no
internal error checking. Of course, it is possible that arguments may
be invalid in ways other than having incorrect type. Functions
compiled unsafely must still protect themselves against things like
user-supplied array indices that are out of bounds and improper lists.
See also the </P><TT class=code>:context-declarations</TT><P> option to
<A NAME="@funs127"></A></P><TT class=code>with-compilation-unit</TT><P>.</P><!--TOC section Open Coding and Inline Expansion-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc127">4.8</A>  Open Coding and Inline Expansion</H2><!--SEC END --><P>
<A NAME="open-coding"></A>
<A NAME="@concept129"></A>
<A NAME="@concept130"></A>
<A NAME="@concept131"></A></P><P>Since Common Lisp forbids the redefinition of standard functions<SUP><A NAME="text9" HREF="#note9">4</A></SUP>, the compiler can have
special knowledge of these standard functions embedded in it. This special
knowledge is used in various ways (open coding, inline expansion, source
transformation), but the implications to the user are basically the same:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Attempts to redefine standard functions may be frustrated, since
the function may never be called. Although it is technically
illegal to redefine standard functions, users sometimes want to
implicitly redefine these functions when they are debugging using
the <TT class=code>trace</TT> macro. Special-casing of standard functions can be
inhibited using the <TT class=code>notinline</TT> declaration.</LI><LI CLASS="li-itemize">The compiler can have multiple alternate implementations of
standard functions that implement different trade-offs of speed,
space and safety. This selection is based on the compiler policy,
see section <A HREF="#compiler-policy">4.7</A>.
</LI></UL><P>When a function call is <EM>open coded</EM>, inline code whose effect is
equivalent to the function call is substituted for that function call.
When a function call is <EM>closed coded</EM>, it is usually left as is,
although it might be turned into a call to a different function with
different arguments. As an example, if </P><TT class=code>nthcdr</TT><P> were to be open
coded, then</P><BLOCKQUOTE CLASS=lisp> <PRE>
(nthcdr 4 foobar)
</PRE></BLOCKQUOTE><P>might turn into</P><BLOCKQUOTE CLASS=lisp> <PRE>
(cdr (cdr (cdr (cdr foobar))))
</PRE></BLOCKQUOTE><P>or even </P><BLOCKQUOTE CLASS=lisp> <PRE>
(do ((i 0 (1+ i))
(list foobar (cdr foobar)))
((= i 4) list))
</PRE></BLOCKQUOTE><P>If </P><TT class=code>nth</TT><P> is closed coded, then</P><BLOCKQUOTE CLASS=lisp> <PRE>
(nth x l)
</PRE></BLOCKQUOTE><P>might stay the same, or turn into something like:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(car (nthcdr x l))
</PRE></BLOCKQUOTE><P>In general, open coding sacrifices space for speed, but some functions (such as
</P><TT class=code>car</TT><P>) are so simple that they are always open-coded. Even when not
open-coded, a call to a standard function may be transformed into a
different function call (as in the last example) or compiled as <EM>static call</EM>. Static function call uses a more efficient calling
convention that forbids redefinition.
</P><!--NAME compiler.html-->
<!--BEGIN NOTES chapter-->
<HR CLASS="ffootnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note6" HREF="#text6">1</A></DT><DD CLASS="dd-thefootnotes">There are a few circumstances where a type
declaration is discarded rather than being used as type assertion.
This doesn’t affect safety much, since such discarded declarations
are also not believed to be true by the compiler.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note7" HREF="#text7">2</A></DT><DD CLASS="dd-thefootnotes">The initial value need not be of this type as
long as the corresponding argument to the constructor is always
supplied, but this will cause a compile-time type warning unless
<TT class=code>required-argument</TT> is used.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note8" HREF="#text8">3</A></DT><DD CLASS="dd-thefootnotes">Actually, this declaration is
totally unnecessary in Python, since it already knows
<TT class=code>position</TT> returns a non-negative <TT class=code>fixnum</TT> or <TT class=code>nil</TT>.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note9" HREF="#text9">4</A></DT><DD CLASS="dd-thefootnotes">See the
proposed X3J13 “lisp-symbol-redefinition” cleanup.
</DD></DL>
<!--END NOTES-->
<!--TOC chapter Advanced Compiler Use and Efficiency Hints-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc128">Chapter 5</A>  Advanced Compiler Use and Efficiency Hints</H1><!--SEC END --><P>
<A NAME="advanced-compiler"></A></P><DIV CLASS="center">
<B>by Robert MacLachlan</B>
</DIV><!--TOC section Advanced Compiler Introduction-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc129">5.1</A>  Advanced Compiler Introduction</H2><!--SEC END --><P>In CMUCL, as with any language on any computer, the path to efficient
code starts with good algorithms and sensible programming techniques,
but to avoid inefficiency pitfalls, you need to know some of this
implementation’s quirks and features. This chapter is mostly a fairly
long and detailed overview of what optimizations Python does.
Although there are the usual negative suggestions of inefficient
features to avoid, the main emphasis is on describing the things that
programmers can count on being efficient.</P><P>The optimizations described here can have the effect of speeding up
existing programs written in conventional styles, but the potential
for new programming styles that are clearer and less error-prone is at
least as significant. For this reason, several sections end with a
discussion of the implications of these optimizations for programming
style.</P><!--TOC subsection Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc130">5.1.1</A>  Types</H3><!--SEC END --><P>Python’s support for types is unusual in three major ways:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Precise type checking encourages the specific use of type
declarations as a form of run-time consistency checking. This
speeds development by localizing type errors and giving more
meaningful error messages. See section <A HREF="#precise-type-checks">4.5.2</A>. Python
produces completely safe code; optimized type checking maintains
reasonable efficiency on conventional hardware
(see section <A HREF="#type-check-optimization">5.3.6</A>.)</LI><LI CLASS="li-itemize">Comprehensive support for the Common Lisp type system makes complex
type specifiers useful. Using type specifiers such as <TT class=code>or</TT> and
<TT class=code>member</TT> has both efficiency and robustness advantages.
See section <A HREF="#advanced-type-stuff">5.2</A>.</LI><LI CLASS="li-itemize">Type inference eliminates the need for some declarations, and
also aids compile-time detection of type errors. Given detailed
type declarations, type inference can often eliminate type checks
and enable more efficient object representations and code sequences.
Checking all types results in fewer type checks. See sections
<A HREF="#type-inference">5.3</A> and <A HREF="#non-descriptor">5.11.2</A>.
</LI></UL><!--TOC subsection Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc131">5.1.2</A>  Optimization</H3><!--SEC END --><P>The main barrier to efficient Lisp programs is not that there is no
efficient way to code the program in Lisp, but that it is difficult to
arrive at that efficient coding. Common Lisp is a highly complex
language, and usually has many semantically equivalent “reasonable”
ways to code a given problem. It is desirable to make all of these
equivalent solutions have comparable efficiency so that programmers
don’t have to waste time discovering the most efficient solution.</P><P>Source level optimization increases the number of efficient ways to
solve a problem. This effect is much larger than the increase in the
efficiency of the “best” solution. Source level optimization
transforms the original program into a more efficient (but equivalent)
program. Although the optimizer isn’t doing anything the programmer
couldn’t have done, this high-level optimization is important because:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The programmer can code simply and directly, rather than
obfuscating code to please the compiler.</LI><LI CLASS="li-itemize">When presented with a choice of similar coding alternatives, the
programmer can chose whichever happens to be most convenient,
instead of worrying about which is most efficient.
</LI></UL><P>Source level optimization eliminates the need for macros to optimize
their expansion, and also increases the effectiveness of inline
expansion. See sections <A HREF="#source-optimization">5.4</A> and
<A HREF="#inline-expansion">5.8</A>.</P><P>Efficient support for a safer programming style is the biggest
advantage of source level optimization. Existing tuned programs
typically won’t benefit much from source optimization, since their
source has already been optimized by hand. However, even tuned
programs tend to run faster under Python because:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Low level optimization and register allocation provides modest
speedups in any program.</LI><LI CLASS="li-itemize">Block compilation and inline expansion can reduce function call
overhead, but may require some program restructuring. See sections
<A HREF="#inline-expansion">5.8</A>, <A HREF="#local-call">5.6</A> and
<A HREF="#block-compilation">5.7</A>.</LI><LI CLASS="li-itemize">Efficiency notes will point out important type declarations that
are often missed even in highly tuned programs.
See section <A HREF="#efficiency-notes">5.13</A>.</LI><LI CLASS="li-itemize">Existing programs can be compiled safely without prohibitive
speed penalty, although they would be faster and safer with added
declarations. See section <A HREF="#type-check-optimization">5.3.6</A>.</LI><LI CLASS="li-itemize">The context declaration mechanism allows both space and runtime
of large systems to be reduced without sacrificing robustness by
semi-automatically varying compilation policy without addition any
<TT class=code>optimize</TT> declarations to the source.
See section <A HREF="#context-declarations">5.7.5</A>.</LI><LI CLASS="li-itemize">Byte compilation can be used to dramatically reduce the size of
code that is not speed-critical. See section <A HREF="#byte-compile">5.9</A>
</LI></UL><!--TOC subsection Function Call-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc132">5.1.3</A>  Function Call</H3><!--SEC END --><P>The sort of symbolic programs generally written in Common Lisp often
favor recursion over iteration, or have inner loops so complex that
they involve multiple function calls. Such programs spend a larger
fraction of their time doing function calls than is the norm in other
languages; for this reason Common Lisp implementations strive to make the
general (or full) function call as inexpensive as possible. Python
goes beyond this by providing two good alternatives to full call:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Local call resolves function references at compile time,
allowing better calling sequences and optimization across function
calls. See section <A HREF="#local-call">5.6</A>.</LI><LI CLASS="li-itemize">Inline expansion totally eliminates call overhead and allows
many context dependent optimizations. This provides a safe and
efficient implementation of operations with function semantics,
eliminating the need for error-prone macro definitions or manual
case analysis. Although most Common Lisp implementations support
inline expansion, it becomes a more powerful tool with Python’s
source level optimization. See sections <A HREF="#source-optimization">5.4</A>
and <A HREF="#inline-expansion">5.8</A>.
</LI></UL><P>Generally, Python provides simple implementations for simple uses
of function call, rather than having only a single calling convention.
These features allow a more natural programming style:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Proper tail recursion. See section <A HREF="#tail-recursion">5.5</A></LI><LI CLASS="li-itemize">Relatively efficient closures.</LI><LI CLASS="li-itemize">A <TT class=code>funcall</TT> that is as efficient as normal named call.</LI><LI CLASS="li-itemize">Calls to local functions such as from <TT class=code>labels</TT> are
optimized:
<UL CLASS="itemize"><LI CLASS="li-itemize">Control transfer is a direct jump.</LI><LI CLASS="li-itemize">The closure environment is passed in registers rather than heap
allocated.</LI><LI CLASS="li-itemize">Keyword arguments and multiple values are implemented more
efficiently.
</LI></UL><P>See section <A HREF="#local-call">5.6</A>.
</P></LI></UL><!--TOC subsection Representation of Objects-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc133">5.1.4</A>  Representation of Objects</H3><!--SEC END --><P>Sometimes traditional Common Lisp implementation techniques compare so
poorly to the techniques used in other languages that Common Lisp can
become an impractical language choice. Terrible inefficiencies appear
in number-crunching programs, since Common Lisp numeric operations often
involve number-consing and generic arithmetic. Python supports
efficient natural representations for numbers (and some other types),
and allows these efficient representations to be used in more
contexts. Python also provides good efficiency notes that warn
when a crucial declaration is missing.</P><P>See section <A HREF="#non-descriptor">5.11.2</A> for more about object representations and
numeric types. Also see section <A HREF="#efficiency-notes">5.13</A> about efficiency notes.</P><!--TOC subsection Writing Efficient Code-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc134">5.1.5</A>  Writing Efficient Code</H3><!--SEC END --><P>
<A NAME="efficiency-overview"></A></P><P>Writing efficient code that works is a complex and prolonged process.
It is important not to get so involved in the pursuit of efficiency
that you lose sight of what the original problem demands. Remember
that:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The program should be correct—it doesn’t matter how
quickly you get the wrong answer.</LI><LI CLASS="li-itemize">Both the programmer and the user will make errors, so the
program must be robust—it must detect errors in a way that
allows easy correction.</LI><LI CLASS="li-itemize">A small portion of the program will consume most of the
resources, with the bulk of the code being virtually irrelevant to
efficiency considerations. Even experienced programmers familiar
with the problem area cannot reliably predict where these “hot
spots” will be.
</LI></UL><P>The best way to get efficient code that is still worth using, is to separate
coding from tuning. During coding, you should:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Use a coding style that aids correctness and robustness without
being incompatible with efficiency.</LI><LI CLASS="li-itemize">Choose appropriate data structures that allow efficient
algorithms and object representations
(see section <A HREF="#object-representation">5.10</A>). Try to make interfaces abstract
enough so that you can change to a different representation if
profiling reveals a need.</LI><LI CLASS="li-itemize">Whenever you make an assumption about a function argument or
global data structure, add consistency assertions, either with type
declarations or explicit uses of <TT class=code>assert</TT>, <TT class=code>ecase</TT>, etc.
</LI></UL><P>During tuning, you should:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Identify the hot spots in the program through profiling (section
<A HREF="#profiling">5.14</A>.)</LI><LI CLASS="li-itemize">Identify inefficient constructs in the hot spot with efficiency
notes, more profiling, or manual inspection of the source. See
sections <A HREF="#general-efficiency">5.12</A> and <A HREF="#efficiency-notes">5.13</A>.</LI><LI CLASS="li-itemize">Add declarations and consider the application of optimizations.
See sections <A HREF="#local-call">5.6</A>, <A HREF="#inline-expansion">5.8</A> and
<A HREF="#non-descriptor">5.11.2</A>.</LI><LI CLASS="li-itemize">If all else fails, consider algorithm or data structure changes.
If you did a good job coding, changes will be easy to introduce.
</LI></UL><!--TOC section More About Types in Python-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc135">5.2</A>  More About Types in Python</H2><!--SEC END --><P>
<A NAME="advanced-type-stuff"></A>
<A NAME="@concept132"></A></P><P>This section goes into more detail describing what types and declarations are
recognized by Python. The area where Python differs most radically from
previous Common Lisp compilers is in its support for types:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Precise type checking helps to find bugs at run time.</LI><LI CLASS="li-itemize">Compile-time type checking helps to find bugs at compile time.</LI><LI CLASS="li-itemize">Type inference minimizes the need for generic operations, and
also increases the efficiency of run time type checking and the
effectiveness of compile time type checking.</LI><LI CLASS="li-itemize">Support for detailed types provides a wealth of opportunity for
operation-specific type inference and optimization.
</LI></UL><!--TOC subsection More Types Meaningful-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc136">5.2.1</A>  More Types Meaningful</H3><!--SEC END --><P>Common Lisp has a very powerful type system, but conventional Common Lisp
implementations typically only recognize the small set of types
special in that implementation. In these systems, there is an
unfortunate paradox: a declaration for a relatively general type like
</P><TT class=code>fixnum</TT><P> will be recognized by the compiler, but a highly
specific declaration such as </P><TT class=code>(integer 3 17)</TT><P> is totally
ignored.</P><P>This is obviously a problem, since the user has to know how to specify
the type of an object in the way the compiler wants it. A very
minimal (but rarely satisfied) criterion for type system support is
that it be no worse to make a specific declaration than to make a
general one. Python goes beyond this by exploiting a number of
advantages obtained from detailed type information.</P><P>Using more restrictive types in declarations allows the compiler to do
better type inference and more compile-time type checking. Also, when
type declarations are considered to be consistency assertions that
should be verified (conditional on policy), then complex types are
useful for making more detailed assertions.</P><P>Python “understands” the list-style </P><TT class=code>or</TT><P>, </P><TT class=code>member</TT><P>,
</P><TT class=code>function</TT><P>, array and number type specifiers. Understanding
means that:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">If the type contains more information than is used in a
particular context, then the extra information is simply ignored,
rather than derailing type inference.</LI><LI CLASS="li-itemize">In many contexts, the extra information from these type
specifier is used to good effect. In particular, type checking in
Python is <TT class=variable>precise</TT>, so these complex types can be used
in declarations to make interesting assertions about functions and
data structures (see section <A HREF="#precise-type-checks">4.5.2</A>.) More specific
declarations also aid type inference and reduce the cost for type
checking.
</LI></UL><P>For related information, see section <A HREF="#numeric-types">5.11</A> for numeric types, and
section <A HREF="#array-types">5.10.3</A> for array types.</P><!--TOC subsection Canonicalization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc137">5.2.2</A>  Canonicalization</H3><!--SEC END --><P>
<A NAME="@concept133"></A>
<A NAME="@concept134"></A>
<A NAME="@concept135"></A></P><P>When given a type specifier, Python will often rewrite it into a
different (but equivalent) type. This is the mechanism that Python
uses for detecting type equivalence. For example, in Python’s
canonical representation, these types are equivalent:
</P><BLOCKQUOTE class=example><PRE>
(or list (member :end)) <==> (or cons (member nil :end))
</PRE></BLOCKQUOTE><P>
This has two implications for the user:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The standard symbol type specifiers for <TT class=code>atom</TT>,
<TT class=code>null</TT>, <TT class=code>fixnum</TT>, etc., are in no way magical. The
<A NAME="@types22"></A><TT class=code>null</TT> type is actually defined to be <TT class=code>(member
nil)</TT>, <A NAME="@types23"></A><TT class=code>list</TT> is <TT class=code>(or cons null)</TT>, and
<A NAME="@types24"></A><TT class=code>fixnum</TT> is <TT class=code>(signed-byte 30)</TT>.</LI><LI CLASS="li-itemize">When the compiler prints out a type, it may not look like the
type specifier that originally appeared in the program. This is
generally not a problem, but it must be taken into consideration
when reading compiler error messages.
</LI></UL><!--TOC subsection Member Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc138">5.2.3</A>  Member Types</H3><!--SEC END --><P>
<A NAME="@concept136"></A></P><P>The <A NAME="@types25"></A></P><TT class=code>member</TT><P> type specifier can be used to represent
“symbolic” values, analogous to the enumerated types of Pascal. For
example, the second value of </P><TT class=code>find-symbol</TT><P> has this type:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(member :internal :external :inherited nil)
</PRE></BLOCKQUOTE><P>
Member types are very useful for expressing consistency constraints on data
structures, for example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct ice-cream
(flavor :vanilla :type (member :vanilla :chocolate :strawberry)))
</PRE></BLOCKQUOTE><P>
Member types are also useful in type inference, as the number of members can
sometimes be pared down to one, in which case the value is a known constant.</P><!--TOC subsection Union Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc139">5.2.4</A>  Union Types</H3><!--SEC END --><P>
<A NAME="@concept137"></A>
<A NAME="@concept138"></A></P><P>The <A NAME="@types26"></A></P><TT class=code>or</TT><P> (union) type specifier is understood, and is
meaningfully applied in many contexts. The use of </P><TT class=code>or</TT><P> allows
assertions to be made about types in dynamically typed programs. For
example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct box
(next nil :type (or box null))
(top :removed :type (or box-top (member :removed))))
</PRE></BLOCKQUOTE><P>The type assertion on the </P><TT class=code>top</TT><P> slot ensures that an error will be signaled
when there is an attempt to store an illegal value (such as </P><TT class=code>:rmoved</TT><P>.)
Although somewhat weak, these union type assertions provide a useful input into
type inference, allowing the cost of type checking to be reduced. For example,
this loop is safely compiled with no type checks:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun find-box-with-top (box)
(declare (type (or box null) box))
(do ((current box (box-next current)))
((null current))
(unless (eq (box-top current) :removed)
(return current))))
</PRE></BLOCKQUOTE><P>Union types are also useful in type inference for representing types that are
partially constrained. For example, the result of this expression:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if foo
(logior x y)
(list x y))
</PRE></BLOCKQUOTE><P>
can be expressed as </P><TT class=code>(or integer cons)</TT><P>.</P><!--TOC subsection The Empty Type-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc140">5.2.5</A>  The Empty Type</H3><!--SEC END --><P>
<A NAME="empty-type"></A>
<A NAME="@concept139"></A>
<A NAME="@concept140"></A>
<A NAME="@concept141"></A></P><P>The type </P><TT class=code>nil</TT><P> is also called the empty type, since no object is of
type </P><TT class=code>nil</TT><P>. The union of no types, </P><TT class=code>(or)</TT><P>, is also empty.
Python’s interpretation of an expression whose type is </P><TT class=code>nil</TT><P> is
that the expression never yields any value, but rather fails to
terminate, or is thrown out of. For example, the type of a call to
</P><TT class=code>error</TT><P> or a use of </P><TT class=code>return</TT><P> is </P><TT class=code>nil</TT><P>. When the type of
an expression is empty, compile-time type warnings about its value are
suppressed; presumably somebody else is signaling an error. If a
function is declared to have return type </P><TT class=code>nil</TT><P>, but does in fact
return, then (in safe compilation policies) a “</P><TT class=code>NIL Function
returned</TT><P>” error will be signaled. See also the function
<A NAME="@funs128"></A></P><TT class=code>required-argument</TT><P>.</P><!--TOC subsection Function Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc141">5.2.6</A>  Function Types</H3><!--SEC END --><P>
<A NAME="function-types"></A>
<A NAME="@concept142"></A>
<A NAME="@concept143"></A></P><P><A NAME="@funs129"></A></P><TT class=code>function</TT><P> types are understood in the restrictive sense, specifying:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The argument syntax that the function must be called with. This
is information about what argument counts are acceptable, and which
keyword arguments are recognized. In Python, warnings about
argument syntax are a consequence of function type checking.</LI><LI CLASS="li-itemize">The types of the argument values that the caller must pass. If
the compiler can prove that some argument to a call is of a type
disallowed by the called function’s type, then it will give a
compile-time type warning. In addition to being used for
compile-time type checking, these type assertions are also used as
output type assertions in code generation. For example, if
<TT class=code>foo</TT> is declared to have a <TT class=code>fixnum</TT> argument, then the
<TT class=code>1+</TT> in <TT class=code>(foo (1+ x))</TT> is compiled with knowledge that
the result must be a fixnum.</LI><LI CLASS="li-itemize">The types the values that will be bound to argument variables in
the function’s definition. Declaring a function’s type with
<TT class=code>ftype</TT> implicitly declares the types of the arguments in the
definition. Python checks for consistency between the definition
and the <TT class=code>ftype</TT> declaration. Because of precise type checking,
an error will be signaled when a function is called with an
argument of the wrong type.</LI><LI CLASS="li-itemize">The type of return value(s) that the caller can expect. This
information is a useful input to type inference. For example, if a
function is declared to return a <TT class=code>fixnum</TT>, then when a call to
that function appears in an expression, the expression will be
compiled with knowledge that the call will return a <TT class=code>fixnum</TT>.</LI><LI CLASS="li-itemize">The type of return value(s) that the definition must return.
The result type in an <TT class=code>ftype</TT> declaration is treated like an
implicit <TT class=code>the</TT> wrapped around the body of the definition. If
the definition returns a value of the wrong type, an error will be
signaled. If the compiler can prove that the function returns the
wrong type, then it will give a compile-time warning.
</LI></UL><P>This is consistent with the new interpretation of function types and
the </P><TT class=code>ftype</TT><P> declaration in the proposed X3J13
“function-type-argument-type-semantics” cleanup. Note also, that if
you don’t explicitly declare the type of a function using a global
</P><TT class=code>ftype</TT><P> declaration, then Python will compute a function type
from the definition, providing a degree of inter-routine type
inference, see section <A HREF="#function-type-inference">5.3.3</A>.</P><!--TOC subsection The Values Declaration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc142">5.2.7</A>  The Values Declaration</H3><!--SEC END --><P>
<A NAME="@concept144"></A></P><P>CMUCL supports the </P><TT class=code>values</TT><P> declaration as an extension to
Common Lisp. The syntax of the declaration is
</P><TT class=code>(values <TT class=variable>type1</TT> <TT class=variable>type2</TT>…<TT class=variable>typen</TT>)</TT><P>. This
declaration is semantically equivalent to a </P><TT class=code>the</TT><P> form wrapped
around the body of the special form in which the </P><TT class=code>values</TT><P>
declaration appears. The advantage of </P><TT class=code>values</TT><P> over
<A NAME="@funs130"></A></P><TT class=code>the</TT><P> is purely syntactic—it doesn’t introduce more
indentation. For example:</P><BLOCKQUOTE class=example><PRE>
(defun foo (x)
(declare (values single-float))
(ecase x
(:this ...)
(:that ...)
(:the-other ...)))
</PRE></BLOCKQUOTE><P>is equivalent to:</P><BLOCKQUOTE class=example><PRE>
(defun foo (x)
(the single-float
(ecase x
(:this ...)
(:that ...)
(:the-other ...))))
</PRE></BLOCKQUOTE><P>and</P><BLOCKQUOTE class=example><PRE>
(defun floor (number &optional (divisor 1))
(declare (values integer real))
...)
</PRE></BLOCKQUOTE><P>is equivalent to:</P><BLOCKQUOTE class=example><PRE>
(defun floor (number &optional (divisor 1))
(the (values integer real)
...))
</PRE></BLOCKQUOTE><P>In addition to being recognized by </P><TT class=code>lambda</TT><P> (and hence by
</P><TT class=code>defun</TT><P>), the </P><TT class=code>values</TT><P> declaration is recognized by all the
other special forms with bodies and declarations: </P><TT class=code>let</TT><P>,
</P><TT class=code>let*</TT><P>, </P><TT class=code>labels</TT><P> and </P><TT class=code>flet</TT><P>. Macros with declarations
usually splice the declarations into one of the above forms, so they
will accept this declaration too, but the exact effect of a
</P><TT class=code>values</TT><P> declaration will depend on the macro.</P><P>If you declare the types of all arguments to a function, and also
declare the return value types with </P><TT class=code>values</TT><P>, you have described
the type of the function. Python will use this argument and result
type information to derive a function type that will then be applied
to calls of the function (see section <A HREF="#function-types">5.2.6</A>.) This provides a
way to declare the types of functions that is much less syntactically
awkward than using the </P><TT class=code>ftype</TT><P> declaration with a </P><TT class=code>function</TT><P>
type specifier.</P><P>Although the </P><TT class=code>values</TT><P> declaration is non-standard, it is
relatively harmless to use it in otherwise portable code, since any
warning in non-CMU implementations can be suppressed with the standard
</P><TT class=code>declaration</TT><P> proclamation.</P><!--TOC subsection Structure Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc143">5.2.8</A>  Structure Types</H3><!--SEC END --><P>
<A NAME="structure-types"></A>
<A NAME="@concept145"></A>
<A NAME="@concept146"></A>
<A NAME="@concept147"></A></P><P>Because of precise type checking, structure types are much better
supported by Python than by conventional compilers:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The structure argument to structure accessors is precisely
checked—if you call <TT class=code>foo-a</TT> on a <TT class=code>bar</TT>, an error
will be signaled.</LI><LI CLASS="li-itemize">The types of slot values are precisely checked—if you pass
the wrong type argument to a constructor or a slot setter, then an
error will be signaled.
</LI></UL><P>This error checking is tremendously useful for detecting bugs in
programs that manipulate complex data structures.</P><P>An additional advantage of checking structure types and enforcing slot
types is that the compiler can safely believe slot type declarations.
Python effectively moves the type checking from the slot access to
the slot setter or constructor call. This is more efficient since
caller of the setter or constructor often knows the type of the value,
entirely eliminating the need to check the value’s type. Consider
this example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct coordinate
(x nil :type single-float)
(y nil :type single-float))
(defun make-it ()
(make-coordinate :x 1.0 :y 1.0))
(defun use-it (it)
(declare (type coordinate it))
(sqrt (expt (coordinate-x it) 2) (expt (coordinate-y it) 2)))
</PRE></BLOCKQUOTE><TT class=code>make-it</TT><P> and </P><TT class=code>use-it</TT><P> are compiled with no checking on the
types of the float slots, yet </P><TT class=code>use-it</TT><P> can use
</P><TT class=code>single-float</TT><P> arithmetic with perfect safety. Note that
</P><TT class=code>make-coordinate</TT><P> must still check the values of </P><TT class=code>x</TT><P> and
</P><TT class=code>y</TT><P> unless the call is block compiled or inline expanded
(see section <A HREF="#local-call">5.6</A>.) But even without this advantage, it is almost
always more efficient to check slot values on structure
initialization, since slots are usually written once and read many
times.</P><!--TOC subsection The Freeze-Type Declaration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc144">5.2.9</A>  The Freeze-Type Declaration</H3><!--SEC END --><P>
<A NAME="@concept148"></A>
<A NAME="freeze-type"></A></P><P>The </P><TT class=code>extensions:freeze-type</TT><P> declaration is a CMUCL extension that
enables more efficient compilation of user-defined types by asserting
that the definition is not going to change. This declaration may only
be used globally (with </P><TT class=code>declaim</TT><P> or </P><TT class=code>proclaim</TT><P>). Currently
</P><TT class=code>freeze-type</TT><P> only affects structure type testing done by
</P><TT class=code>typep</TT><P>, </P><TT class=code>typecase</TT><P>, etc. Here is an example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(declaim (freeze-type foo bar))
</PRE></BLOCKQUOTE><P>This asserts that the types </P><TT class=code>foo</TT><P> and </P><TT class=code>bar</TT><P> and their
subtypes are not going to change. This allows more efficient type
testing, since the compiler can open-code a test for all possible
subtypes, rather than having to examine the type hierarchy at
run-time.</P><!--TOC subsection Type Restrictions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc145">5.2.10</A>  Type Restrictions</H3><!--SEC END --><P>
<A NAME="@concept149"></A></P><P>Avoid use of the </P><TT class=code>and</TT><P>, </P><TT class=code>not</TT><P> and </P><TT class=code>satisfies</TT><P> types in
declarations, since type inference has problems with them. When these
types do appear in a declaration, they are still checked precisely,
but the type information is of limited use to the compiler.
</P><TT class=code>and</TT><P> types are effective as long as the intersection can be
canonicalized to a type that doesn’t use </P><TT class=code>and</TT><P>. For example:</P><BLOCKQUOTE class=example><PRE>
(and fixnum unsigned-byte)
</PRE></BLOCKQUOTE><P>is fine, since it is the same as:</P><BLOCKQUOTE class=example><PRE>
(integer 0 <TT class=variable>most-positive-fixnum</TT>)
</PRE></BLOCKQUOTE><P>but this type:</P><BLOCKQUOTE class=example><PRE>
(and symbol (not (member :end)))
</PRE></BLOCKQUOTE><P>will not be fully understood by type interference since the </P><TT class=code>and</TT><P>
can’t be removed by canonicalization.</P><P>Using any of these type specifiers in a type test with </P><TT class=code>typep</TT><P> or
</P><TT class=code>typecase</TT><P> is fine, since as tests, these types can be translated
into the </P><TT class=code>and</TT><P> macro, the </P><TT class=code>not</TT><P> function or a call to the
satisfies predicate.</P><!--TOC subsection Type Style Recommendations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc146">5.2.11</A>  Type Style Recommendations</H3><!--SEC END --><P>
<A NAME="@concept150"></A></P><P>Python provides good support for some currently unconventional ways of
using the Common Lisp type system. With Python, it is desirable to make
declarations as precise as possible, but type inference also makes
some declarations unnecessary. Here are some general guidelines for
maximum robustness and efficiency:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Declare the types of all function arguments and structure slots
as precisely as possible (while avoiding <TT class=code>not</TT>, <TT class=code>and</TT> and
<TT class=code>satisfies</TT>). Put these declarations in during initial coding
so that type assertions can find bugs for you during debugging.</LI><LI CLASS="li-itemize">Use the <A NAME="@types27"></A><TT class=code>member</TT> type specifier where there are a small
number of possible symbol values, for example: <TT class=code>(member :red
:blue :green)</TT>.</LI><LI CLASS="li-itemize">Use the <A NAME="@types28"></A><TT class=code>or</TT> type specifier in situations where the
type is not certain, but there are only a few possibilities, for
example: <TT class=code>(or list vector)</TT>.</LI><LI CLASS="li-itemize">Declare integer types with the tightest bounds that you can,
such as <TT class=code>(integer 3 7)</TT>.</LI><LI CLASS="li-itemize">Define <A NAME="@funs131"></A><TT class=code>deftype</TT> or <A NAME="@funs132"></A><TT class=code>defstruct</TT> types before
they are used. Definition after use is legal (producing no
“undefined type” warnings), but type tests and structure
operations will be compiled much less efficiently.</LI><LI CLASS="li-itemize">Use the <TT class=code>extensions:freeze-type</TT> declaration to speed up
type testing for structure types which won’t have new subtypes added
later. See section <A HREF="#freeze-type">5.2.9</A></LI><LI CLASS="li-itemize">In addition to declaring the array element type and simpleness,
also declare the dimensions if they are fixed, for example:
<BLOCKQUOTE class=example><PRE>
(simple-array single-float (1024 1024))
</PRE></BLOCKQUOTE>
This bounds information allows array indexing for multi-dimensional
arrays to be compiled much more efficiently, and may also allow
array bounds checking to be done at compile time.
See section <A HREF="#array-types">5.10.3</A>.</LI><LI CLASS="li-itemize">Avoid use of the <A NAME="@funs133"></A><TT class=code>the</TT> declaration within expressions.
Not only does it clutter the code, but it is also almost worthless
under safe policies. If the need for an output type assertion is
revealed by efficiency notes during tuning, then you can consider
<TT class=code>the</TT>, but it is preferable to constrain the argument types
more, allowing the compiler to prove the desired result type.</LI><LI CLASS="li-itemize">Don’t bother declaring the type of <A NAME="@funs134"></A><TT class=code>let</TT> or other
non-argument variables unless the type is non-obvious. If you
declare function return types and structure slot types, then the
type of a variable is often obvious both to the programmer and to
the compiler. An important case where the type isn’t obvious, and a
declaration is appropriate, is when the value for a variable is
pulled out of untyped structure (e.g., the result of <TT class=code>car</TT>), or
comes from some weakly typed function, such as <TT class=code>read</TT>.</LI><LI CLASS="li-itemize">Declarations are sometimes necessary for integer loop variables,
since the compiler can’t always prove that the value is of a good
integer type. These declarations are best added during tuning, when
an efficiency note indicates the need.
</LI></UL><!--TOC section Type Inference-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc147">5.3</A>  Type Inference</H2><!--SEC END --><P>
<A NAME="type-inference"></A>
<A NAME="@concept151"></A>
<A NAME="@concept152"></A>
<A NAME="@concept153"></A></P><P>Type inference is the process by which the compiler tries to figure
out the types of expressions and variables, given an inevitable lack
of complete type information. Although Python does much more type
inference than most Common Lisp compilers, remember that the more precise
and comprehensive type declarations are, the more type inference will
be able to do.</P><!--TOC subsection Variable Type Inference-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc148">5.3.1</A>  Variable Type Inference</H3><!--SEC END --><P>
<A NAME="variable-type-inference"></A></P><P>The type of a variable is the union of the types of all the
definitions. In the degenerate case of a let, the type of the
variable is the type of the initial value. This inferred type is
intersected with any declared type, and is then propagated to all the
variable’s references. The types of <A NAME="@funs135"></A></P><TT class=code>multiple-value-bind</TT><P>
variables are similarly inferred from the types of the individual
values of the values form.</P><P>If multiple type declarations apply to a single variable, then all the
declarations must be correct; it is as though all the types were intersected
producing a single <A NAME="@types29"></A></P><TT class=code>and</TT><P> type specifier. In this example:
</P><BLOCKQUOTE class=example><PRE>
(defmacro my-dotimes ((var count) &body body)
‘(do ((,var 0 (1+ ,var)))
((>= ,var ,count))
(declare (type (integer 0 *) ,var))
,@body))
(my-dotimes (i ...)
(declare (fixnum i))
...)
</PRE></BLOCKQUOTE><P>
the two declarations for </P><TT class=code>i</TT><P> are intersected, so </P><TT class=code>i</TT><P> is
known to be a non-negative fixnum.</P><P>In practice, this type inference is limited to lets and local
functions, since the compiler can’t analyze all the calls to a global
function. But type inference works well enough on local variables so
that it is often unnecessary to declare the type of local variables.
This is especially likely when function result types and structure
slot types are declared. The main areas where type inference breaks
down are:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">When the initial value of a variable is a untyped expression,
such as <TT class=code>(car x)</TT>, and</LI><LI CLASS="li-itemize">When the type of one of the variable’s definitions is a function
of the variable’s current value, as in: <TT class=code>(setq x (1+ x))</TT>
</LI></UL><!--TOC subsection Local Function Type Inference-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc149">5.3.2</A>  Local Function Type Inference</H3><!--SEC END --><P>
<A NAME="@concept154"></A></P><P>The types of arguments to local functions are inferred in the same was
as any other local variable; the type is the union of the argument
types across all the calls to the function, intersected with the
declared type. If there are any assignments to the argument
variables, the type of the assigned value is unioned in as well.</P><P>The result type of a local function is computed in a special way that
takes tail recursion (see section <A HREF="#tail-recursion">5.5</A>) into consideration.
The result type is the union of all possible return values that aren’t
tail-recursive calls. For example, Python will infer that the
result type of this function is </P><TT class=code>integer</TT><P>:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ! (n res)
(declare (integer n res))
(if (zerop n)
res
(! (1- n) (* n res))))
</PRE></BLOCKQUOTE><P>Although this is a rather obvious result, it becomes somewhat less
trivial in the presence of mutual tail recursion of multiple
functions. Local function result type inference interacts with the
mechanisms for ensuring proper tail recursion mentioned in section
<A HREF="#local-call-return">5.6.5</A>.</P><!--TOC subsection Global Function Type Inference-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc150">5.3.3</A>  Global Function Type Inference</H3><!--SEC END --><P>
<A NAME="function-type-inference"></A>
<A NAME="@concept155"></A></P><P>As described in section <A HREF="#function-types">5.2.6</A>, a global function type
(<A NAME="@types30"></A></P><TT class=code>ftype</TT><P>) declaration places implicit type assertions on the
call arguments, and also guarantees the type of the return value. So
wherever a call to a declared function appears, there is no doubt as
to the types of the arguments and return value. Furthermore,
Python will infer a function type from the function’s definition if
there is no </P><TT class=code>ftype</TT><P> declaration. Any type declarations on the
argument variables are used as the argument types in the derived
function type, and the compiler’s best guess for the result type of
the function is used as the result type in the derived function type.</P><P>This method of deriving function types from the definition implicitly assumes
that functions won’t be redefined at run-time. Consider this example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo-p (x)
(let ((res (and (consp x) (eq (car x) ’foo))))
(format t "It is ~:[not ~;~]foo." res)))
(defun frob (it)
(if (foo-p it)
(setf (cadr it) ’yow!)
(1+ it)))
</PRE></BLOCKQUOTE><P>Presumably, the programmer really meant to return </P><TT class=code>res</TT><P> from
</P><TT class=code>foo-p</TT><P>, but he seems to have forgotten. When he tries to call
do </P><TT class=code>(frob (list ’foo nil))</TT><P>, </P><TT class=code>frob</TT><P> will flame out when
it tries to add to a </P><TT class=code>cons</TT><P>. Realizing his error, he fixes
</P><TT class=code>foo-p</TT><P> and recompiles it. But when he retries his test case, he
is baffled because the error is still there. What happened in this
example is that Python proved that the result of </P><TT class=code>foo-p</TT><P> is
</P><TT class=code>null</TT><P>, and then proceeded to optimize away the </P><TT class=code>setf</TT><P> in
</P><TT class=code>frob</TT><P>.</P><P>Fortunately, in this example, the error is detected at compile time
due to notes about unreachable code (see section <A HREF="#dead-code-notes">5.4.5</A>.)
Still, some users may not want to worry about this sort of problem
during incremental development, so there is a variable to control
deriving function types.</P><P><BR>
<A NAME="@vars48"></A><A NAME="VR:derive-function-types"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*derive-function-types*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>If true (the default), argument and result type information derived
from compilation of </P><TT class=code>defun</TT><P>s is used when compiling calls to
that function. If false, only information from </P><TT class=code>ftype</TT><P>
proclamations will be used.
</P></BLOCKQUOTE><!--TOC subsection Operation Specific Type Inference-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc151">5.3.4</A>  Operation Specific Type Inference</H3><!--SEC END --><P>
<A NAME="operation-type-inference"></A>
<A NAME="@concept156"></A>
<A NAME="@concept157"></A>
<A NAME="@concept158"></A></P><P>Many of the standard Common Lisp functions have special type inference
procedures that determine the result type as a function of the
argument types. For example, the result type of </P><TT class=code>aref</TT><P> is the
array element type. Here are some other examples of type inferences:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(logand x #xFF) ==> (unsigned-byte 8)
(+ (the (integer 0 12) x) (the (integer 0 1) y)) ==> (integer 0 13)
(ash (the (unsigned-byte 16) x) -8) ==> (unsigned-byte 8)
</PRE></BLOCKQUOTE><!--TOC subsection Dynamic Type Inference-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc152">5.3.5</A>  Dynamic Type Inference</H3><!--SEC END --><P>
<A NAME="constraint-propagation"></A>
<A NAME="@concept159"></A>
<A NAME="@concept160"></A>
<A NAME="@concept161"></A></P><P>Python uses flow analysis to infer types in dynamically typed
programs. For example:</P><BLOCKQUOTE class=example><PRE>
(ecase x
(list (length x))
...)
</PRE></BLOCKQUOTE><P>Here, the compiler knows the argument to </P><TT class=code>length</TT><P> is a list,
because the call to </P><TT class=code>length</TT><P> is only done when </P><TT class=code>x</TT><P> is a
list. The most significant efficiency effect of inference from
assertions is usually in type check optimization.</P><P>Dynamic type inference has two inputs: explicit conditionals and
implicit or explicit type assertions. Flow analysis propagates these
constraints on variable type to any code that can be executed only
after passing though the constraint. Explicit type constraints come
from <A NAME="@funs136"></A></P><TT class=code>if</TT><P>s where the test is either a lexical variable or a
function of lexical variables and constants, where the function is
either a type predicate, a numeric comparison or </P><TT class=code>eq</TT><P>.</P><P>If there is an </P><TT class=code>eq</TT><P> (or </P><TT class=code>eql</TT><P>) test, then the compiler will
actually substitute one argument for the other in the true branch.
For example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(when (eq x :yow!) (return x))
</PRE></BLOCKQUOTE><P>
becomes:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(when (eq x :yow!) (return :yow!))
</PRE></BLOCKQUOTE><P>
This substitution is done when one argument is a constant, or one
argument has better type information than the other. This
transformation reveals opportunities for constant folding or
type-specific optimizations. If the test is against a constant, then
the compiler can prove that the variable is not that constant value in
the false branch, or </P><TT class=code>(not (member :yow!))</TT><P> in the example
above. This can eliminate redundant tests, for example:
</P><BLOCKQUOTE class=example><PRE>
(if (eq x nil)
...
(if x a b))
</PRE></BLOCKQUOTE><P>
is transformed to this:
</P><BLOCKQUOTE class=example><PRE>
(if (eq x nil)
...
a)
</PRE></BLOCKQUOTE><P>
Variables appearing as </P><TT class=code>if</TT><P> tests are interpreted as
</P><TT class=code>(not (eq <TT class=variable>var</TT> nil))</TT><P> tests. The compiler also converts
</P><TT class=code>=</TT><P> into </P><TT class=code>eql</TT><P> where possible. It is difficult to do
inference directly on </P><TT class=code>=</TT><P> since it does implicit coercions.</P><P>When there is an explicit </P><TT class=code><</TT><P> or </P><TT class=code>></TT><P> test on numeric
variables, the compiler makes inferences about the ranges the
variables can assume in the true and false branches. This is mainly
useful when it proves that the values are small enough in magnitude to
allow open-coding of arithmetic operations. For example, in many uses
of </P><TT class=code>dotimes</TT><P> with a </P><TT class=code>fixnum</TT><P> repeat count, the compiler
proves that fixnum arithmetic can be used.</P><P>Implicit type assertions are quite common, especially if you declare
function argument types. Dynamic inference from implicit type
assertions sometimes helps to disambiguate programs to a useful
degree, but is most noticeable when it detects a dynamic type error.
For example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (x)
(+ (car x) x))
</PRE></BLOCKQUOTE><P>results in this warning:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(+ (CAR X) X)
==>
X
Warning: Result is a LIST, not a NUMBER.
</PRE></BLOCKQUOTE><P>Note that Common Lisp’s dynamic type checking semantics make dynamic type
inference useful even in programs that aren’t really dynamically
typed, for example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(+ (car x) (length x))
</PRE></BLOCKQUOTE><P>Here, </P><TT class=code>x</TT><P> presumably always holds a list, but in the absence of a
declaration the compiler cannot assume </P><TT class=code>x</TT><P> is a list simply
because list-specific operations are sometimes done on it. The
compiler must consider the program to be dynamically typed until it
proves otherwise. Dynamic type inference proves that the argument to
</P><TT class=code>length</TT><P> is always a list because the call to </P><TT class=code>length</TT><P> is
only done after the list-specific </P><TT class=code>car</TT><P> operation.</P><!--TOC subsection Type Check Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc153">5.3.6</A>  Type Check Optimization</H3><!--SEC END --><P>
<A NAME="type-check-optimization"></A>
<A NAME="@concept162"></A>
<A NAME="@concept163"></A></P><P>Python backs up its support for precise type checking by minimizing
the cost of run-time type checking. This is done both through type
inference and though optimizations of type checking itself.</P><P>Type inference often allows the compiler to prove that a value is of
the correct type, and thus no type check is necessary. For example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct foo a b c)
(defstruct link
(foo (required-argument) :type foo)
(next nil :type (or link null)))
(foo-a (link-foo x))
</PRE></BLOCKQUOTE><P>Here, there is no need to check that the result of </P><TT class=code>link-foo</TT><P> is
a </P><TT class=code>foo</TT><P>, since it always is. Even when some type checks are
necessary, type inference can often reduce the number:
</P><BLOCKQUOTE class=example><PRE>
(defun test (x)
(let ((a (foo-a x))
(b (foo-b x))
(c (foo-c x)))
...))
</PRE></BLOCKQUOTE><P>
In this example, only one </P><TT class=code>(foo-p x)</TT><P> check is needed. This
applies to a lesser degree in list operations, such as:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if (eql (car x) 3) (cdr x) y)
</PRE></BLOCKQUOTE><P>
Here, we only have to check that </P><TT class=code>x</TT><P> is a list once.</P><P>Since Python recognizes explicit type tests, code that explicitly
protects itself against type errors has little introduced overhead due
to implicit type checking. For example, this loop compiles with no
implicit checks checks for </P><TT class=code>car</TT><P> and </P><TT class=code>cdr</TT><P>:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun memq (e l)
(do ((current l (cdr current)))
((atom current) nil)
(when (eq (car current) e) (return current))))
</PRE></BLOCKQUOTE><P><A NAME="@concept164"></A>
Python reduces the cost of checks that must be done through an
optimization called </P><TT class=variable>complementing</TT><P>. A complemented check for
</P><TT class=variable>type</TT><P> is simply a check that the value is not of the type
</P><TT class=code>(not <TT class=variable>type</TT>)</TT><P>. This is only interesting when something
is known about the actual type, in which case we can test for the
complement of </P><TT class=code>(and <TT class=variable>known-type</TT> (not <TT class=variable>type</TT>))</TT><P>, or
the difference between the known type and the assertion. An example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(link-foo (link-next x))
</PRE></BLOCKQUOTE><P>
Here, we change the type check for </P><TT class=code>link-foo</TT><P> from a test for
</P><TT class=code>foo</TT><P> to a test for:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(not (and (or foo null) (not foo)))
</PRE></BLOCKQUOTE><P>
or more simply </P><TT class=code>(not null)</TT><P>. This is probably the most
important use of complementing, since the situation is fairly common,
and a </P><TT class=code>null</TT><P> test is much cheaper than a structure type test.</P><P>Here is a more complicated example that illustrates the combination of
complementing with dynamic type inference:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun find-a (a x)
(declare (type (or link null) x))
(do ((current x (link-next current)))
((null current) nil)
(let ((foo (link-foo current)))
(when (eq (foo-a foo) a) (return foo)))))
</PRE></BLOCKQUOTE><P>
This loop can be compiled with no type checks. The </P><TT class=code>link</TT><P> test
for </P><TT class=code>link-foo</TT><P> and </P><TT class=code>link-next</TT><P> is complemented to
</P><TT class=code>(not null)</TT><P>, and then deleted because of the explicit
</P><TT class=code>null</TT><P> test. As before, no check is necessary for </P><TT class=code>foo-a</TT><P>,
since the </P><TT class=code>link-foo</TT><P> is always a </P><TT class=code>foo</TT><P>. This sort of
situation shows how precise type checking combined with precise
declarations can actually result in reduced type checking.</P><!--TOC section Source Optimization-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc154">5.4</A>  Source Optimization</H2><!--SEC END --><P>
<A NAME="source-optimization"></A>
<A NAME="@concept165"></A></P><P>This section describes source-level transformations that Python does on
programs in an attempt to make them more efficient. Although source-level
optimizations can make existing programs more efficient, the biggest advantage
of this sort of optimization is that it makes it easier to write efficient
programs. If a clean, straightforward implementation is can be transformed
into an efficient one, then there is no need for tricky and dangerous hand
optimization. </P><!--TOC subsection Let Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc155">5.4.1</A>  Let Optimization</H3><!--SEC END --><P>
<A NAME="let-optimization"></A></P><P><A NAME="@concept166"></A> <A NAME="@concept167"></A></P><P>The primary optimization of let variables is to delete them when they
are unnecessary. Whenever the value of a let variable is a constant,
a constant variable or a constant (local or non-notinline) function,
the variable is deleted, and references to the variable are replaced
with references to the constant expression. This is useful primarily
in the expansion of macros or inline functions, where argument values
are often constant in any given call, but are in general non-constant
expressions that must be bound to preserve order of evaluation. Let
variable optimization eliminates the need for macros to carefully
avoid spurious bindings, and also makes inline functions just as
efficient as macros.</P><P>A particularly interesting class of constant is a local function.
Substituting for lexical variables that are bound to a function can
substantially improve the efficiency of functional programming styles,
for example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((a #’(lambda (x) (zow x))))
(funcall a 3))
</PRE></BLOCKQUOTE><P>
effectively transforms to:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(zow 3)
</PRE></BLOCKQUOTE><P>
This transformation is done even when the function is a closure, as in:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((a (let ((y (zug)))
#’(lambda (x) (zow x y)))))
(funcall a 3))
</PRE></BLOCKQUOTE><P>
becoming:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(zow 3 (zug))
</PRE></BLOCKQUOTE><P>A constant variable is a lexical variable that is never assigned to,
always keeping its initial value. Whenever possible, avoid setting
lexical variables—instead bind a new variable to the new value.
Except for loop variables, it is almost always possible to avoid
setting lexical variables. This form:
</P><BLOCKQUOTE class=example><PRE>
(let ((x (f x)))
...)
</PRE></BLOCKQUOTE><P>
is </P><TT class=variable>more</TT><P> efficient than this form:
</P><BLOCKQUOTE class=example><PRE>
(setq x (f x))
...
</PRE></BLOCKQUOTE><P>
Setting variables makes the program more difficult to understand, both
to the compiler and to the programmer. Python compiles assignments
at least as efficiently as any other Common Lisp compiler, but most let
optimizations are only done on constant variables.</P><P>Constant variables with only a single use are also optimized away,
even when the initial value is not constant.<SUP><A NAME="text10" HREF="#note10">1</A></SUP> For example, this expansion of
</P><TT class=code>incf</TT><P>:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((#:g3 (+ x 1)))
(setq x #:G3))
</PRE></BLOCKQUOTE><P>
becomes:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(setq x (+ x 1))
</PRE></BLOCKQUOTE><P>
The type semantics of this transformation are more important than the
elimination of the variable itself. Consider what happens when
</P><TT class=code>x</TT><P> is declared to be a </P><TT class=code>fixnum</TT><P>; after the transformation,
the compiler can compile the addition knowing that the result is a
</P><TT class=code>fixnum</TT><P>, whereas before the transformation the addition would
have to allow for fixnum overflow.</P><P>Another variable optimization deletes any variable that is never read.
This causes the initial value and any assigned values to be unused,
allowing those expressions to be deleted if they have no side-effects.</P><P>Note that a let is actually a degenerate case of local call
(see section <A HREF="#let-calls">5.6.2</A>), and that let optimization can be done on calls
that weren’t created by a let. Also, local call allows an applicative
style of iteration that is totally assignment free.</P><!--TOC subsection Constant Folding-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc156">5.4.2</A>  Constant Folding</H3><!--SEC END --><P>
<A NAME="@concept168"></A>
<A NAME="@concept169"></A></P><P>Constant folding is an optimization that replaces a call of constant
arguments with the constant result of that call. Constant folding is
done on all standard functions for which it is legal. Inline
expansion allows folding of any constant parts of the definition, and
can be done even on functions that have side-effects.</P><P>It is convenient to rely on constant folding when programming, as in this
example:
</P><BLOCKQUOTE class=example><PRE>
(defconstant limit 42)
(defun foo ()
(... (1- limit) ...))
</PRE></BLOCKQUOTE><P>
Constant folding is also helpful when writing macros or inline
functions, since it usually eliminates the need to write a macro that
special-cases constant arguments.</P><P><A NAME="@concept170"></A> Constant folding of a user
defined function is enabled by the </P><TT class=code>extensions:constant-function</TT><P>
proclamation. In this example:
</P><BLOCKQUOTE class=example><PRE>
(declaim (ext:constant-function myfun))
(defun myexp (x y)
(declare (single-float x y))
(exp (* (log x) y)))
... (myexp 3.0 1.3) ...
</PRE></BLOCKQUOTE><P>
The call to </P><TT class=code>myexp</TT><P> is constant-folded to </P><TT class=code>4.1711674</TT><P>.</P><!--TOC subsection Unused Expression Elimination-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc157">5.4.3</A>  Unused Expression Elimination</H3><!--SEC END --><P>
<A NAME="@concept171"></A>
<A NAME="@concept172"></A></P><P>If the value of any expression is not used, and the expression has no
side-effects, then it is deleted. As with constant folding, this
optimization applies most often when cleaning up after inline
expansion and other optimizations. Any function declared an
</P><TT class=code>extensions:constant-function</TT><P> is also subject to unused
expression elimination.</P><P>Note that Python will eliminate parts of unused expressions known
to be side-effect free, even if there are other unknown parts. For
example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((a (list (foo) (bar))))
(if t
(zow)
(raz a)))
</PRE></BLOCKQUOTE><P>
becomes:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(progn (foo) (bar))
(zow)
</PRE></BLOCKQUOTE><!--TOC subsection Control Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc158">5.4.4</A>  Control Optimization</H3><!--SEC END --><P>
<A NAME="@concept173"></A>
<A NAME="@concept174"></A></P><P>The most important optimization of control is recognizing when an
<A NAME="@funs137"></A></P><TT class=code>if</TT><P> test is known at compile time, then deleting the
</P><TT class=code>if</TT><P>, the test expression, and the unreachable branch of the
</P><TT class=code>if</TT><P>. This can be considered a special case of constant folding,
although the test doesn’t have to be truly constant as long as it is
definitely not </P><TT class=code>nil</TT><P>. Note also, that type inference propagates the
result of an </P><TT class=code>if</TT><P> test to the true and false branches,
see section <A HREF="#constraint-propagation">5.3.5</A>.</P><P>A related </P><TT class=code>if</TT><P> optimization is this transformation:<SUP><A NAME="text11" HREF="#note11">2</A></SUP>
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if (if a b c) x y)
</PRE></BLOCKQUOTE><P>
into:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if a
(if b x y)
(if c x y))
</PRE></BLOCKQUOTE><P>
The opportunity for this sort of optimization usually results from a
conditional macro. For example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if (not a) x y)
</PRE></BLOCKQUOTE><P>
is actually implemented as this:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if (if a nil t) x y)
</PRE></BLOCKQUOTE><P>
which is transformed to this:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if a
(if nil x y)
(if t x y))
</PRE></BLOCKQUOTE><P>
which is then optimized to this:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(if a y x)
</PRE></BLOCKQUOTE><P>
Note that due to Python’s internal representations, the
</P><TT class=code>if</TT><P>—</P><TT class=code>if</TT><P> situation will be recognized even if other
forms are wrapped around the inner </P><TT class=code>if</TT><P>, like:
</P><BLOCKQUOTE class=example><PRE>
(if (let ((g ...))
(loop
...
(return (not g))
...))
x y)
</PRE></BLOCKQUOTE><P>In Python, all the Common Lisp macros really are macros, written in
terms of </P><TT class=code>if</TT><P>, </P><TT class=code>block</TT><P> and </P><TT class=code>tagbody</TT><P>, so user-defined
control macros can be just as efficient as the standard ones.
Python emits basic blocks using a heuristic that minimizes the
number of unconditional branches. The code in a </P><TT class=code>tagbody</TT><P> will
not be emitted in the order it appeared in the source, so there is no
point in arranging the code to make control drop through to the
target.</P><!--TOC subsection Unreachable Code Deletion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc159">5.4.5</A>  Unreachable Code Deletion</H3><!--SEC END --><P>
<A NAME="dead-code-notes"></A>
<A NAME="@concept175"></A>
<A NAME="@concept176"></A></P><P>Python will delete code whenever it can prove that the code can never be
executed. Code becomes unreachable when:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
An <TT class=code>if</TT> is optimized away, or</LI><LI CLASS="li-itemize">There is an explicit unconditional control transfer such as <TT class=code>go</TT> or
<TT class=code>return-from</TT>, or</LI><LI CLASS="li-itemize">The last reference to a local function is deleted (or there never was any
reference.)
</LI></UL><P>When code that appeared in the original source is deleted, the compiler prints
a note to indicate a possible problem (or at least unnecessary code.) For
example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo ()
(if t
(write-line "True.")
(write-line "False.")))
</PRE></BLOCKQUOTE><P>
will result in this note:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(WRITE-LINE "False.")
Note: Deleting unreachable code.
</PRE></BLOCKQUOTE><P>It is important to pay attention to unreachable code notes, since they often
indicate a subtle type error. For example:
</P><BLOCKQUOTE class=example><PRE>
(defstruct foo a b)
(defun lose (x)
(let ((a (foo-a x))
(b (if x (foo-b x) :none)))
...))
</PRE></BLOCKQUOTE><P>
results in this note:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN LOSE
(IF X (FOO-B X) :NONE)
==>
:NONE
Note: Deleting unreachable code.
</PRE></BLOCKQUOTE><P>
The </P><TT class=code>:none</TT><P> is unreachable, because type inference knows that the argument
to </P><TT class=code>foo-a</TT><P> must be a </P><TT class=code>foo</TT><P>, and thus can’t be </P><TT class=code>nil</TT><P>. Presumably the
programmer forgot that </P><TT class=code>x</TT><P> could be </P><TT class=code>nil</TT><P> when he wrote the binding for
</P><TT class=code>a</TT><P>.</P><P>Here is an example with an incorrect declaration:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun count-a (string)
(do ((pos 0 (position #\a string :start (1+ pos)))
(count 0 (1+ count)))
((null pos) count)
(declare (fixnum pos))))
</PRE></BLOCKQUOTE><P>
This time our note is:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN COUNT-A
(DO ((POS 0 #) (COUNT 0 #))
((NULL POS) COUNT)
(DECLARE (FIXNUM POS)))
–> BLOCK LET TAGBODY RETURN-FROM PROGN
==>
COUNT
Note: Deleting unreachable code.
</PRE></BLOCKQUOTE><P>The problem here is that </P><TT class=code>pos</TT><P> can never be null since it is declared a
</P><TT class=code>fixnum</TT><P>.</P><P>It takes some experience with unreachable code notes to be able to
tell what they are trying to say. In non-obvious cases, the best
thing to do is to call the function in a way that should cause the
unreachable code to be executed. Either you will get a type error, or
you will find that there truly is no way for the code to be executed.</P><P>Not all unreachable code results in a note:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
A note is only given when the unreachable code textually appears
in the original source. This prevents spurious notes due to the
optimization of macros and inline functions, but sometimes also
foregoes a note that would have been useful.</LI><LI CLASS="li-itemize">Since accurate source information is not available for non-list
forms, there is an element of heuristic in determining whether or
not to give a note about an atom. Spurious notes may be given when
a macro or inline function defines a variable that is also present
in the calling function. Notes about <TT class=code>nil</TT> and <TT class=code>t</TT> are never
given, since it is too easy to confuse these constants in expanded
code with ones in the original source.</LI><LI CLASS="li-itemize">Notes are only given about code unreachable due to control flow.
There is no note when an expression is deleted because its value is
unused, since this is a common consequence of other optimizations.
</LI></UL><P>Somewhat spurious unreachable code notes can also result when a macro
inserts multiple copies of its arguments in different contexts, for
example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defmacro t-and-f (var form)
‘(if ,var ,form ,form))
(defun foo (x)
(t-and-f x (if x "True." "False.")))
</PRE></BLOCKQUOTE><P>
results in these notes:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(IF X "True." "False.")
==>
"False."
Note: Deleting unreachable code.
==>
"True."
Note: Deleting unreachable code.
</PRE></BLOCKQUOTE><P>It seems like it has deleted both branches of the </P><TT class=code>if</TT><P>, but it has really
deleted one branch in one copy, and the other branch in the other copy. Note
that these messages are only spurious in not satisfying the intent of the rule
that notes are only given when the deleted code appears in the original source;
there is always </P><TT class=variable>some</TT><P> code being deleted when a unreachable code note is
printed.</P><!--TOC subsection Multiple Values Optimization-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc160">5.4.6</A>  Multiple Values Optimization</H3><!--SEC END --><P>
<A NAME="@concept177"></A>
<A NAME="@concept178"></A></P><P>Within a function, Python implements uses of multiple values
particularly efficiently. Multiple values can be kept in arbitrary
registers, so using multiple values doesn’t imply stack manipulation
and representation conversion. For example, this code:
</P><BLOCKQUOTE class=example><PRE>
(let ((a (if x (foo x) u))
(b (if x (bar x) v)))
...)
</PRE></BLOCKQUOTE><P>
is actually more efficient written this way:
</P><BLOCKQUOTE class=example><PRE>
(multiple-value-bind
(a b)
(if x
(values (foo x) (bar x))
(values u v))
...)
</PRE></BLOCKQUOTE><P>Also, see section <A HREF="#local-call-return">5.6.5</A> for information on how local call
provides efficient support for multiple function return values.</P><!--TOC subsection Source to Source Transformation-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc161">5.4.7</A>  Source to Source Transformation</H3><!--SEC END --><P>
<A NAME="@concept179"></A>
<A NAME="@concept180"></A></P><P>The compiler implements a number of operation-specific optimizations as
source-to-source transformations. You will often see unfamiliar code in error
messages, for example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun my-zerop () (zerop x))
</PRE></BLOCKQUOTE><P>gives this warning:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN MY-ZEROP
(ZEROP X)
==>
(= X 0)
Warning: Undefined variable: X
</PRE></BLOCKQUOTE><P>The original </P><TT class=code>zerop</TT><P> has been transformed into a call to
</P><TT class=code>=</TT><P>. This transformation is indicated with the same </P><TT class=code>==></TT><P>
used to mark macro and function inline expansion. Although it can be
confusing, display of the transformed source is important, since
warnings are given with respect to the transformed source. This a
more obscure example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (x) (logand 1 x))
</PRE></BLOCKQUOTE><P>gives this efficiency note:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(LOGAND 1 X)
==>
(LOGAND C::Y C::X)
Note: Forced to do static-function Two-arg-and (cost 53).
Unable to do inline fixnum arithmetic (cost 1) because:
The first argument is a INTEGER, not a FIXNUM.
etc.
</PRE></BLOCKQUOTE><P>Here, the compiler commuted the call to </P><TT class=code>logand</TT><P>, introducing
temporaries. The note complains that the </P><TT class=variable>first</TT><P> argument is not
a </P><TT class=code>fixnum</TT><P>, when in the original call, it was the second
argument. To make things more confusing, the compiler introduced
temporaries called </P><TT class=code>c::x</TT><P> and </P><TT class=code>c::y</TT><P> that are bound to
</P><TT class=code>y</TT><P> and </P><TT class=code>1</TT><P>, respectively.</P><P>You will also notice source-to-source optimizations when efficiency
notes are enabled (see section <A HREF="#efficiency-notes">5.13</A>.) When the compiler is
unable to do a transformation that might be possible if there was more
information, then an efficiency note is printed. For example,
</P><TT class=code>my-zerop</TT><P> above will also give this efficiency note:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN FOO
(ZEROP X)
==>
(= X 0)
Note: Unable to optimize because:
Operands might not be the same type, so can’t open code.
</PRE></BLOCKQUOTE><!--TOC subsection Style Recommendations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc162">5.4.8</A>  Style Recommendations</H3><!--SEC END --><P>
<A NAME="@concept181"></A></P><P>Source level optimization makes possible a clearer and more relaxed programming
style:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Don’t use macros purely to avoid function call. If you want an
inline function, write it as a function and declare it inline. It’s
clearer, less error-prone, and works just as well.</LI><LI CLASS="li-itemize">Don’t write macros that try to “optimize” their expansion in
trivial ways such as avoiding binding variables for simple
expressions. The compiler does these optimizations too, and is less
likely to make a mistake.</LI><LI CLASS="li-itemize">Make use of local functions (i.e., <TT class=code>labels</TT> or <TT class=code>flet</TT>)
and tail-recursion in places where it is clearer. Local function
call is faster than full call.</LI><LI CLASS="li-itemize">Avoid setting local variables when possible. Binding a new
<TT class=code>let</TT> variable is at least as efficient as setting an existing
variable, and is easier to understand, both for the compiler and the
programmer.</LI><LI CLASS="li-itemize">Instead of writing similar code over and over again so that it
can be hand customized for each use, define a macro or inline
function, and let the compiler do the work.
</LI></UL><!--TOC section Tail Recursion-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc163">5.5</A>  Tail Recursion</H2><!--SEC END --><P>
<A NAME="tail-recursion"></A>
<A NAME="@concept182"></A>
<A NAME="@concept183"></A></P><P>A call is tail-recursive if nothing has to be done after the the call
returns, i.e. when the call returns, the returned value is immediately
returned from the calling function. In this example, the recursive
call to </P><TT class=code>myfun</TT><P> is tail-recursive:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun myfun (x)
(if (oddp (random x))
(isqrt x)
(myfun (1- x))))
</PRE></BLOCKQUOTE><P>Tail recursion is interesting because it is form of recursion that can be
implemented much more efficiently than general recursion. In general, a
recursive call requires the compiler to allocate storage on the stack at
run-time for every call that has not yet returned. This memory consumption
makes recursion unacceptably inefficient for representing repetitive algorithms
having large or unbounded size. Tail recursion is the special case of
recursion that is semantically equivalent to the iteration constructs normally
used to represent repetition in programs. Because tail recursion is equivalent
to iteration, tail-recursive programs can be compiled as efficiently as
iterative programs.</P><P>So why would you want to write a program recursively when you can write it
using a loop? Well, the main answer is that recursion is a more general
mechanism, so it can express some solutions simply that are awkward to write as
a loop. Some programmers also feel that recursion is a stylistically
preferable way to write loops because it avoids assigning variables.
For example, instead of writing:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun fun1 (x)
something-that-uses-x)
(defun fun2 (y)
something-that-uses-y)
(do ((x something (fun2 (fun1 x))))
(nil))
</PRE></BLOCKQUOTE><P>You can write:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun fun1 (x)
(fun2 something-that-uses-x))
(defun fun2 (y)
(fun1 something-that-uses-y))
(fun1 something)
</PRE></BLOCKQUOTE><P>The tail-recursive definition is actually more efficient, in addition to being
(arguably) clearer. As the number of functions and the complexity of their
call graph increases, the simplicity of using recursion becomes compelling.
Consider the advantages of writing a large finite-state machine with separate
tail-recursive functions instead of using a single huge </P><TT class=code>prog</TT><P>.</P><P>It helps to understand how to use tail recursion if you think of a
tail-recursive call as a </P><TT class=code>psetq</TT><P> that assigns the argument values to the
called function’s variables, followed by a </P><TT class=code>go</TT><P> to the start of the called
function. This makes clear an inherent efficiency advantage of tail-recursive
call: in addition to not having to allocate a stack frame, there is no need to
prepare for the call to return (e.g., by computing a return PC.)</P><P>Is there any disadvantage to tail recursion? Other than an increase
in efficiency, the only way you can tell that a call has been compiled
tail-recursively is if you use the debugger. Since a tail-recursive
call has no stack frame, there is no way the debugger can print out
the stack frame representing the call. The effect is that backtrace
will not show some calls that would have been displayed in a
non-tail-recursive implementation. In practice, this is not as bad as
it sounds—in fact it isn’t really clearly worse, just different.
See section <A HREF="#debug-tail-recursion">3.3.5</A> for information about the debugger
implications of tail recursion, and how to turn it off for the sake of
more conservative backtrace information.</P><P>In order to ensure that tail-recursion is preserved in arbitrarily
complex calling patterns across separately compiled functions, the
compiler must compile any call in a tail-recursive position as a
tail-recursive call. This is done regardless of whether the program
actually exhibits any sort of recursive calling pattern. In this
example, the call to </P><TT class=code>fun2</TT><P> will always be compiled as a
tail-recursive call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun fun1 (x)
(fun2 x))
</PRE></BLOCKQUOTE><P>So tail recursion doesn’t necessarily have anything to do with recursion
as it is normally thought of. See section <A HREF="#local-tail-recursion">5.6.4</A> for more
discussion of using tail recursion to implement loops.</P><!--TOC subsection Tail Recursion Exceptions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc164">5.5.1</A>  Tail Recursion Exceptions</H3><!--SEC END --><P>Although Python is claimed to be “properly” tail-recursive, some
might dispute this, since there are situations where tail recursion is
inhibited:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">When the call is enclosed by a special binding, or</LI><LI CLASS="li-itemize">When the call is enclosed by a <TT class=code>catch</TT> or
<TT class=code>unwind-protect</TT>, or</LI><LI CLASS="li-itemize">When the call is enclosed by a <TT class=code>block</TT> or <TT class=code>tagbody</TT>
and the block name or <TT class=code>go</TT> tag has been closed over.
</LI></UL><P>
These dynamic extent binding forms inhibit tail recursion because they
allocate stack space to represent the binding. Shallow-binding
implementations of dynamic scoping also require cleanup code to be
evaluated when the scope is exited.</P><P>In addition, optimization of tail-recursive calls is inhibited when
the </P><TT class=code>debug</TT><P> optimization quality is greater than </P><TT class=code>2</TT><P>
(see section <A HREF="#debugger-policy">3.6</A>.)</P><!--TOC section Local Call-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc165">5.6</A>  Local Call</H2><!--SEC END --><P>
<A NAME="local-call"></A>
<A NAME="@concept184"></A>
<A NAME="@concept185"></A>
<A NAME="@concept186"></A></P><P>Python supports two kinds of function call: full call and local call.
Full call is the standard calling convention; its late binding and
generality make Common Lisp what it is, but create unavoidable overheads.
When the compiler can compile the calling function and the called
function simultaneously, it can use local call to avoid some of the
overhead of full call. Local call is really a collection of
compilation strategies. If some aspect of call overhead is not needed
in a particular local call, then it can be omitted. In some cases,
local call can be totally free. Local call provides two main
advantages to the user:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Local call makes the use of the lexical function binding forms
<A NAME="@funs138"></A><TT class=code>flet</TT> and <A NAME="@funs139"></A><TT class=code>labels</TT> much more efficient. A local
call is always faster than a full call, and in many cases is much
faster.</LI><LI CLASS="li-itemize">Local call is a natural approach to <I>block compilation</I>, a
compilation technique that resolves function references at compile
time. Block compilation speeds function call, but increases
compilation times and prevents function redefinition.
</LI></UL><!--TOC subsection Self-Recursive Calls-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc166">5.6.1</A>  Self-Recursive Calls</H3><!--SEC END --><P>
<A NAME="@concept187"></A></P><P>Local call is used when a function defined by </P><TT class=code>defun</TT><P> calls itself. For
example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun fact (n)
(if (zerop n)
1
(* n (fact (1- n)))))
</PRE></BLOCKQUOTE><P>This use of local call speeds recursion, but can also complicate
debugging, since <A NAME="@funs140"></A></P><TT class=code>trace</TT><P> will only show the first call to
</P><TT class=code>fact</TT><P>, and not the recursive calls. This is because the
recursive calls directly jump to the start of the function, and don’t
indirect through the </P><TT class=code>symbol-function</TT><P>. Self-recursive local
call is inhibited when the </P><TT class=code>:block-compile</TT><P> argument to
</P><TT class=code>compile-file</TT><P> is </P><TT class=code>nil</TT><P> (see section <A HREF="#compile-file-block">5.7.3</A>.)</P><!--TOC subsection Let Calls-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc167">5.6.2</A>  Let Calls</H3><!--SEC END --><P>
<A NAME="let-calls"></A>
Because local call avoids unnecessary call overheads, the compiler
internally uses local call to implement some macros and special forms
that are not normally thought of as involving a function call. For
example, this </P><TT class=code>let</TT><P>:</P><BLOCKQUOTE class=example><PRE>
(let ((a (foo))
(b (bar)))
...)
</PRE></BLOCKQUOTE><P>is internally represented as though it was macroexpanded into:</P><BLOCKQUOTE class=example><PRE>
(funcall #’(lambda (a b)
...)
(foo)
(bar))
</PRE></BLOCKQUOTE><P>This implementation is acceptable because the simple cases of local
call (equivalent to a </P><TT class=code>let</TT><P>) result in good code. This doesn’t
make </P><TT class=code>let</TT><P> any more efficient, but does make local calls that are
semantically the same as </P><TT class=code>let</TT><P> much more efficient than full
calls. For example, these definitions are all the same as far as the
compiler is concerned:</P><BLOCKQUOTE class=example><PRE>
(defun foo ()
...some other stuff...
(let ((a something))
...some stuff...))
(defun foo ()
(flet ((localfun (a)
...some stuff...))
...some other stuff...
(localfun something)))
(defun foo ()
(let ((funvar #’(lambda (a)
...some stuff...)))
...some other stuff...
(funcall funvar something)))
</PRE></BLOCKQUOTE><P>Although local call is most efficient when the function is called only
once, a call doesn’t have to be equivalent to a </P><TT class=code>let</TT><P> to be more
efficient than full call. All local calls avoid the overhead of
argument count checking and keyword argument parsing, and there are a
number of other advantages that apply in many common situations.
See section <A HREF="#let-optimization">5.4.1</A> for a discussion of the optimizations done on
let calls.</P><!--TOC subsection Closures-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc168">5.6.3</A>  Closures</H3><!--SEC END --><P>
<A NAME="@concept188"></A></P><P>Local call allows for much more efficient use of closures, since the
closure environment doesn’t need to be allocated on the heap, or even
stored in memory at all. In this example, there is no penalty for
</P><TT class=code>localfun</TT><P> referencing </P><TT class=code>a</TT><P> and </P><TT class=code>b</TT><P>:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun foo (a b)
(flet ((localfun (x)
(1+ (* a b x))))
(if (= a b)
(localfun (- x))
(localfun x))))
</PRE></BLOCKQUOTE><P>
In local call, the compiler effectively passes closed-over values as
extra arguments, so there is no need for you to “optimize” local
function use by explicitly passing in lexically visible values.
Closures may also be subject to let optimization
(see section <A HREF="#let-optimization">5.4.1</A>.)</P><P>Note: indirect value cells are currently always allocated on the heap
when a variable is both assigned to (with </P><TT class=code>setq</TT><P> or </P><TT class=code>setf</TT><P>)
and closed over, regardless of whether the closure is a local function
or not. This is another reason to avoid setting variables when you
don’t have to.</P><!--TOC subsection Local Tail Recursion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc169">5.6.4</A>  Local Tail Recursion</H3><!--SEC END --><P>
<A NAME="local-tail-recursion"></A>
<A NAME="@concept189"></A>
<A NAME="@concept190"></A></P><P>Tail-recursive local calls are particularly efficient, since they are
in effect an assignment plus a control transfer. Scheme programmers
write loops with tail-recursive local calls, instead of using the
imperative </P><TT class=code>go</TT><P> and </P><TT class=code>setq</TT><P>. This has not caught on in the
Common Lisp community, since conventional Common Lisp compilers don’t
implement local call. In Python, users can choose to write loops
such as:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ! (n)
(labels ((loop (n total)
(if (zerop n)
total
(loop (1- n) (* n total)))))
(loop n 1)))
</PRE></BLOCKQUOTE><P><BR>
<A NAME="@funs141"></A><A NAME="FN:iterate"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>iterate</TT> <TT class=variable>name</TT> (<TT class=code>{(<TT class=variable>var</TT> <TT class=variable>initial-value</TT>)}</TT><SUP>*</SUP>)
<TT class=code>{<TT class=variable>declaration</TT>}</TT><SUP>*</SUP> <TT class=code>{<TT class=variable>form</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro provides syntactic sugar for using <A NAME="@funs142"></A></P><TT class=code>labels</TT><P> to
do iteration. It creates a local function </P><TT class=variable>name</TT><P> with the
specified </P><TT class=variable>var</TT><P>s as its arguments and the </P><TT class=variable>declaration</TT><P>s and
</P><TT class=variable>form</TT><P>s as its body. This function is then called with the
</P><TT class=variable>initial-values</TT><P>, and the result of the call is return from the
macro.</P><P>Here is our factorial example rewritten using </P><TT class=code>iterate</TT><P>:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ! (n)
(iterate loop
((n n)
(total 1))
(if (zerop n)
total
(loop (1- n) (* n total)))))
</PRE></BLOCKQUOTE><P>The main advantage of using </P><TT class=code>iterate</TT><P> over </P><TT class=code>do</TT><P> is that
</P><TT class=code>iterate</TT><P> naturally allows stepping to be done differently
depending on conditionals in the body of the loop. </P><TT class=code>iterate</TT><P>
can also be used to implement algorithms that aren’t really
iterative by simply doing a non-tail call. For example, the
standard recursive definition of factorial can be written like this:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(iterate fact
((n n))
(if (zerop n)
1
(* n (fact (1- n)))))
</PRE></BLOCKQUOTE></BLOCKQUOTE><!--TOC subsection Return Values-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc170">5.6.5</A>  Return Values</H3><!--SEC END --><P>
<A NAME="local-call-return"></A>
<A NAME="@concept191"></A>
<A NAME="@concept192"></A></P><P>One of the more subtle costs of full call comes from allowing
arbitrary numbers of return values. This overhead can be avoided in
local calls to functions that always return the same number of values.
For efficiency reasons (as well as stylistic ones), you should write
functions so that they always return the same number of values. This
may require passing extra </P><TT class=code>nil</TT><P> arguments to </P><TT class=code>values</TT><P> in some
cases, but the result is more efficient, not less so.</P><P>When efficiency notes are enabled (see section <A HREF="#efficiency-notes">5.13</A>), and the
compiler wants to use known values return, but can’t prove that the
function always returns the same number of values, then it will print
a note like this:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN GRUE
(DEFUN GRUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# NIL) (T #)))
Note: Return type not fixed values, so can’t use known return convention:
(VALUES (OR (INTEGER -536870912 -1) NULL) &REST T)
</PRE></BLOCKQUOTE><P>In order to implement proper tail recursion in the presence of known
values return (see section <A HREF="#tail-recursion">5.5</A>), the compiler sometimes must
prove that multiple functions all return the same number of values.
When this can’t be proven, the compiler will print a note like this:
</P><BLOCKQUOTE class=example><PRE>
In: DEFUN BLUE
(DEFUN BLUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# #) (# #) (T #)))
Note: Return value count mismatch prevents known return from
these functions:
BLUE
SNOO
</PRE></BLOCKQUOTE><P>
See section <A HREF="#number-local-call">5.11.10</A> for the interaction between local call
and the representation of numeric types.</P><!--TOC section Block Compilation-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc171">5.7</A>  Block Compilation</H2><!--SEC END --><P>
<A NAME="block-compilation"></A>
<A NAME="@concept193"></A>
<A NAME="@concept194"></A></P><P>Block compilation allows calls to global functions defined by
<A NAME="@funs143"></A></P><TT class=code>defun</TT><P> to be compiled as local calls. The function call
can be in a different top-level form than the </P><TT class=code>defun</TT><P>, or even in a
different file.</P><P>In addition, block compilation allows the declaration of the <I>entry points</I>
to the block compiled portion. An entry point is any function that may be
called from outside of the block compilation. If a function is not an entry
point, then it can be compiled more efficiently, since all calls are known at
compile time. In particular, if a function is only called in one place, then
it will be let converted. This effectively inline expands the function, but
without the code duplication that results from defining the function normally
and then declaring it inline.</P><P>The main advantage of block compilation is that it it preserves efficiency in
programs even when (for readability and syntactic convenience) they are broken
up into many small functions. There is absolutely no overhead for calling a
non-entry point function that is defined purely for modularity (i.e. called
only in one place.)</P><P>Block compilation also allows the use of non-descriptor arguments and return
values in non-trivial programs (see section <A HREF="#number-local-call">5.11.10</A>).</P><!--TOC subsection Block Compilation Semantics-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc172">5.7.1</A>  Block Compilation Semantics</H3><!--SEC END --><P>The effect of block compilation can be envisioned as the compiler turning all
the </P><TT class=code>defun</TT><P>s in the block compilation into a single </P><TT class=code>labels</TT><P> form:
</P><BLOCKQUOTE class=example><PRE>
(declaim (start-block fun1 fun3))
(defun fun1 ()
...)
(defun fun2 ()
...
(fun1)
...)
(defun fun3 (x)
(if x
(fun1)
(fun2)))
(declaim (end-block))
</PRE></BLOCKQUOTE><P>
becomes:
</P><BLOCKQUOTE class=example><PRE>
(labels ((fun1 ()
...)
(fun2 ()
...
(fun1)
...)
(fun3 (x)
(if x
(fun1)
(fun2))))
(setf (fdefinition ’fun1) #’fun1)
(setf (fdefinition ’fun3) #’fun3))
</PRE></BLOCKQUOTE><P>
Calls between the block compiled functions are local calls, so changing the
global definition of </P><TT class=code>fun1</TT><P> will have no effect on what </P><TT class=code>fun2</TT><P> does;
</P><TT class=code>fun2</TT><P> will keep calling the old </P><TT class=code>fun1</TT><P>.</P><P>The entry points </P><TT class=code>fun1</TT><P> and </P><TT class=code>fun3</TT><P> are still installed in
the </P><TT class=code>symbol-function</TT><P> as the global definitions of the functions,
so a full call to an entry point works just as before. However,
</P><TT class=code>fun2</TT><P> is not an entry point, so it is not globally defined. In
addition, </P><TT class=code>fun2</TT><P> is only called in one place, so it will be let
converted.</P><!--TOC subsection Block Compilation Declarations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc173">5.7.2</A>  Block Compilation Declarations</H3><!--SEC END --><P>
<A NAME="@concept195"></A>
<A NAME="@concept196"></A>
<A NAME="@concept197"></A></P><P>The </P><TT class=code>extensions:start-block</TT><P> and </P><TT class=code>extensions:end-block</TT><P>
declarations allow fine-grained control of block compilation. These
declarations are only legal as a global declarations (</P><TT class=code>declaim</TT><P>
or </P><TT class=code>proclaim</TT><P>).</P><P><BR>
The </P><TT class=code>start-block</TT><P> declaration has this syntax:
</P><BLOCKQUOTE class=example><PRE>
(start-block <TT class=code>{<TT class=variable>entry-point-name</TT>}</TT><SUP>*</SUP>)
</PRE></BLOCKQUOTE><P>
When processed by the compiler, this declaration marks the start of
block compilation, and specifies the entry points to that block. If
no entry points are specified, then </P><TT class=variable>all</TT><P> functions are made into
entry points. If already block compiling, then the compiler ends the
current block and starts a new one.</P><P><BR>
The </P><TT class=code>end-block</TT><P> declaration has no arguments:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(end-block)
</PRE></BLOCKQUOTE><P>
The </P><TT class=code>end-block</TT><P> declaration ends a block compilation unit without
starting a new one. This is useful mainly when only a portion of a file
is worth block compiling.</P><!--TOC subsection Compiler Arguments-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc174">5.7.3</A>  Compiler Arguments</H3><!--SEC END --><P>
<A NAME="compile-file-block"></A>
<A NAME="@concept198"></A></P><P>The </P><TT class=code>:block-compile</TT><P> and </P><TT class=code>:entry-points</TT><P> arguments to
</P><TT class=code>extensions:compile-from-stream</TT><P> and <A NAME="@funs144"></A></P><TT class=code>compile-file</TT><P> provide overall
control of block compilation, and allow block compilation without requiring
modification of the program source.</P><P>There are three possible values of the </P><TT class=code>:block-compile</TT><P> argument:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>nil</TT><BR>
</DT><DD CLASS="dd-list"> Do no compile-time resolution of global function
names, not even for self-recursive calls. This inhibits any
<TT class=code>start-block</TT> declarations appearing in the file, allowing all
functions to be incrementally redefined.</DD><DT CLASS="dt-list"><TT class=code>t</TT><BR>
</DT><DD CLASS="dd-list"> Start compiling in block compilation mode. This is
mainly useful for block compiling small files that contain no
<TT class=code>start-block</TT> declarations. See also the <TT class=code>:entry-points</TT>
argument.</DD><DT CLASS="dt-list"><TT class=code>:specified</TT><BR>
</DT><DD CLASS="dd-list"> Start compiling in form-at-a-time mode, but
exploit any <TT class=code>start-block</TT> declarations and compile
self-recursive calls as local calls. Normally <TT class=code>:specified</TT> is
the default for this argument (see <A NAME="@vars49"></A><TT class=code>*block-compile-default*</TT>.)
</DD></DL><P>The </P><TT class=code>:entry-points</TT><P> argument can be used in conjunction with
</P><TT class=code>:block-compile</TT><TT class=code>t</TT><P> to specify the entry-points to a
block-compiled file. If not specified or </P><TT class=code>nil</TT><P>, all global functions
will be compiled as entry points. When </P><TT class=code>:block-compile</TT><P> is not
</P><TT class=code>t</TT><P>, this argument is ignored.</P><P><BR>
<A NAME="@vars50"></A><A NAME="VR:block-compile-default"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*block-compile-default*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable determines the default value for the
</P><TT class=code>:block-compile</TT><P> argument to </P><TT class=code>compile-file</TT><P> and
</P><TT class=code>compile-from-stream</TT><P>. The initial value of this variable is
</P><TT class=code>:specified</TT><P>, but </P><TT class=code>nil</TT><P> is sometimes useful for totally
inhibiting block compilation.
</P></BLOCKQUOTE><!--TOC subsection Practical Difficulties-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc175">5.7.4</A>  Practical Difficulties</H3><!--SEC END --><P>The main problem with block compilation is that the compiler uses
large amounts of memory when it is block compiling. This places an
upper limit on the amount of code that can be block compiled as a
unit. To make best use of block compilation, it is necessary to
locate the parts of the program containing many internal calls, and
then add the appropriate </P><TT class=code>start-block</TT><P> declarations. When writing
new code, it is a good idea to put in block compilation declarations
from the very beginning, since writing block declarations correctly
requires accurate knowledge of the program’s function call structure.
If you want to initially develop code with full incremental
redefinition, you can compile with <A NAME="@vars51"></A></P><TT class=code>*block-compile-default*</TT><P> set to
</P><TT class=code>nil</TT><P>.</P><P>Note if a </P><TT class=code>defun</TT><P> appears in a non-null lexical environment, then
calls to it cannot be block compiled.</P><P>Unless files are very small, it is probably impractical to block compile
multiple files as a unit by specifying a list of files to </P><TT class=code>compile-file</TT><P>.
Semi-inline expansion (see section <A HREF="#semi-inline">5.8.2</A>) provides another way to
extend block compilation across file boundaries.</P><!--TOC subsection Context Declarations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc176">5.7.5</A>  Context Declarations</H3><!--SEC END --><P>
<A NAME="context-declarations"></A>
<A NAME="@concept199"></A>
<A NAME="@concept200"></A></P><P>CMUCL has a context-sensitive declaration mechanism which is useful
because it allows flexible control of the compilation policy in large
systems without requiring changes to the source files. The primary
use of this feature is to allow the exported interfaces of a system to
be compiled more safely than the system internals. The context used
is the name being defined and the kind of definition (function, macro,
etc.)</P><P>The </P><TT class=code>:context-declarations</TT><P> option to <A NAME="@funs145"></A></P><TT class=code>with-compilation-unit</TT><P> has
dynamic scope, affecting all compilation done during the evaluation of the
body. The argument to this option should evaluate to a list of lists of the
form:
</P><BLOCKQUOTE class=example><PRE>
(<TT class=variable>context-spec</TT> <TT class=code>{<TT class=variable>declare-form</TT>}</TT><SUP>+</SUP>)
</PRE></BLOCKQUOTE><P>
In the indicated context, the specified declare forms are inserted at
the head of each definition. The declare forms for all contexts that
match are appended together, with earlier declarations getting
precedence over later ones. A simple example:
</P><BLOCKQUOTE class=example><PRE>
:context-declarations
’((:external (declare (optimize (safety 2)))))
</PRE></BLOCKQUOTE><P>
This will cause all functions that are named by external symbols to be
compiled with </P><TT class=code>safety 2</TT><P>.</P><P>The full syntax of context specs is:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:internal</TT>, <TT class=code>:external</TT><BR>
</DT><DD CLASS="dd-list"> True if the symbol is internal
(external) in its home package.</DD><DT CLASS="dt-list"><TT class=code>:uninterned</TT><BR>
</DT><DD CLASS="dd-list"> True if the symbol has no home package.</DD><DT CLASS="dt-list"><TT class=code>(:package <TT class=code>{<TT class=variable>package-name</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True if the
symbol’s home package is in any of the named packages (false if
uninterned.)</DD><DT CLASS="dt-list"><TT class=code>:anonymous</TT><BR>
</DT><DD CLASS="dd-list"> True if the function doesn’t have any
interesting name (not <TT class=code>defmacro</TT>, <TT class=code>defun</TT>, <TT class=code>labels</TT>
or <TT class=code>flet</TT>).</DD><DT CLASS="dt-list"><TT class=code>:macro</TT>, <TT class=code>:function</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=code>:macro</TT> is a global
(<TT class=code>defmacro</TT>) macro. <TT class=code>:function</TT> is anything else.</DD><DT CLASS="dt-list"><TT class=code>:local</TT>, <TT class=code>:global</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=code>:local</TT> is a <TT class=code>labels</TT> or
<TT class=code>flet</TT>. <TT class=code>:global</TT> is anything else.</DD><DT CLASS="dt-list"><TT class=code>(:or <TT class=code>{<TT class=variable>context-spec</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True when any
supplied <TT class=variable>context-spec</TT> is true.</DD><DT CLASS="dt-list"><TT class=code>(:and <TT class=code>{<TT class=variable>context-spec</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True only when all
supplied <TT class=variable>context-spec</TT>s are true.</DD><DT CLASS="dt-list"><TT class=code>(:not <TT class=code>{<TT class=variable>context-spec</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True when
<TT class=variable>context-spec</TT> is false.</DD><DT CLASS="dt-list"><TT class=code>(:member <TT class=code>{<TT class=variable>name</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True when the defined
name is one of these names (<TT class=code>equal</TT> test.)</DD><DT CLASS="dt-list"><TT class=code>(:match <TT class=code>{<TT class=variable>pattern</TT>}</TT><SUP>*</SUP>)</TT><BR>
</DT><DD CLASS="dd-list"> True when any of the
patterns is a substring of the name. The name is wrapped with
<TT class=code>$</TT>’s, so “<TT class=code>$FOO</TT>” matches names beginning with
“<TT class=code>FOO</TT>”, etc.
</DD></DL><!--TOC subsection Context Declaration Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc177">5.7.6</A>  Context Declaration Example</H3><!--SEC END --><P>Here is a more complex example of </P><TT class=code>with-compilation-unit</TT><P> options:
</P><BLOCKQUOTE class=example><PRE>
:optimize ’(optimize (speed 2) (space 2) (inhibit-warnings 2)
(debug 1) (safety 0))
:optimize-interface ’(optimize-interface (safety 1) (debug 1))
:context-declarations
’(((:or :external (:and (:match "%") (:match "SET")))
(declare (optimize-interface (safety 2))))
((:or (:and :external :macro)
(:match "$PARSE-"))
(declare (optimize (safety 2)))))
</PRE></BLOCKQUOTE><P>
The </P><TT class=code>optimize</TT><P> and </P><TT class=code>extensions:optimize-interface</TT><P>
declarations (see section <A HREF="#optimize-declaration">4.7.1</A>) set up the global
compilation policy. The bodies of functions are to be compiled
completely unsafe (</P><TT class=code>safety 0</TT><P>), but argument count and weakened
argument type checking is to be done when a function is called
(</P><TT class=code>speed 2 safety 1</TT><P>).</P><P>The first declaration specifies that all functions that are external
or whose names contain both “</P><TT class=code>%</TT><P>” and “</P><TT class=code>SET</TT><P>” are to be
compiled compiled with completely safe interfaces (</P><TT class=code>safety 2</TT><P>).
The reason for this particular </P><TT class=code>:match</TT><P> rule is that </P><TT class=code>setf</TT><P>
inverse functions in this system tend to have both strings in their
name somewhere. We want </P><TT class=code>setf</TT><P> inverses to be safe because they
are implicitly called by users even though their name is not exported.</P><P>The second declaration makes external macros or functions whose names
start with “</P><TT class=code>PARSE-</TT><P>” have safe bodies (as well as interfaces).
This is desirable because a syntax error in a macro may cause a type
error inside the body. The </P><TT class=code>:match</TT><P> rule is used because macros
often have auxiliary functions whose names begin with this string.</P><P>This particular example is used to build part of the standard CMUCL
system. Note however, that context declarations must be set up
according to the needs and coding conventions of a particular system;
different parts of CMUCL are compiled with different context
declarations, and your system will probably need its own declarations.
In particular, any use of the </P><TT class=code>:match</TT><P> option depends on naming
conventions used in coding.</P><!--TOC section Inline Expansion-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc178">5.8</A>  Inline Expansion</H2><!--SEC END --><P>
<A NAME="inline-expansion"></A>
<A NAME="@concept201"></A>
<A NAME="@concept202"></A>
<A NAME="@concept203"></A>
<A NAME="@concept204"></A>
<A NAME="@concept205"></A></P><P>Python can expand almost any function inline, including functions
with keyword arguments. The only restrictions are that keyword
argument keywords in the call must be constant, and that global
function definitions (</P><TT class=code>defun</TT><P>) must be done in a null lexical
environment (not nested in a </P><TT class=code>let</TT><P> or other binding form.) Local
functions (</P><TT class=code>flet</TT><P>) can be inline expanded in any environment.
Combined with Python’s source-level optimization, inline expansion
can be used for things that formerly required macros for efficient
implementation. In Python, macros don’t have any efficiency
advantage, so they need only be used where a macro’s syntactic
flexibility is required.</P><P>Inline expansion is a compiler optimization technique that reduces
the overhead of a function call by simply not doing the call:
instead, the compiler effectively rewrites the program to appear as
though the definition of the called function was inserted at each
call site. In Common Lisp, this is straightforwardly expressed by
inserting the </P><TT class=code>lambda</TT><P> corresponding to the original definition:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(proclaim ’(inline my-1+))
(defun my-1+ (x) (+ x 1))
(my-1+ someval) ==> ((lambda (x) (+ x 1)) someval)
</PRE></BLOCKQUOTE><P>When the function expanded inline is large, the program after inline
expansion may be substantially larger than the original program. If
the program becomes too large, inline expansion hurts speed rather
than helping it, since hardware resources such as physical memory and
cache will be exhausted. Inline expansion is called for:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">When profiling has shown that a relatively simple function is
called so often that a large amount of time is being wasted in the
calling of that function (as opposed to running in that function.)
If a function is complex, it will take a long time to run relative
the time spent in call, so the speed advantage of inline expansion
is diminished at the same time the space cost of inline expansion is
increased. Of course, if a function is rarely called, then the
overhead of calling it is also insignificant.</LI><LI CLASS="li-itemize">With functions so simple that they take less space to inline
expand than would be taken to call the function (such as
<TT class=code>my-1+</TT> above.) It would require intimate knowledge of the
compiler to be certain when inline expansion would reduce space, but
it is generally safe to inline expand functions whose definition is
a single function call, or a few calls to simple Common Lisp functions.
</LI></UL><P>In addition to this speed/space tradeoff from inline expansion’s
avoidance of the call, inline expansion can also reveal opportunities
for optimization. Python’s extensive source-level optimization can
make use of context information from the caller to tremendously
simplify the code resulting from the inline expansion of a function.</P><P>The main form of caller context is local information about the actual
argument values: what the argument types are and whether the arguments
are constant. Knowledge about argument types can eliminate run-time
type tests (e.g., for generic arithmetic.) Constant arguments in a
call provide opportunities for constant folding optimization after
inline expansion.</P><P>A hidden way that constant arguments are often supplied to functions
is through the defaulting of unsupplied optional or keyword arguments.
There can be a huge efficiency advantage to inline expanding functions
that have complex keyword-based interfaces, such as this definition of
the </P><TT class=code>member</TT><P> function:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(proclaim ’(inline member))
(defun member (item list &key
(key #’identity)
(test #’eql testp)
(test-not nil notp))
(do ((list list (cdr list)))
((null list) nil)
(let ((car (car list)))
(if (cond (testp
(funcall test item (funcall key car)))
(notp
(not (funcall test-not item (funcall key car))))
(t
(funcall test item (funcall key car))))
(return list)))))
</PRE></BLOCKQUOTE><P>
After inline expansion, this call is simplified to the obvious code:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(member a l :key #’foo-a :test #’char=) ==>
(do ((list list (cdr list)))
((null list) nil)
(let ((car (car list)))
(if (char= item (foo-a car))
(return list))))
</PRE></BLOCKQUOTE><P>
In this example, there could easily be more than an order of magnitude
improvement in speed. In addition to eliminating the original call to
</P><TT class=code>member</TT><P>, inline expansion also allows the calls to </P><TT class=code>char=</TT><P>
and </P><TT class=code>foo-a</TT><P> to be open-coded. We go from a loop with three tests
and two calls to a loop with one test and no calls.</P><P>See section <A HREF="#source-optimization">5.4</A> for more discussion of source level
optimization.</P><!--TOC subsection Inline Expansion Recording-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc179">5.8.1</A>  Inline Expansion Recording</H3><!--SEC END --><P>
<A NAME="@concept206"></A></P><P>Inline expansion requires that the source for the inline expanded function to
be available when calls to the function are compiled. The compiler doesn’t
remember the inline expansion for every function, since that would take an
excessive about of space. Instead, the programmer must tell the compiler to
record the inline expansion before the definition of the inline expanded
function is compiled. This is done by globally declaring the function inline
before the function is defined, by using the </P><TT class=code>inline</TT><P> and
</P><TT class=code>extensions:maybe-inline</TT><P> (see section <A HREF="#maybe-inline-declaration">5.8.3</A>)
declarations.</P><P>In addition to recording the inline expansion of inline functions at the time
the function is compiled, </P><TT class=code>compile-file</TT><P> also puts the inline expansion in
the output file. When the output file is loaded, the inline expansion is made
available for subsequent compilations; there is no need to compile the
definition again to record the inline expansion.</P><P>If a function is declared inline, but no expansion is recorded, then the
compiler will give an efficiency note like:</P><BLOCKQUOTE class=example><PRE>
Note: MYFUN is declared inline, but has no expansion.
</PRE></BLOCKQUOTE><P>When you get this note, check that the </P><TT class=code>inline</TT><P> declaration and the
definition appear before the calls that are to be inline expanded. This note
will also be given if the inline expansion for a </P><TT class=code>defun</TT><P> could not be
recorded because the </P><TT class=code>defun</TT><P> was in a non-null lexical environment.</P><!--TOC subsection Semi-Inline Expansion-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc180">5.8.2</A>  Semi-Inline Expansion</H3><!--SEC END --><P>
<A NAME="semi-inline"></A></P><P>Python supports </P><TT class=variable>semi-inline</TT><P> functions. Semi-inline expansion
shares a single copy of a function across all the calls in a component
by converting the inline expansion into a local function
(see section <A HREF="#local-call">5.6</A>.) This takes up less space when there are
multiple calls, but also provides less opportunity for context
dependent optimization. When there is only one call, the result is
identical to normal inline expansion. Semi-inline expansion is done
when the </P><TT class=code>space</TT><P> optimization quality is </P><TT class=code>0</TT><P>, and the
function has been declared </P><TT class=code>extensions:maybe-inline</TT><P>.</P><P>This mechanism of inline expansion combined with local call also
allows recursive functions to be inline expanded. If a recursive
function is declared </P><TT class=code>inline</TT><P>, calls will actually be compiled
semi-inline. Although recursive functions are often so complex that
there is little advantage to semi-inline expansion, it can still be
useful in the same sort of cases where normal inline expansion is
especially advantageous, i.e. functions where the calling context can
help a lot.</P><!--TOC subsection The Maybe-Inline Declaration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc181">5.8.3</A>  The Maybe-Inline Declaration</H3><!--SEC END --><P>
<A NAME="maybe-inline-declaration"></A>
<A NAME="@concept207"></A></P><P>The </P><TT class=code>extensions:maybe-inline</TT><P> declaration is a CMUCL
extension. It is similar to </P><TT class=code>inline</TT><P>, but indicates that inline
expansion may sometimes be desirable, rather than saying that inline
expansion should almost always be done. When used in a global
declaration, </P><TT class=code>extensions:maybe-inline</TT><P> causes the expansion for
the named functions to be recorded, but the functions aren’t actually
inline expanded unless </P><TT class=code>space</TT><P> is </P><TT class=code>0</TT><P> or the function is
eventually (perhaps locally) declared </P><TT class=code>inline</TT><P>.</P><P>Use of the </P><TT class=code>extensions:maybe-inline</TT><P> declaration followed by the
</P><TT class=code>defun</TT><P> is preferable to the standard idiom of:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(proclaim ’(inline myfun))
(defun myfun () ...)
(proclaim ’(notinline myfun))
;;; <I>Any calls to </I><TT class=code><I>myfun</I></TT><I> here are not inline expanded.</I>
(defun somefun ()
(declare (inline myfun))
;;
;; <I>Calls to </I><TT class=code><I>myfun</I></TT><I> here are inline expanded.</I>
...)
</PRE></BLOCKQUOTE><P>
The problem with using </P><TT class=code>notinline</TT><P> in this way is that in
Common Lisp it does more than just suppress inline expansion, it also
forbids the compiler to use any knowledge of </P><TT class=code>myfun</TT><P> until a
later </P><TT class=code>inline</TT><P> declaration overrides the </P><TT class=code>notinline</TT><P>. This
prevents compiler warnings about incorrect calls to the function, and
also prevents block compilation.</P><P>The </P><TT class=code>extensions:maybe-inline</TT><P> declaration is used like this:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(proclaim ’(extensions:maybe-inline myfun))
(defun myfun () ...)
;;; <I>Any calls to </I><TT class=code><I>myfun</I></TT><I> here are not inline expanded.</I>
(defun somefun ()
(declare (inline myfun))
;;
;; <I>Calls to </I><TT class=code><I>myfun</I></TT><I> here are inline expanded.</I>
...)
(defun someotherfun ()
(declare (optimize (space 0)))
;;
;; <I>Calls to </I><TT class=code><I>myfun</I></TT><I> here are expanded semi-inline.</I>
...)
</PRE></BLOCKQUOTE><P>
In this example, the use of </P><TT class=code>extensions:maybe-inline</TT><P> causes the
expansion to be recorded when the </P><TT class=code>defun</TT><P> for </P><TT class=code>somefun</TT><P> is
compiled, and doesn’t waste space through doing inline expansion by
default. Unlike </P><TT class=code>notinline</TT><P>, this declaration still allows the
compiler to assume that the known definition really is the one that
will be called when giving compiler warnings, and also allows the
compiler to do semi-inline expansion when the policy is appropriate.</P><P>When the goal is merely to control whether inline expansion is done by
default, it is preferable to use </P><TT class=code>extensions:maybe-inline</TT><P> rather
than </P><TT class=code>notinline</TT><P>. The </P><TT class=code>notinline</TT><P> declaration should be
reserved for those special occasions when a function may be redefined
at run-time, so the compiler must be told that the obvious definition
of a function is not necessarily the one that will be in effect at the
time of the call.</P><!--TOC section Byte Coded Compilation-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc182">5.9</A>  Byte Coded Compilation</H2><!--SEC END --><P>
<A NAME="byte-compile"></A>
<A NAME="@concept208"></A>
<A NAME="@concept209"></A></P><P>Python supports byte compilation to reduce the size of Lisp
programs by allowing functions to be compiled more compactly. Byte
compilation provides an extreme speed/space tradeoff: byte code is
typically six times more compact than native code, but runs fifty
times (or more) slower. This is about ten times faster than the
standard interpreter, which is itself considered fast in comparison to
other Common Lisp interpreters.</P><P>Large Lisp systems (such as CMUCL itself) often have large amounts
of user-interface code, compile-time (macro) code, debugging code, or
rarely executed special-case code. This code is a good target for
byte compilation: very little time is spent running in it, but it can
take up quite a bit of space. Straight-line code with many function
calls is much more suitable than inner loops.</P><P>When byte-compiling, the compiler compiles about twice as fast, and
can produce a hardware independent object file (</P><TT class=filename>.bytef</TT><P> type.)
This file can be loaded like a normal fasl file on any implementation
of CMUCL with the same byte-ordering.</P><P>The decision to byte compile or native compile can be done on a
per-file or per-code-object basis. The </P><TT class=code>:byte-compile</TT><P> argument to
<A NAME="@funs146"></A></P><TT class=code>compile-file</TT><P> has these possible values:</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>nil</TT><BR>
</DT><DD CLASS="dd-list"> Don’t byte compile anything in this file.</DD><DT CLASS="dt-list"><TT class=code>t</TT><BR>
</DT><DD CLASS="dd-list"> Byte compile everything in this file and produce a
processor-independent <TT class=filename>.bytef</TT> file.</DD><DT CLASS="dt-list"><TT class=code>:maybe</TT><BR>
</DT><DD CLASS="dd-list"> Produce a normal fasl file, but byte compile any
functions for which the <TT class=code>speed</TT> optimization quality is
<TT class=code>0</TT> and the <TT class=code>debug</TT> quality is not greater than <TT class=code>1</TT>.
</DD></DL><P><BR>
<A NAME="@vars52"></A><A NAME="VR:byte-compile-top-level"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*byte-compile-top-level*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>If this variable is true (the default) and the </P><TT class=code>:byte-compile</TT><P>
argument to </P><TT class=code>compile-file</TT><P> is </P><TT class=code>:maybe</TT><P>, then byte compile
top-level code (code outside of any </P><TT class=code>defun</TT><P>, </P><TT class=code>defmethod</TT><P>,
etc.)
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars53"></A><A NAME="VR:byte-compile-default"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*byte-compile-default*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable determines the default value for the
</P><TT class=code>:byte-compile</TT><P> argument to </P><TT class=code>compile-file</TT><P>, initially
</P><TT class=code>:maybe</TT><P>.
</P></BLOCKQUOTE><!--TOC section Object Representation-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc183">5.10</A>  Object Representation</H2><!--SEC END --><P>
<A NAME="object-representation"></A>
<A NAME="@concept210"></A>
<A NAME="@concept211"></A>
<A NAME="@concept212"></A></P><P>A somewhat subtle aspect of writing efficient Common Lisp programs is
choosing the correct data structures so that the underlying objects
can be implemented efficiently. This is partly because of the need
for multiple representations for a given value
(see section <A HREF="#non-descriptor">5.11.2</A>), but is also due to the sheer number of
object types that Common Lisp has built in. The number of possible
representations complicates the choice of a good representation
because semantically similar objects may vary in their efficiency
depending on how the program operates on them.</P><!--TOC subsection Think Before You Use a List-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc184">5.10.1</A>  Think Before You Use a List</H3><!--SEC END --><P>
<A NAME="@concept213"></A></P><P>Although Lisp’s creator seemed to think that it was for LISt
Processing, the astute observer may have noticed that the chapter on
list manipulation makes up less that three percent of <I>Common Lisp: The Language II</I>. The
language has grown since Lisp 1.5—new data types supersede lists
for many purposes.</P><!--TOC subsection Structure Representation-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc185">5.10.2</A>  Structure Representation</H3><!--SEC END --><P>
<A NAME="@concept214"></A> One of the best ways of
building complex data structures is to define appropriate structure
types using <A NAME="@funs147"></A></P><TT class=code>defstruct</TT><P>. In Python, access of structure
slots is always at least as fast as list or vector access, and is
usually faster. In comparison to a list representation of a tuple,
structures also have a space advantage.</P><P>Even if structures weren’t more efficient than other representations, structure
use would still be attractive because programs that use structures in
appropriate ways are much more maintainable and robust than programs written
using only lists. For example:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(rplaca (caddr (cadddr x)) (caddr y))
</PRE></BLOCKQUOTE><P>
could have been written using structures in this way:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(setf (beverage-flavor (astronaut-beverage x)) (beverage-flavor y))
</PRE></BLOCKQUOTE><P>
The second version is more maintainable because it is easier to
understand what it is doing. It is more robust because structures
accesses are type checked. An </P><TT class=code>astronaut</TT><P> will never be confused
with a </P><TT class=code>beverage</TT><P>, and the result of </P><TT class=code>beverage-flavor</TT><P> is
always a flavor. See sections <A HREF="#structure-types">5.2.8</A> and
<A HREF="#freeze-type">5.2.9</A> for more information about structure types.
See section <A HREF="#type-inference">5.3</A> for a number of examples that make clear the
advantages of structure typing.</P><P>Note that the structure definition should be compiled before any uses
of its accessors or type predicate so that these function calls can be
efficiently open-coded.</P><!--TOC subsection Arrays-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc186">5.10.3</A>  Arrays</H3><!--SEC END --><P>
<A NAME="array-types"></A>
<A NAME="@concept215"></A></P><P>Arrays are often the most efficient representation for collections of objects
because:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Array representations are often the most compact. An array is
always more compact than a list containing the same number of
elements.</LI><LI CLASS="li-itemize">Arrays allow fast constant-time access.</LI><LI CLASS="li-itemize">Arrays are easily destructively modified, which can reduce
consing.</LI><LI CLASS="li-itemize">Array element types can be specialized, which reduces both
overall size and consing (see section <A HREF="#specialized-array-types">5.11.8</A>.)
</LI></UL><P>Access of arrays that are not of type </P><TT class=code>simple-array</TT><P> is less
efficient, so declarations are appropriate when an array is of a
simple type like </P><TT class=code>simple-string</TT><P> or </P><TT class=code>simple-bit-vector</TT><P>.
Arrays are almost always simple, but the compiler may not be able to
prove simpleness at every use. The only way to get a non-simple array
is to use the </P><TT class=code>:displaced-to</TT><P>, </P><TT class=code>:fill-pointer</TT><P> or
</P><TT class=code>adjustable</TT><P> arguments to </P><TT class=code>make-array</TT><P>. If you don’t use
these hairy options, then arrays can always be declared to be simple.</P><P>Because of the many specialized array types and the possibility of
non-simple arrays, array access is much like generic arithmetic
(see section <A HREF="#generic-arithmetic">5.11.4</A>). In order for array accesses to be
efficiently compiled, the element type and simpleness of the array
must be known at compile time. If there is inadequate information,
the compiler is forced to call a generic array access routine. You
can detect inefficient array accesses by enabling efficiency notes,
see section <A HREF="#efficiency-notes">5.13</A>.</P><!--TOC subsection Vectors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc187">5.10.4</A>  Vectors</H3><!--SEC END --><P>
<A NAME="@concept216"></A></P><P>Vectors (one dimensional arrays) are particularly useful, since in
addition to their obvious array-like applications, they are also well
suited to representing sequences. In comparison to a list
representation, vectors are faster to access and take up between two
and sixty-four times less space (depending on the element type.) As
with arbitrary arrays, the compiler needs to know that vectors are not
complex, so you should use </P><TT class=code>simple-string</TT><P> in preference to
</P><TT class=code>string</TT><P>, etc.</P><P>The only advantage that lists have over vectors for representing
sequences is that it is easy to change the length of a list, add to it
and remove items from it. Likely signs of archaic, slow lisp code are
</P><TT class=code>nth</TT><P> and </P><TT class=code>nthcdr</TT><P>. If you are using these functions you
should probably be using a vector.</P><!--TOC subsection Bit-Vectors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc188">5.10.5</A>  Bit-Vectors</H3><!--SEC END --><P>
<A NAME="@concept217"></A></P><P>Another thing that lists have been used for is set manipulation. In
applications where there is a known, reasonably small universe of
items bit-vectors can be used to improve performance. This is much
less convenient than using lists, because instead of symbols, each
element in the universe must be assigned a numeric index into the bit
vector. Using a bit-vector will nearly always be faster, and can be
tremendously faster if the number of elements in the set is not small.
The logical operations on </P><TT class=code>simple-bit-vector</TT><P>s are efficient,
since they operate on a word at a time.</P><!--TOC subsection Hashtables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc189">5.10.6</A>  Hashtables</H3><!--SEC END --><P>
<A NAME="@concept218"></A></P><P>Hashtables are an efficient and general mechanism for maintaining associations
such as the association between an object and its name. Although hashtables
are usually the best way to maintain associations, efficiency and style
considerations sometimes favor the use of an association list (a-list).</P><TT class=code>assoc</TT><P> is fairly fast when the </P><TT class=variable>test</TT><P> argument is </P><TT class=code>eq</TT><P>
or </P><TT class=code>eql</TT><P> and there are only a few elements, but the time goes up
in proportion with the number of elements. In contrast, the
hash-table lookup has a somewhat higher overhead, but the speed is
largely unaffected by the number of entries in the table. For an
</P><TT class=code>equal</TT><P> hash-table or alist, hash-tables have an even greater
advantage, since the test is more expensive. Whatever you do, be sure
to use the most restrictive test function possible.</P><P>The style argument observes that although hash-tables and alists
overlap in function, they do not do all things equally well.
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Alists are good for maintaining scoped environments. They were
originally invented to implement scoping in the Lisp interpreter,
and are still used for this in Python. With an alist one can
non-destructively change an association simply by consing a new
element on the front. This is something that cannot be done with
hash-tables.</LI><LI CLASS="li-itemize">Hashtables are good for maintaining a global association. The
value associated with an entry can easily be changed with
<TT class=code>setf</TT>. With an alist, one has to go through contortions,
either <TT class=code>rplacd</TT>’ing the cons if the entry exists, or pushing a
new one if it doesn’t. The side-effecting nature of hash-table
operations is an advantage here.
</LI></UL><P>Historically, symbol property lists were often used for global name
associations. Property lists provide an awkward and error-prone
combination of name association and record structure. If you must use
the property list, please store all the related values in a single
structure under a single property, rather than using many properties.
This makes access more efficient, and also adds a modicum of typing
and abstraction. See section <A HREF="#advanced-type-stuff">5.2</A> for information on types
in CMUCL.</P><!--TOC section Numbers-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc190">5.11</A>  Numbers</H2><!--SEC END --><P>
<A NAME="numeric-types"></A>
<A NAME="@concept219"></A>
<A NAME="@concept220"></A></P><P>Numbers are interesting because numbers are one of the few Common Lisp data types
that have direct support in conventional hardware. If a number can be
represented in the way that the hardware expects it, then there is a big
efficiency advantage.</P><P>Using hardware representations is problematical in Common Lisp due to
dynamic typing (where the type of a value may be unknown at compile
time.) It is possible to compile code for statically typed portions
of a Common Lisp program with efficiency comparable to that obtained in
statically typed languages such as C, but not all Common Lisp
implementations succeed. There are two main barriers to efficient
numerical code in Common Lisp:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The compiler must prove that the numerical expression is in fact
statically typed, and</LI><LI CLASS="li-itemize">The compiler must be able to somehow reconcile the conflicting
demands of the hardware mandated number representation with the
Common Lisp requirements of dynamic typing and garbage-collecting
dynamic storage allocation.
</LI></UL><P>Because of its type inference (see section <A HREF="#type-inference">5.3</A>) and efficiency
notes (see section <A HREF="#efficiency-notes">5.13</A>), Python is better than
conventional Common Lisp compilers at ensuring that numerical expressions
are statically typed. Python also goes somewhat farther than existing
compilers in the area of allowing native machine number
representations in the presence of garbage collection.</P><!--TOC subsection Descriptors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc191">5.11.1</A>  Descriptors</H3><!--SEC END --><P>
<A NAME="@concept221"></A>
<A NAME="@concept222"></A>
<A NAME="@concept223"></A>
<A NAME="@concept224"></A></P><P>Common Lisp’s dynamic typing requires that it be possible to represent
any value with a fixed length object, known as a </P><TT class=variable>descriptor</TT><P>.
This fixed-length requirement is implicit in features such as:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Data types (like <TT class=code>simple-vector</TT>) that can contain any type
of object, and that can be destructively modified to contain
different objects (of possibly different types.)</LI><LI CLASS="li-itemize">Functions that can be called with any type of argument, and that
can be redefined at run time.
</LI></UL><P>In order to save space, a descriptor is invariably represented as a
single word. Objects that can be directly represented in the
descriptor itself are said to be </P><TT class=variable>immediate</TT><P>. Descriptors for
objects larger than one word are in reality pointers to the memory
actually containing the object.</P><P>Representing objects using pointers has two major disadvantages:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The memory pointed to must be allocated on the heap, so it must
eventually be freed by the garbage collector. Excessive heap
allocation of objects (or “consing”) is inefficient in several
ways. See section <A HREF="#consing">5.12.2</A>.</LI><LI CLASS="li-itemize">Representing an object in memory requires the compiler to emit
additional instructions to read the actual value in from memory, and
then to write the value back after operating on it.
</LI></UL><P>The introduction of garbage collection makes things even worse, since
the garbage collector must be able to determine whether a descriptor
is an immediate object or a pointer. This requires that a few bits in
each descriptor be dedicated to the garbage collector. The loss of a
few bits doesn’t seem like much, but it has a major efficiency
implication—objects whose natural machine representation is a
full word (integers and single-floats) cannot have an immediate
representation. So the compiler is forced to use an unnatural
immediate representation (such as </P><TT class=code>fixnum</TT><P>) or a natural pointer
representation (with the attendant consing overhead.)</P><!--TOC subsection Non-Descriptor Representations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc192">5.11.2</A>  Non-Descriptor Representations</H3><!--SEC END --><P>
<A NAME="non-descriptor"></A>
<A NAME="@concept225"></A>
<A NAME="@concept226"></A></P><P>From the discussion above, we can see that the standard descriptor
representation has many problems, the worst being number consing.
Common Lisp compilers try to avoid these descriptor efficiency problems by using
</P><TT class=variable>non-descriptor</TT><P> representations. A compiler that uses non-descriptor
representations can compile this function so that it does no number consing:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun multby (vec n)
(declare (type (simple-array single-float (*)) vec)
(single-float n))
(dotimes (i (length vec))
(setf (aref vec i)
(* n (aref vec i)))))
</PRE></BLOCKQUOTE><P>
If a descriptor representation were used, each iteration of the loop might
cons two floats and do three times as many memory references.</P><P>As its negative definition suggests, the range of possible non-descriptor
representations is large. The performance improvement from non-descriptor
representation depends upon both the number of types that have non-descriptor
representations and the number of contexts in which the compiler is forced to
use a descriptor representation.</P><P>Many Common Lisp compilers support non-descriptor representations for
float types such as </P><TT class=code>single-float</TT><P> and </P><TT class=code>double-float</TT><P>
(section <A HREF="#float-efficiency">5.11.7</A>.) Python adds support for full
word integers (see section <A HREF="#word-integers">5.11.6</A>), characters
(see section <A HREF="#characters">5.11.11</A>) and system-area pointers (unconstrained
pointers, see section <A HREF="#system-area-pointers">6.5</A>.) Many Common Lisp compilers
support non-descriptor representations for variables (section
<A HREF="#ND-variables">5.11.3</A>) and array elements (section
<A HREF="#specialized-array-types">5.11.8</A>.) Python adds support for
non-descriptor arguments and return values in local call
(see section <A HREF="#number-local-call">5.11.10</A>) and structure slots (see section <A HREF="#raw-slots">5.11.9</A>).</P><!--TOC subsection Variables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc193">5.11.3</A>  Variables</H3><!--SEC END --><P>
<A NAME="ND-variables"></A>
<A NAME="@concept227"></A>
<A NAME="@concept228"></A>
<A NAME="@concept229"></A></P><P>In order to use a non-descriptor representation for a variable or
expression intermediate value, the compiler must be able to prove that
the value is always of a particular type having a non-descriptor
representation. Type inference (see section <A HREF="#type-inference">5.3</A>) often needs
some help from user-supplied declarations. The best kind of type
declaration is a variable type declaration placed at the binding
point:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(let ((x (car l)))
(declare (single-float x))
...)
</PRE></BLOCKQUOTE><P>
Use of </P><TT class=code>the</TT><P>, or of variable declarations not at the binding form
is insufficient to allow non-descriptor representation of the
variable—with these declarations it is not certain that all
values of the variable are of the right type. It is sometimes useful
to introduce a gratuitous binding that allows the compiler to change
to a non-descriptor representation, like:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(etypecase x
((signed-byte 32)
(let ((x x))
(declare (type (signed-byte 32) x))
...))
...)
</PRE></BLOCKQUOTE><P>
The declaration on the inner </P><TT class=code>x</TT><P> is necessary here due to a phase
ordering problem. Although the compiler will eventually prove that
the outer </P><TT class=code>x</TT><P> is a </P><TT class=code>(signed-byte 32)</TT><P> within that
</P><TT class=code>etypecase</TT><P> branch, the inner </P><TT class=code>x</TT><P> would have been optimized
away by that time. Declaring the type makes let optimization more
cautious.</P><P>Note that storing a value into a global (or </P><TT class=code>special</TT><P>) variable
always forces a descriptor representation. Wherever possible, you
should operate only on local variables, binding any referenced globals
to local variables at the beginning of the function, and doing any
global assignments at the end.</P><P>Efficiency notes signal use of inefficient representations, so
programmer’s needn’t continuously worry about the details of
representation selection (see section <A HREF="#representation-eff-note">5.13.3</A>.)</P><!--TOC subsection Generic Arithmetic-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc194">5.11.4</A>  Generic Arithmetic</H3><!--SEC END --><P>
<A NAME="generic-arithmetic"></A>
<A NAME="@concept230"></A>
<A NAME="@concept231"></A>
<A NAME="@concept232"></A></P><P>In Common Lisp, arithmetic operations are </P><TT class=variable>generic</TT><P>.<SUP><A NAME="text12" HREF="#note12">3</A></SUP>
The </P><TT class=code>+</TT><P> function can be passed </P><TT class=code>fixnum</TT><P>s, </P><TT class=code>bignum</TT><P>s,
</P><TT class=code>ratio</TT><P>s, and various kinds of </P><TT class=code>float</TT><P>s and
</P><TT class=code>complex</TT><P>es, in any combination. In addition to the inherent
complexity of </P><TT class=code>bignum</TT><P> and </P><TT class=code>ratio</TT><P> operations, there is also
a lot of overhead in just figuring out which operation to do and what
contagion and canonicalization rules apply. The complexity of generic
arithmetic is so great that it is inconceivable to open code it.
Instead, the compiler does a function call to a generic arithmetic
routine, consuming many instructions before the actual computation
even starts.</P><P>This is ridiculous, since even Common Lisp programs do a lot of
arithmetic, and the hardware is capable of doing operations on small
integers and floats with a single instruction. To get acceptable
efficiency, the compiler special-cases uses of generic arithmetic that
are directly implemented in the hardware. In order to open code
arithmetic, several constraints must be met:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">All the arguments must be known to be a good type of number.</LI><LI CLASS="li-itemize">The result must be known to be a good type of number.</LI><LI CLASS="li-itemize">Any intermediate values such as the result of <TT class=code>(+ a b)</TT>
in the call <TT class=code>(+ a b c)</TT> must be known to be a good type of
number.</LI><LI CLASS="li-itemize">All the above numbers with good types must be of the <TT class=variable>same</TT>
good type. Don’t try to mix integers and floats or different float
formats.
</LI></UL><P>The “good types” are </P><TT class=code>(signed-byte 32)</TT><P>,
</P><TT class=code>(unsigned-byte 32)</TT><P>, </P><TT class=code>single-float</TT><P>,
</P><TT class=code>double-float</TT><P>, </P><TT class=code>(complex single-float)</TT><P>, and </P><TT class=code>(complex
double-float)</TT><P>. See sections <A HREF="#fixnums">5.11.5</A>, <A HREF="#word-integers">5.11.6</A>
and <A HREF="#float-efficiency">5.11.7</A> for more discussion of good numeric types.</P><TT class=code>float</TT><P> is not a good type, since it might mean either
</P><TT class=code>single-float</TT><P> or </P><TT class=code>double-float</TT><P>. </P><TT class=code>integer</TT><P> is not a
good type, since it might mean </P><TT class=code>bignum</TT><P>. </P><TT class=code>rational</TT><P> is not
a good type, since it might mean </P><TT class=code>ratio</TT><P>. Note however that
these types are still useful in declarations, since type inference may
be able to strengthen a weak declaration into a good one, when it
would be at a loss if there was no declaration at all
(see section <A HREF="#type-inference">5.3</A>). The </P><TT class=code>integer</TT><P> and
</P><TT class=code>unsigned-byte</TT><P> (or non-negative integer) types are especially
useful in this regard, since they can often be strengthened to a good
integer type.</P><P>As noted above, CMUCL has support for </P><TT class=code>(complex single-float)</TT><P>
and </P><TT class=code>(complex double-float)</TT><P>. These can be unboxed and, thus,
are quite efficient. However, arithmetic with complex types such as:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(complex float)
(complex fixnum)
</PRE></BLOCKQUOTE><P>
will be significantly slower than the good complex types but is still
faster than </P><TT class=code>bignum</TT><P> or </P><TT class=code>ratio</TT><P> arithmetic, since the
implementation is much simpler.</P><P>Note: don’t use </P><TT class=code>/</TT><P> to divide integers unless you want the
overhead of rational arithmetic. Use </P><TT class=code>truncate</TT><P> even when you
know that the arguments divide evenly.</P><P>You don’t need to remember all the rules for how to get open-coded
arithmetic, since efficiency notes will tell you when and where there
is a problem—see section <A HREF="#efficiency-notes">5.13</A>.</P><!--TOC subsection Fixnums-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc195">5.11.5</A>  Fixnums</H3><!--SEC END --><P>
<A NAME="fixnums"></A>
<A NAME="@concept233"></A>
<A NAME="@concept234"></A></P><P>A fixnum is a “FIXed precision NUMber”. In modern Common Lisp
implementations, fixnums can be represented with an immediate
descriptor, so operating on fixnums requires no consing or memory
references. Clever choice of representations also allows some
arithmetic operations to be done on fixnums using hardware supported
word-integer instructions, somewhat reducing the speed penalty for
using an unnatural integer representation.</P><P>It is useful to distinguish the </P><TT class=code>fixnum</TT><P> type from the fixnum
representation of integers. In Python, there is absolutely nothing
magical about the </P><TT class=code>fixnum</TT><P> type in comparison to other finite
integer types. </P><TT class=code>fixnum</TT><P> is equivalent to (is defined with
</P><TT class=code>deftype</TT><P> to be) </P><TT class=code>(signed-byte 30)</TT><P>. </P><TT class=code>fixnum</TT><P> is
simply the largest subset of integers that <EM>can be represented</EM>
using an immediate fixnum descriptor.</P><P>Unlike in other Common Lisp compilers, it is in no way desirable to use
the </P><TT class=code>fixnum</TT><P> type in declarations in preference to more
restrictive integer types such as </P><TT class=code>bit</TT><P>, </P><TT class=code>(integer -43
7)</TT><P> and </P><TT class=code>(unsigned-byte 8)</TT><P>. Since Python does
understand these integer types, it is preferable to use the more
restrictive type, as it allows better type inference
(see section <A HREF="#operation-type-inference">5.3.4</A>.)</P><P>The small, efficient fixnum is contrasted with bignum, or “BIG
NUMber”. This is another descriptor representation for integers, but
this time a pointer representation that allows for arbitrarily large
integers. Bignum operations are less efficient than fixnum
operations, both because of the consing and memory reference overheads
of a pointer descriptor, and also because of the inherent complexity
of extended precision arithmetic. While fixnum operations can often
be done with a single instruction, bignum operations are so complex
that they are always done using generic arithmetic.</P><P>A crucial point is that the compiler will use generic arithmetic if it
can’t </P><TT class=variable>prove</TT><P> that all the arguments, intermediate values, and
results are fixnums. With bounded integer types such as
</P><TT class=code>fixnum</TT><P>, the result type proves to be especially problematical,
since these types are not closed under common arithmetic operations
such as </P><TT class=code>+</TT><P>, </P><TT class=code>-</TT><P>, </P><TT class=code>*</TT><P> and </P><TT class=code>/</TT><P>. For example,
</P><TT class=code>(1+ (the fixnum x))</TT><P> does not necessarily evaluate to a
</P><TT class=code>fixnum</TT><P>. Bignums were added to Common Lisp to get around this
problem, but they really just transform the correctness problem “if
this add overflows, you will get the wrong answer” to the efficiency
problem “if this add </P><TT class=variable>might</TT><P> overflow then your program will run
slowly (because of generic arithmetic.)”</P><P>There is just no getting around the fact that the hardware only
directly supports short integers. To get the most efficient open
coding, the compiler must be able to prove that the result is a good
integer type. This is an argument in favor of using more restrictive
integer types: </P><TT class=code>(1+ (the fixnum x))</TT><P> may not always be a
</P><TT class=code>fixnum</TT><P>, but </P><TT class=code>(1+ (the (unsigned-byte 8) x))</TT><P> always
is. Of course, you can also assert the result type by putting in lots
of </P><TT class=code>the</TT><P> declarations and then compiling with </P><TT class=code>safety</TT><TT class=code>0</TT><P>.</P><!--TOC subsection Word Integers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc196">5.11.6</A>  Word Integers</H3><!--SEC END --><P>
<A NAME="word-integers"></A>
<A NAME="@concept235"></A></P><P>Python is unique in its efficient implementation of arithmetic
on full-word integers through non-descriptor representations and open coding.
Arithmetic on any subtype of these types:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(signed-byte 32)
(unsigned-byte 32)
</PRE></BLOCKQUOTE><P>is reasonably efficient, although subtypes of </P><TT class=code>fixnum</TT><P> remain
somewhat more efficient.</P><P>If a word integer must be represented as a descriptor, then the
</P><TT class=code>bignum</TT><P> representation is used, with its associated consing
overhead. The support for word integers in no way changes the
language semantics, it just makes arithmetic on small bignums vastly
more efficient. It is fine to do arithmetic operations with mixed
</P><TT class=code>fixnum</TT><P> and word integer operands; just declare the most
specific integer type you can, and let the compiler decide what
representation to use.</P><P>In fact, to most users, the greatest advantage of word integer
arithmetic is that it effectively provides a few guard bits on the
fixnum representation. If there are missing assertions on
intermediate values in a fixnum expression, the intermediate results
can usually be proved to fit in a word. After the whole expression is
evaluated, there will often be a fixnum assertion on the final result,
allowing creation of a fixnum result without even checking for
overflow.</P><P>The remarks in section <A HREF="#fixnums">5.11.5</A> about fixnum result type also
apply to word integers; you must be careful to give the compiler
enough information to prove that the result is still a word integer.
This time, though, when we blow out of word integers we land in into
generic bignum arithmetic, which is much worse than sleazing from
</P><TT class=code>fixnum</TT><P>s to word integers. Note that mixing
</P><TT class=code>(unsigned-byte 32)</TT><P> arguments with arguments of any signed
type (such as </P><TT class=code>fixnum</TT><P>) is a no-no, since the result might not be
unsigned.</P><!--TOC subsection Floating Point Efficiency-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc197">5.11.7</A>  Floating Point Efficiency</H3><!--SEC END --><P>
<A NAME="float-efficiency"></A>
<A NAME="@concept236"></A></P><P>Arithmetic on objects of type </P><TT class=code>single-float</TT><P> and </P><TT class=code>double-float</TT><P> is
efficiently implemented using non-descriptor representations and open coding.
As for integer arithmetic, the arguments must be known to be of the same float
type. Unlike for integer arithmetic, the results and intermediate values
usually take care of themselves due to the rules of float contagion, i.e.
</P><TT class=code>(1+ (the single-float x))</TT><P> is always a </P><TT class=code>single-float</TT><P>.</P><P>Although they are not specially implemented, </P><TT class=code>short-float</TT><P> and
</P><TT class=code>long-float</TT><P> are also acceptable in declarations, since they are
synonyms for the </P><TT class=code>single-float</TT><P> and </P><TT class=code>double-float</TT><P> types,
respectively.</P><P>In CMUCL, list-style float type specifiers such as
</P><TT class=code>(single-float 0.0 1.0)</TT><P> will be used to good effect.</P><P>For example, in this function,</P><BLOCKQUOTE class=example><PRE>
(defun square (x)
(declare (type (single-float 0f0 10f0)))
(* x x))
</PRE></BLOCKQUOTE><P>Python can deduce that the
return type of the function </P><TT class=code>square</TT><P> is </P><TT class=code>(single-float
0f0 100f0)</TT><P>.</P><P>Many union types are also supported so that</P><BLOCKQUOTE class=example><PRE>
(+ (the (or (integer 1 1) (integer 5 5)) x)
(the (or (integer 10 10) (integer 20 20)) y))
</PRE></BLOCKQUOTE><P>has the inferred type </P><TT class=code>(or (integer 11 11) (integer 15 15)
(integer 21 21) (integer 25 25))</TT><P>. This also works for
floating-point numbers. Member types are also supported.</P><P>CMUCL can also infer types for many mathematical functions
including square root, exponential and logarithmic functions,
trignometric functions and their inverses, and hyperbolic functions
and their inverses. For numeric code, this can greatly enhance
efficiency by allowing the compiler to use specialized versions of
the functions instead of the generic versions. The greatest benefit
of this type inference is determining that the result of the
function is real-valued number instead of possibly being
a complex-valued number.</P><P>For example, consider the function
</P><BLOCKQUOTE class=example><PRE>
(defun fun (x)
(declare (type (single-float (0f0) 100f0) x))
(values (sqrt x) (log x)))
</PRE></BLOCKQUOTE><P>
With this declaration, the compiler can determine that the argument
to </P><TT class=code>sqrt</TT><P> and </P><TT class=code>log</TT><P> are always non-negative so that the result
is always a </P><TT class=code>single-float</TT><P>. In fact, the return type for this
function is derived to be </P><TT class=code>(values (single-float 0f0 10f0)
(single-float * 2f0))</TT><P>.</P><P>If the declaration were reduced to just </P><TT class=code>(declare
(single-float x))</TT><P>, the argument to </P><TT class=code>sqrt</TT><P> and </P><TT class=code>log</TT><P>
could be negative. This forces the use of the generic versions of
these functions because the result could be a complex number.</P><P>We note, however, that proper interval arithmetic is not fully
implemented in the compiler so the inferred types may be slightly in
error due to round-off errors. This round-off error could
accumulate to cause the compiler to erroneously deduce the result
type and cause code to be removed as being
unreachable.<SUP><A NAME="text13" HREF="#note13">4</A></SUP>Thus, the declarations should only be precise enough for the
compiler to deduce that a real-valued argument to a function would
produce a real-valued result. The efficiency notes
(see section <A HREF="#representation-eff-note">5.13.3</A>) from the compiler will guide you
on what declarations might be useful.</P><P>When a float must be represented as a descriptor, a pointer representation is
used, creating consing overhead. For this reason, you should try to avoid
situations (such as full call and non-specialized data structures) that force a
descriptor representation. See sections <A HREF="#specialized-array-types">5.11.8</A>,
<A HREF="#raw-slots">5.11.9</A> and <A HREF="#number-local-call">5.11.10</A>.</P><P>See section <A HREF="#ieee-float">2.1.2</A> for information on the extensions to support IEEE
floating point.</P><!--TOC subsubsection Signed Zeroes and Special Functions-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->5.11.7.1  Signed Zeroes and Special Functions</H4><!--SEC END --><P>CMUCL supports IEEE signed zeroes. In typical usage, the signed
zeroes are not a problem and can be treated as an unsigned zero.
However, some of the special functions have branch points at zero, so
care must be taken.</P><P>For example, suppose we have the function
</P><BLOCKQUOTE class=example><PRE>
(defun fun (x)
(declare (type (single-float 0f0) x))
(log x))
</PRE></BLOCKQUOTE><P>
The derived result of the function is </P><TT class=code>(OR SINGLE-FLOAT
(COMPLEX SINGLE-FLOAT))</TT><P> because the declared values for
</P><TT class=code>x</TT><P> includes both −0.0 and 0.0 and </P><TT class=code>(log -0.0)</TT><P> is
actually a complex number. Because of this, the generic complex log
routine is used.</P><P>If the declaration for </P><TT class=code>x</TT><P> were </P><TT class=code>(single-float (0f0))</TT><P> so +0.0
is not included or </P><TT class=code>(or (single-float (0f0)) (member 0f0))</TT><P> so
+0.0 is include but not −0.0, the derived type would be
</P><TT class=code>single-float</TT><P> for both cases. By declaring </P><TT class=code>x</TT><P> this way,
the log can be implemented using a fast real-valued log routine
instead of the generic log routine.</P><P>CMUCL implements the branch cuts and values given by
Kahan<SUP><A NAME="text14" HREF="#note14">5</A></SUP>.</P><!--TOC subsection Specialized Arrays-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc198">5.11.8</A>  Specialized Arrays</H3><!--SEC END --><P>
<A NAME="specialized-array-types"></A>
<A NAME="@concept237"></A>
<A NAME="@concept238"></A>
<A NAME="@concept239"></A></P><P>Common Lisp supports specialized array element types through the
</P><TT class=code>:element-type</TT><P> argument to </P><TT class=code>make-array</TT><P>. When an array has a
specialized element type, only elements of that type can be stored in
the array. From this restriction comes two major efficiency
advantages:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">A specialized array can save space by packing multiple elements
into a single word. For example, a <TT class=code>base-char</TT> array can have
4 elements per word, and a <TT class=code>bit</TT> array can have 32. This
space-efficient representation is possible because it is not
necessary to separately indicate the type of each element.</LI><LI CLASS="li-itemize">The elements in a specialized array can be given the same
non-descriptor representation as the one used in registers and on
the stack, eliminating the need for representation conversions when
reading and writing array elements. For objects with pointer
descriptor representations (such as floats and word integers) there
is also a substantial consing reduction because it is not necessary
to allocate a new object every time an array element is modified.
</LI></UL><P>These are the specialized element types currently supported:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
bit
(unsigned-byte 2)
(unsigned-byte 4)
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32)
(signed-byte 8)
(signed-byte 16)
(signed-byte 30)
(signed-byte 32)
base-character
single-float
double-float
ext:double-double-float
(complex single-float)
(complex double-float)
(complex ext:double-double-float)
</PRE></BLOCKQUOTE><P>Although a </P><TT class=code>simple-vector</TT><P> can hold any type of object, </P><TT class=code>t</TT><P>
should still be considered a specialized array type, since arrays with
element type </P><TT class=code>t</TT><P> are specialized to hold descriptors.</P><P>When using non-descriptor representations, it is particularly
important to make sure that array accesses are open-coded, since in
addition to the generic operation overhead, efficiency is lost when
the array element is converted to a descriptor so that it can be
passed to (or from) the generic access routine. You can detect
inefficient array accesses by enabling efficiency notes,
see section <A HREF="#efficiency-notes">5.13</A>. See section <A HREF="#array-types">5.10.3</A>.</P><!--TOC subsection Specialized Structure Slots-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc199">5.11.9</A>  Specialized Structure Slots</H3><!--SEC END --><P>
<A NAME="raw-slots"></A>
<A NAME="@concept240"></A>
<A NAME="@concept241"></A></P><P>Structure slots declared by the </P><TT class=code>:type</TT><TT class=code>defstruct</TT><P> slot option
to have certain known numeric types are also given non-descriptor
representations. These types (and subtypes of these types) are supported:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(unsigned-byte 32)
single-float
double-float
(complex single-float)
(complex double-float)
</PRE></BLOCKQUOTE><P>The primary advantage of specialized slot representations is a large
reduction spurious memory allocation and access overhead of programs
that intensively use these types.</P><!--TOC subsection Interactions With Local Call-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc200">5.11.10</A>  Interactions With Local Call</H3><!--SEC END --><P>
<A NAME="number-local-call"></A>
<A NAME="@concept242"></A>
<A NAME="@concept243"></A>
<A NAME="@concept244"></A></P><P>Local call has many advantages (see section <A HREF="#local-call">5.6</A>); one relevant to
our discussion here is that local call extends the usefulness of
non-descriptor representations. If the compiler knows from the
argument type that an argument has a non-descriptor representation,
then the argument will be passed in that representation. The easiest
way to ensure that the argument type is known at compile time is to
always declare the argument type in the called function, like:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun 2+f (x)
(declare (single-float x))
(+ x 2.0))
</PRE></BLOCKQUOTE><P>
The advantages of passing arguments and return values in a non-descriptor
representation are the same as for non-descriptor representations in general:
reduced consing and memory access (see section <A HREF="#non-descriptor">5.11.2</A>.) This
extends the applicative programming styles discussed in section
<A HREF="#local-call">5.6</A> to numeric code. Also, if source files are kept reasonably
small, block compilation can be used to reduce number consing to a minimum.</P><P>Note that non-descriptor return values can only be used with the known return
convention (section <A HREF="#local-call-return">5.6.5</A>.) If the compiler can’t prove that
a function always returns the same number of values, then it must use the
unknown values return convention, which requires a descriptor representation.
Pay attention to the known return efficiency notes to avoid number consing.</P><!--TOC subsection Representation of Characters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc201">5.11.11</A>  Representation of Characters</H3><!--SEC END --><P>
<A NAME="characters"></A>
<A NAME="@concept245"></A>
<A NAME="@concept246"></A></P><P>Python also uses a non-descriptor representation for characters when
convenient. This improves the efficiency of string manipulation, but is
otherwise pretty invisible; characters have an immediate descriptor
representation, so there is not a great penalty for converting a character to a
descriptor. Nonetheless, it may sometimes be helpful to declare
character-valued variables as </P><TT class=code>base-character</TT><P>.</P><!--TOC section General Efficiency Hints-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc202">5.12</A>  General Efficiency Hints</H2><!--SEC END --><P>
<A NAME="general-efficiency"></A>
<A NAME="@concept247"></A></P><P>This section is a summary of various implementation costs and ways to get
around them. These hints are relatively unrelated to the use of the Python
compiler, and probably also apply to most other Common Lisp implementations. In
each section, there are references to related in-depth discussion.</P><!--TOC subsection Compile Your Code-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc203">5.12.1</A>  Compile Your Code</H3><!--SEC END --><P>
<A NAME="@concept248"></A></P><P>At this point, the advantages of compiling code relative to running it
interpreted probably need not be emphasized too much, but remember that
in CMUCL, compiled code typically runs hundreds of times faster than
interpreted code. Also, compiled (</P><TT class=code>fasl</TT><P>) files load significantly faster
than source files, so it is worthwhile compiling files which are loaded many
times, even if the speed of the functions in the file is unimportant.</P><P>Even disregarding the efficiency advantages, compiled code is as good or better
than interpreted code. Compiled code can be debugged at the source level (see
chapter <A HREF="#debugger">3</A>), and compiled code does more error checking. For these
reasons, the interpreter should be regarded mainly as an interactive command
interpreter, rather than as a programming language implementation.</P><P><U>Do not</U> be concerned about the performance of your program until you
see its speed compiled. Some techniques that make compiled code run
faster make interpreted code run slower.</P><!--TOC subsection Avoid Unnecessary Consing-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc204">5.12.2</A>  Avoid Unnecessary Consing</H3><!--SEC END --><P>
<A NAME="consing"></A>
<A NAME="@concept249"></A>
<A NAME="@concept250"></A>
<A NAME="@concept251"></A>
<A NAME="@concept252"></A></P><P>Consing is another name for allocation of storage, as done by the
</P><TT class=code>cons</TT><P> function (hence its name.) </P><TT class=code>cons</TT><P> is by no means the
only function which conses—so does </P><TT class=code>make-array</TT><P> and many
other functions. Arithmetic and function call can also have hidden
consing overheads. Consing hurts performance in the following ways:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">Consing reduces memory access locality, increasing paging
activity.</LI><LI CLASS="li-itemize">Consing takes time just like anything else.</LI><LI CLASS="li-itemize">Any space allocated eventually needs to be reclaimed, either by
garbage collection or by starting a new <TT class=code>lisp</TT> process.
</LI></UL><P>Consing is not undiluted evil, since programs do things other than
consing, and appropriate consing can speed up the real work. It would
certainly save time to allocate a vector of intermediate results that
are reused hundreds of times. Also, if it is necessary to copy a
large data structure many times, it may be more efficient to update
the data structure non-destructively; this somewhat increases update
overhead, but makes copying trivial.</P><P>Note that the remarks in section <A HREF="#efficiency-overview">5.1.5</A> about the
importance of separating tuning from coding also apply to consing
overhead. The majority of consing will be done by a small portion of
the program. The consing hot spots are even less predictable than the
CPU hot spots, so don’t waste time and create bugs by doing
unnecessary consing optimization. During initial coding, avoid
unnecessary side-effects and cons where it is convenient. If
profiling reveals a consing problem, </P><TT class=variable>then</TT><P> go back and fix the
hot spots.</P><P>See section <A HREF="#non-descriptor">5.11.2</A> for a discussion of how to avoid number consing
in Python.</P><!--TOC subsection Complex Argument Syntax-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc205">5.12.3</A>  Complex Argument Syntax</H3><!--SEC END --><P>
<A NAME="@concept253"></A>
<A NAME="@concept254"></A>
<A NAME="@concept255"></A>
<A NAME="@concept256"></A></P><P>Common Lisp has very powerful argument passing mechanisms. Unfortunately, two
of the most powerful mechanisms, rest arguments and keyword arguments, have a
significant performance penalty:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
With keyword arguments, the called function has to parse the supplied keywords
by iterating over them and checking them against the desired keywords.</LI><LI CLASS="li-itemize">With rest arguments, the function must cons a list to hold the arguments. If a
function is called many times or with many arguments, large amounts of memory
will be allocated.
</LI></UL><P>Although rest argument consing is worse than keyword parsing, neither problem
is serious unless thousands of calls are made to such a function. The use of
keyword arguments is strongly encouraged in functions with many arguments or
with interfaces that are likely to be extended, and rest arguments are often
natural in user interface functions.</P><P>Optional arguments have some efficiency advantage over keyword
arguments, but their syntactic clumsiness and lack of extensibility
has caused many Common Lisp programmers to abandon use of optionals
except in functions that have obviously simple and immutable
interfaces (such as </P><TT class=code>subseq</TT><P>), or in functions that are only
called in a few places. When defining an interface function to be
used by other programmers or users, use of only required and keyword
arguments is recommended.</P><P>Parsing of </P><TT class=code>defmacro</TT><P> keyword and rest arguments is done at
compile time, so a macro can be used to provide a convenient syntax
with an efficient implementation. If the macro-expanded form contains
no keyword or rest arguments, then it is perfectly acceptable in inner
loops.</P><P>Keyword argument parsing overhead can also be avoided by use of inline
expansion (see section <A HREF="#inline-expansion">5.8</A>) and block compilation (section
<A HREF="#block-compilation">5.7</A>.)</P><P>Note: the compiler open-codes most heavily used system functions which have
keyword or rest arguments, so that no run-time overhead is involved.</P><!--TOC subsection Mapping and Iteration-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc206">5.12.4</A>  Mapping and Iteration</H3><!--SEC END --><P>
<A NAME="@concept257"></A></P><P>One of the traditional Common Lisp programming styles is a highly applicative one,
involving the use of mapping functions and many lists to store intermediate
results. To compute the sum of the square-roots of a list of numbers, one
might say:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(apply #’+ (mapcar #’sqrt list-of-numbers))
</PRE></BLOCKQUOTE><P>This programming style is clear and elegant, but unfortunately results
in slow code. There are two reasons why:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The creation of lists of intermediate results causes much
consing (see <A HREF="#consing">5.12.2</A>).</LI><LI CLASS="li-itemize">Each level of application requires another scan down the list.
Thus, disregarding other effects, the above code would probably take
twice as long as a straightforward iterative version.
</LI></UL><P>An example of an iterative version of the same code:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(do ((num list-of-numbers (cdr num))
(sum 0 (+ (sqrt (car num)) sum)))
((null num) sum))
</PRE></BLOCKQUOTE><P>See sections <A HREF="#variable-type-inference">5.3.1</A> and <A HREF="#let-optimization">5.4.1</A>
for a discussion of the interactions of iteration constructs with type
inference and variable optimization. Also, section
<A HREF="#local-tail-recursion">5.6.4</A> discusses an applicative style of
iteration.</P><!--TOC subsection Trace Files and Disassembly-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc207">5.12.5</A>  Trace Files and Disassembly</H3><!--SEC END --><P>
<A NAME="trace-files"></A>
<A NAME="@concept258"></A>
<A NAME="@concept259"></A>
<A NAME="@concept260"></A>
<A NAME="@concept261"></A>
<A NAME="@concept262"></A>
<A NAME="@concept263"></A></P><P>In order to write efficient code, you need to know the relative costs
of different operations. The main reason why writing efficient
Common Lisp code is difficult is that there are so many operations, and
the costs of these operations vary in obscure context-dependent ways.
Although efficiency notes point out some problem areas, the only way
to ensure generation of the best code is to look at the assembly code
output.</P><P>The </P><TT class=code>disassemble</TT><P> function is a convenient way to get the assembly code for a
function, but it can be very difficult to interpret, since the correspondence
with the original source code is weak. A better (but more awkward) option is
to use the </P><TT class=code>:trace-file</TT><P> argument to </P><TT class=code>compile-file</TT><P> to generate a trace
file.</P><P>A trace file is a dump of the compiler’s internal representations,
including annotated assembly code. Each component in the program gets
four pages in the trace file (separated by “</P><TT class=code>^<I>L</I></TT><P>”):
</P><UL CLASS="itemize"><LI CLASS="li-itemize">The implicit-continuation (or IR1) representation of the
optimized source. This is a dump of the flow graph representation
used for “source level” optimizations. As you will quickly
notice, it is not really very close to the source. This
representation is not very useful to even sophisticated users.</LI><LI CLASS="li-itemize">The Virtual Machine (VM, or IR2) representation of the program.
This dump represents the generated code as sequences of “Virtual
OPerations” (VOPs.) This representation is intermediate between
the source and the assembly code—each VOP corresponds fairly
directly to some primitive function or construct, but a given VOP
also has a fairly predictable instruction sequence. An operation
(such as <TT class=code>+</TT>) may have multiple implementations with different
cost and applicability. The choice of a particular VOP such as
<TT class=code>+/fixnum</TT> or <TT class=code>+/single-float</TT> represents this choice of
implementation. Once you are familiar with it, the VM
representation is probably the most useful for determining what
implementation has been used.</LI><LI CLASS="li-itemize">An assembly listing, annotated with the VOP responsible for
generating the instructions. This listing is useful for figuring
out what a VOP does and how it is implemented in a particular
context, but its large size makes it more difficult to read.</LI><LI CLASS="li-itemize">A disassembly of the generated code, which has all
pseudo-operations expanded out, but is not annotated with VOPs.
</LI></UL><P>Note that trace file generation takes much space and time, since the trace file
is tens of times larger than the source file. To avoid huge confusing trace
files and much wasted time, it is best to separate the critical program portion
into its own file and then generate the trace file from this small file.</P><!--TOC section Efficiency Notes-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc208">5.13</A>  Efficiency Notes</H2><!--SEC END --><P>
<A NAME="efficiency-notes"></A>
<A NAME="@concept264"></A>
<A NAME="@concept265"></A>
<A NAME="@concept266"></A></P><P>Efficiency notes are messages that warn the user that the compiler has
chosen a relatively inefficient implementation for some operation.
Usually an efficiency note reflects the compiler’s desire for more
type information. If the type of the values concerned is known to the
programmer, then additional declarations can be used to get a more
efficient implementation.</P><P>Efficiency notes are controlled by the
</P><TT class=code>extensions:inhibit-warnings</TT><P> (see section <A HREF="#optimize-declaration">4.7.1</A>)
optimization quality. When </P><TT class=code>speed</TT><P> is greater than
</P><TT class=code>extensions:inhibit-warnings</TT><P>, efficiency notes are enabled.
Note that this implicitly enables efficiency notes whenever
</P><TT class=code>speed</TT><P> is increased from its default of </P><TT class=code>1</TT><P>.</P><P>Consider this program with an obscure missing declaration:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun eff-note (x y z)
(declare (fixnum x y z))
(the fixnum (+ x y z)))
</PRE></BLOCKQUOTE><P>If compiled with </P><TT class=code>(speed 3) (safety 0)</TT><P>, this note is given:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN EFF-NOTE
(+ X Y Z)
==>
(+ (+ X Y) Z)
Note: Forced to do inline (signed-byte 32) arithmetic (cost 3).
Unable to do inline fixnum arithmetic (cost 2) because:
The first argument is a (INTEGER -1073741824 1073741822),
not a FIXNUM.
</PRE></BLOCKQUOTE><P>This efficiency note tells us that the result of the intermediate
computation </P><TT class=code>(+ x y)</TT><P> is not known to be a </P><TT class=code>fixnum</TT><P>, so
the addition of the intermediate sum to </P><TT class=code>z</TT><P> must be done less
efficiently. This can be fixed by changing the definition of
</P><TT class=code>eff-note</TT><P>:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun eff-note (x y z)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) z)))
</PRE></BLOCKQUOTE><!--TOC subsection Type Uncertainty-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc209">5.13.1</A>  Type Uncertainty</H3><!--SEC END --><P>
<A NAME="@concept267"></A>
<A NAME="@concept268"></A></P><P>The main cause of inefficiency is the compiler’s lack of adequate
information about the types of function argument and result values.
Many important operations (such as arithmetic) have an inefficient
general (generic) case, but have efficient implementations that can
usually be used if there is sufficient argument type information.</P><P>Type efficiency notes are given when a value’s type is uncertain.
There is an important distinction between values that are <EM>not
known</EM> to be of a good type (uncertain) and values that are <EM>known
not</EM> to be of a good type. Efficiency notes are given mainly for the
first case (uncertain types.) If it is clear to the compiler that that
there is not an efficient implementation for a particular function
call, then an efficiency note will only be given if the
</P><TT class=code>extensions:inhibit-warnings</TT><P> optimization quality is </P><TT class=code>0</TT><P>
(see section <A HREF="#optimize-declaration">4.7.1</A>.)</P><P>In other words, the default efficiency notes only suggest that you add
declarations, not that you change the semantics of your program so
that an efficient implementation will apply. For example, compilation
of this form will not give an efficiency note:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(elt (the list l) i)
</PRE></BLOCKQUOTE><P>
even though a vector access is more efficient than indexing a list.</P><!--TOC subsection Efficiency Notes and Type Checking-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc210">5.13.2</A>  Efficiency Notes and Type Checking</H3><!--SEC END --><P>
<A NAME="@concept269"></A>
<A NAME="@concept270"></A>
<A NAME="@concept271"></A></P><P>It is important that the </P><TT class=code>eff-note</TT><P> example above used
</P><TT class=code>(safety 0)</TT><P>. When type checking is enabled, you may get apparently
spurious efficiency notes. With </P><TT class=code>(safety 1)</TT><P>, the note has this extra
line on the end:</P><BLOCKQUOTE class=example><PRE>
The result is a (INTEGER -1610612736 1610612733), not a FIXNUM.
</PRE></BLOCKQUOTE><P>This seems strange, since there is a </P><TT class=code>the</TT><P> declaration on the result of that
second addition.</P><P>In fact, the inefficiency is real, and is a consequence of Python’s
treating declarations as assertions to be verified. The compiler
can’t assume that the result type declaration is true—it must
generate the result and then test whether it is of the appropriate
type.</P><P>In practice, this means that when you are tuning a program to run
without type checks, you should work from the efficiency notes
generated by unsafe compilation. If you want code to run efficiently
with type checking, then you should pay attention to all the
efficiency notes that you get during safe compilation. Since user
supplied output type assertions (e.g., from </P><TT class=code>the</TT><P>) are
disregarded when selecting operation implementations for safe code,
you must somehow give the compiler information that allows it to prove
that the result truly must be of a good type. In our example, it
could be done by constraining the argument types more:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun eff-note (x y z)
(declare (type (unsigned-byte 18) x y z))
(+ x y z))
</PRE></BLOCKQUOTE><P>Of course, this declaration is acceptable only if the arguments to </P><TT class=code>eff-note</TT><P>
always </P><TT class=variable>are</TT><TT class=code>(unsigned-byte 18)</TT><P> integers.</P><!--TOC subsection Representation Efficiency Notes-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc211">5.13.3</A>  Representation Efficiency Notes</H3><!--SEC END --><P>
<A NAME="representation-eff-note"></A>
<A NAME="@concept272"></A>
<A NAME="@concept273"></A>
<A NAME="@concept274"></A>
<A NAME="@concept275"></A>
<A NAME="@concept276"></A>
<A NAME="@concept277"></A></P><P>When operating on values that have non-descriptor representations
(see section <A HREF="#non-descriptor">5.11.2</A>), there can be a substantial time and consing
penalty for converting to and from descriptor representations. For
this reason, the compiler gives an efficiency note whenever it is
forced to do a representation coercion more expensive than
<A NAME="@vars54"></A></P><TT class=code>*efficiency-note-cost-threshold*</TT><P>.</P><P>Inefficient representation coercions may be due to type uncertainty,
as in this example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun set-flo (x)
(declare (single-float x))
(prog ((var 0.0))
(setq var (gorp))
(setq var x)
(return var)))
</PRE></BLOCKQUOTE><P>which produces this efficiency note:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN SET-FLO
(SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.
</PRE></BLOCKQUOTE><P>The variable </P><TT class=code>var</TT><P> is not known to always hold values of type
</P><TT class=code>single-float</TT><P>, so a descriptor representation must be used for its value.
In this sort of situation, adding a declaration will eliminate the inefficiency.</P><P>Often inefficient representation conversions are not due to type
uncertainty—instead, they result from evaluating a
non-descriptor expression in a context that requires a descriptor
result:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Assignment to or initialization of any data structure other than
a specialized array (see section <A HREF="#specialized-array-types">5.11.8</A>), or</LI><LI CLASS="li-itemize">Assignment to a <TT class=code>special</TT> variable, or</LI><LI CLASS="li-itemize">Passing as an argument or returning as a value in any function
call that is not a local call (see section <A HREF="#number-local-call">5.11.10</A>.)
</LI></UL><P>If such inefficient coercions appear in a “hot spot” in the program, data
structures redesign or program reorganization may be necessary to improve
efficiency. See sections <A HREF="#block-compilation">5.7</A>, <A HREF="#numeric-types">5.11</A> and
<A HREF="#profiling">5.14</A>.</P><P>Because representation selection is done rather late in compilation,
the source context in these efficiency notes is somewhat vague, making
interpretation more difficult. This is a fairly straightforward
example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun cf+ (x y)
(declare (single-float x y))
(cons (+ x y) t))
</PRE></BLOCKQUOTE><P>which gives this efficiency note:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN CF+
(CONS (+ X Y) T)
Note: Doing float to pointer coercion (cost 13), for:
The first argument of CONS.
</PRE></BLOCKQUOTE><P>The source context form is almost always the form that receives the value being
coerced (as it is in the preceding example), but can also be the source form
which generates the coerced value. Compiling this example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun if-cf+ (x y)
(declare (single-float x y))
(cons (if (grue) (+ x y) (snoc)) t))
</PRE></BLOCKQUOTE><P>produces this note:</P><BLOCKQUOTE class=example><PRE>
In: DEFUN IF-CF+
(+ X Y)
Note: Doing float to pointer coercion (cost 13).
</PRE></BLOCKQUOTE><P>In either case, the note’s text explanation attempts to include
additional information about what locations are the source and
destination of the coercion. Here are some example notes:
</P><BLOCKQUOTE class=example><PRE>
(IF (GRUE) X (SNOC))
Note: Doing float to pointer coercion (cost 13) from X.
(SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.
</PRE></BLOCKQUOTE><P>
Note that the return value of a function is also a place to which coercions may
have to be done:
</P><BLOCKQUOTE class=example><PRE>
(DEFUN F+ (X Y) (DECLARE (SINGLE-FLOAT X Y)) (+ X Y))
Note: Doing float to pointer coercion (cost 13) to "<return value>".
</PRE></BLOCKQUOTE><P>
Sometimes the compiler is unable to determine a name for the source or
destination, in which case the source context is the only clue.</P><!--TOC subsection Verbosity Control-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc212">5.13.4</A>  Verbosity Control</H3><!--SEC END --><P>
<A NAME="@concept278"></A>
<A NAME="@concept279"></A></P><P>These variables control the verbosity of efficiency notes:</P><P><BR>
<A NAME="@vars55"></A><A NAME="VR:efficiency-note-cost-threshold"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*efficiency-note-cost-threshold*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Before printing some efficiency notes, the compiler compares the
value of this variable to the difference in cost between the chosen
implementation and the best potential implementation. If the
difference is not greater than this limit, then no note is printed.
The units are implementation dependent; the initial value suppresses
notes about “trivial” inefficiencies. A value of </P><TT class=code>1</TT><P> will
note any inefficiency.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars56"></A><A NAME="VR:efficiency-note-limit"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>*efficiency-note-limit*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>When printing some efficiency notes, the compiler reports possible
efficient implementations. The initial value of </P><TT class=code>2</TT><P> prevents
excessively long efficiency notes in the common case where there is
no type information, so all implementations are possible.
</P></BLOCKQUOTE><!--TOC section Profiling-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc213">5.14</A>  Profiling</H2><!--SEC END --><P>
<A NAME="@concept280"></A>
<A NAME="@concept281"></A>
<A NAME="@concept282"></A>
<A NAME="@concept283"></A>
<A NAME="profiling"></A></P><P>The first step in improving a program’s performance is to profile the
activity of the program to find where it spends its time. The best
way to do this is to use the profiling utility found in the
</P><TT class=code>profile</TT><P> package. This package provides a macro </P><TT class=code>profile</TT><P>
that encapsulates functions with statistics gathering code.</P><!--TOC subsection Profile Interface-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc214">5.14.1</A>  Profile Interface</H3><!--SEC END --><P><BR>
<A NAME="@vars57"></A><A NAME="VR:timed-functions"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>profile:</TT><TT class=function-name>*timed-functions*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable holds a list of all functions that are currently being
profiled.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs148"></A><A NAME="FN:profile"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>profile:</TT><TT class=function-name>profile</TT> <TT class=code>{<TT class=variable>name</TT> |<TT class=code>:callers</TT> <TT class=code>t</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro wraps profiling code around the named functions. As in
</P><TT class=code>trace</TT><P>, the </P><TT class=variable>name</TT><P>s are not evaluated. If a function is
already profiled, then the function is unprofiled and reprofiled
(useful to notice function redefinition.) A warning is printed for
each name that is not a defined function.</P><P>If </P><TT class=code>:callers <TT class=variable>t</TT></TT><P> is specified, then each function that calls
this function is recorded along with the number of calls made.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs149"></A><A NAME="FN:unprofile"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>profile:</TT><TT class=function-name>unprofile</TT> <TT class=code>{<TT class=variable>name</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro removes profiling code from the named functions. If no
</P><TT class=variable>name</TT><P>s are supplied, all currently profiled functions are
unprofiled.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs150"></A><A NAME="FN:profile-all"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>profile:</TT><TT class=function-name>profile-all</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:package</TT> <TT class=code>:callers-p</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro in effect calls </P><TT class=code>profile:profile</TT><P> for each
function in the specified package which defaults to
</P><TT class=code>*package*</TT><P>. </P><TT class=code>:callers-p</TT><P> has the same meaning as in
</P><TT class=code>profile:profile</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs151"></A><A NAME="FN:report-time"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>profile:</TT><TT class=function-name>report-time</TT> <TT class=code>{<TT class=variable>name</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro prints a report for each </P><TT class=variable>name</TT><P>d function of the
following information:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The total CPU time used in that function for all calls,</LI><LI CLASS="li-itemize">the total number of bytes consed in that function for all
calls,</LI><LI CLASS="li-itemize">the total number of calls,</LI><LI CLASS="li-itemize">the average amount of CPU time per call.
</LI></UL><P>
Summary totals of the CPU time, consing and calls columns are
printed. An estimate of the profiling overhead is also printed (see
below). If no </P><TT class=variable>name</TT><P>s are supplied, then the times for all
currently profiled functions are printed.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs152"></A><A NAME="FN:reset-time"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>reset-time</TT> <TT class=code>{<TT class=variable>name</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro resets the profiling counters associated with the
</P><TT class=variable>name</TT><P>d functions. If no </P><TT class=variable>name</TT><P>s are supplied, then all
currently profiled functions are reset.
</P></BLOCKQUOTE><!--TOC subsection Profiling Techniques-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc215">5.14.2</A>  Profiling Techniques</H3><!--SEC END --><P>Start by profiling big pieces of a program, then carefully choose which
functions close to, but not in, the inner loop are to be profiled next.
Avoid profiling functions that are called by other profiled functions, since
this opens the possibility of profiling overhead being included in the reported
times.</P><P>If the per-call time reported is less than 1/10 second, then consider the clock
resolution and profiling overhead before you believe the time. It may be that
you will need to run your program many times in order to average out to a
higher resolution.</P><!--TOC subsection Nested or Recursive Calls-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc216">5.14.3</A>  Nested or Recursive Calls</H3><!--SEC END --><P>The profiler attempts to compensate for nested or recursive calls. Time and
consing overhead will be charged to the dynamically innermost (most recent)
call to a profiled function. So profiling a subfunction of a profiled function
will cause the reported time for the outer function to decrease. However if an
inner function has a large number of calls, some of the profiling overhead may
“leak” into the reported time for the outer function. In general, be wary of
profiling short functions that are called many times.</P><!--TOC subsection Clock resolution-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc217">5.14.4</A>  Clock resolution</H3><!--SEC END --><P>Unless you are very lucky, the length of your machine’s clock “tick” is
probably much longer than the time it takes simple function to run. For
example, on the IBM RT, the clock resolution is 1/50 second. This means that
if a function is only called a few times, then only the first couple decimal
places are really meaningful. </P><P>Note however, that if a function is called many times, then the statistical
averaging across all calls should result in increased resolution. For example,
on the IBM RT, if a function is called a thousand times, then a resolution of
tens of microseconds can be expected.</P><!--TOC subsection Profiling overhead-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc218">5.14.5</A>  Profiling overhead</H3><!--SEC END --><P>The added profiling code takes time to run every time that the profiled
function is called, which can disrupt the attempt to collect timing
information. In order to avoid serious inflation of the times for functions
that take little time to run, an estimate of the overhead due to profiling is
subtracted from the times reported for each function.</P><P>Although this correction works fairly well, it is not totally accurate,
resulting in times that become increasingly meaningless for functions with
short runtimes. This is only a concern when the estimated profiling overhead
is many times larger than reported total CPU time.</P><P>The estimated profiling overhead is not represented in the reported total CPU
time. The sum of total CPU time and the estimated profiling overhead should be
close to the total CPU time for the entire profiling run (as determined by the
</P><TT class=code>time</TT><P> macro.) Time unaccounted for is probably being used by functions that
you forgot to profile.</P><!--TOC subsection Additional Timing Utilities-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc219">5.14.6</A>  Additional Timing Utilities</H3><!--SEC END --><P><BR>
<A NAME="@funs153"></A><A NAME="FN:time"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>time</TT> <TT class=variable>form</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro evaluates </P><TT class=variable>form</TT><P>, prints some timing and memory
allocation information to </P><TT class=code>*trace-output*</TT><P>, and returns any
values that </P><TT class=variable>form</TT><P> returns. The timing information includes
real time, user run time, and system run time. This macro executes
a form and reports the time and consing overhead. If the
</P><TT class=code>time</TT><P> form is not compiled (e.g. it was typed at top-level),
then </P><TT class=code>compile</TT><P> will be called on the form to give more accurate
timing information. If you really want to time interpreted speed,
you can say:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(time (eval ’<TT class=variable>form</TT>))
</PRE></BLOCKQUOTE><P>
Things that execute fairly quickly should be timed more than once,
since there may be more paging overhead in the first timing. To
increase the accuracy of very short times, you can time multiple
evaluations:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(time (dotimes (i 100) <TT class=variable>form</TT>))
</PRE></BLOCKQUOTE></BLOCKQUOTE><P><BR>
<A NAME="@funs154"></A><A NAME="FN:get-bytes-consed"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>get-bytes-consed</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the number of bytes allocated since the first
time you called it. The first time it is called it returns zero.
The above profiling routines use this to report consing information.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars58"></A><A NAME="VR:gc-run-time"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*gc-run-time*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This variable accumulates the run-time consumed by garbage
collection, in the units returned by
<A NAME="@funs155"></A></P><TT class=code>get-internal-run-time</TT><P>.
</P></BLOCKQUOTE><P><BR>
</P><DIV align=left>
[Constant]<BR>
<TT class=function-name>internal-time-units-per-second</TT>
</DIV><BLOCKQUOTE CLASS="quote">
The value of internal-time-units-per-second is 100.
</BLOCKQUOTE><!--TOC subsection A Note on Timing-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc220">5.14.7</A>  A Note on Timing</H3><!--SEC END --><P>
<A NAME="@concept284"></A>
<A NAME="@concept285"></A>
<A NAME="@concept286"></A></P><P>There are two general kinds of timing information provided by the
</P><TT class=code>time</TT><P> macro and other profiling utilities: real time and run
time. Real time is elapsed, wall clock time. It will be affected in
a fairly obvious way by any other activity on the machine. The more
other processes contending for CPU and memory, the more real time will
increase. This means that real time measurements are difficult to
replicate, though this is less true on a dedicated workstation. The
advantage of real time is that it is real. It tells you really how
long the program took to run under the benchmarking conditions. The
problem is that you don’t know exactly what those conditions were.</P><P>Run time is the amount of time that the processor supposedly spent
running the program, as opposed to waiting for I/O or running other
processes. “User run time” and “system run time” are numbers
reported by the Unix kernel. They are supposed to be a measure of how
much time the processor spent running your “user” program (which
will include GC overhead, etc.), and the amount of time that the
kernel spent running “on your behalf.”</P><P>Ideally, user time should be totally unaffected by benchmarking
conditions; in reality user time does depend on other system activity,
though in rather non-obvious ways.</P><P>System time will clearly depend on benchmarking conditions. In Lisp
benchmarking, paging activity increases system run time (but not by as much
as it increases real time, since the kernel spends some time waiting for
the disk, and this is not run time, kernel or otherwise.)</P><P>In my experience, the biggest trap in interpreting kernel/user run time is
to look only at user time. In reality, it seems that the </P><TT class=variable>sum</TT><P> of kernel
and user time is more reproducible. The problem is that as system activity
increases, there is a spurious </P><TT class=variable>decrease</TT><P> in user run time. In effect, as
paging, etc., increases, user time leaks into system time.</P><P>So, in practice, the only way to get truly reproducible results is to run
with the same competing activity on the system. Try to run on a machine
with nobody else logged in, and check with “ps aux” to see if there are any
system processes munching large amounts of CPU or memory. If the ratio
between real time and the sum of user and system time varies much between
runs, then you have a problem.</P><!--TOC subsection Benchmarking Techniques-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc221">5.14.8</A>  Benchmarking Techniques</H3><!--SEC END --><P>
<A NAME="@concept287"></A></P><P>Given these imperfect timing tools, how do should you do benchmarking? The
answer depends on whether you are trying to measure improvements in the
performance of a single program on the same hardware, or if you are trying to
compare the performance of different programs and/or different hardware.</P><P>For the first use (measuring the effect of program modifications with
constant hardware), you should look at </P><TT class=variable>both</TT><P> system+user and real time to
understand what effect the change had on CPU use, and on I/O (including
paging.) If you are working on a CPU intensive program, the change in
system+user time will give you a moderately reproducible measure of
performance across a fairly wide range of system conditions. For a CPU
intensive program, you can think of system+user as “how long it would have
taken to run if I had my own machine.” So in the case of comparing CPU
intensive programs, system+user time is relatively real, and reasonable to
use.</P><P>For programs that spend a substantial amount of their time paging, you
really can’t predict elapsed time under a given operating condition without
benchmarking in that condition. User or system+user time may be fairly
reproducible, but it is also relatively meaningless, since in a paging or
I/O intensive program, the program is spending its time waiting, not
running, and system time and user time are both measures of run time.
A change that reduces run time might increase real time by increasing
paging.</P><P>Another common use for benchmarking is comparing the performance of
the same program on different hardware. You want to know which
machine to run your program on. For comparing different machines
(operating systems, etc.), the only way to compare that makes sense is
to set up the machines in </P><TT class=variable>exactly</TT><P> the way that they will
</P><TT class=variable>normally</TT><P> be run, and then measure </P><TT class=variable>real</TT><P> time. If the
program will normally be run along with X, then run X. If the program
will normally be run on a dedicated workstation, then be sure nobody
else is on the benchmarking machine. If the program will normally be
run on a machine with three other Lisp jobs, then run three other Lisp
jobs. If the program will normally be run on a machine with 64MB of
memory, then run with 64MB. Here, “normal” means “normal for that
machine”. </P><P>If you have a program you believe to be CPU intensive, then you might be
tempted to compare “run” times across systems, hoping to get a meaningful
result even if the benchmarking isn’t done under the expected running
condition. Don’t to this, for two reasons:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The operating systems might not compute run time in the same
way.</LI><LI CLASS="li-itemize">Under the real running condition, the program might not be CPU
intensive after all.
</LI></UL><P>In the end, only real time means anything—it is the amount of time you
have to wait for the result. The only valid uses for run time are:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
To develop insight into the program. For example, if run time
is much less than elapsed time, then you are probably spending lots
of time paging.</LI><LI CLASS="li-itemize">To evaluate the relative performance of CPU intensive programs
in the same environment.
</LI></UL><!--NAME compiler-hint.html-->
<!--BEGIN NOTES chapter-->
<HR CLASS="ffootnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note10" HREF="#text10">1</A></DT><DD CLASS="dd-thefootnotes">The source
transformation in this example doesn’t represent the preservation of
evaluation order implicit in the compiler’s internal representation.
Where necessary, the back end will reintroduce temporaries to
preserve the semantics.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note11" HREF="#text11">2</A></DT><DD CLASS="dd-thefootnotes">Note
that the code for <TT class=code>x</TT> and <TT class=code>y</TT> isn’t actually replicated.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note12" HREF="#text12">3</A></DT><DD CLASS="dd-thefootnotes">As Steele
notes in CLTL II, this is a generic conception of generic, and is
not to be confused with the CLOS concept of a generic function.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note13" HREF="#text13">4</A></DT><DD CLASS="dd-thefootnotes">This, however, has not actually happened, but
it is a possibility.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note14" HREF="#text14">5</A></DT><DD CLASS="dd-thefootnotes">Kahan, W., “Branch Cuts for Complex Elementary
Functions, or Much Ado About Nothing’s Sign Bit”
in Iserles and Powell (eds.) <I>The State of the Art
in Numerical Analysis</I>, pp. 165-211, Clarendon
Press, 1987
</DD></DL>
<!--END NOTES-->
<!--TOC chapter UNIX Interface-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc222">Chapter 6</A>  UNIX Interface</H1><!--SEC END --><P>
<A NAME="unix-interface"></A></P><DIV CLASS="center">
<B>by Robert MacLachlan, Skef Wholey, Bill Chiles and William Lott</B>
</DIV><P>CMUCL attempts to make the full power of the underlying
environment available to the Lisp programmer. This is done using
combination of hand-coded interfaces and foreign function calls to C
libraries. Although the techniques differ, the style of interface is
similar. This chapter provides an overview of the facilities available
and general rules for using them, as well as describing specific
features in detail. It is assumed that the reader has a working
familiarity with Unix and X11, as well as access to the standard
system documentation.</P><!--TOC section Reading the Command Line-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc223">6.1</A>  Reading the Command Line</H2><!--SEC END --><P>The shell parses the command line with which Lisp is invoked, and
passes a data structure containing the parsed information to Lisp.
This information is then extracted from that data structure and put
into a set of Lisp data structures.</P><P><BR>
<A NAME="@vars59"></A><A NAME="VR:command-line-strings"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*command-line-strings*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars60"></A><A NAME="VR:command-line-utility-name"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*command-line-utility-name*</TT>
</DIV><P><A NAME="@vars61"></A><A NAME="VR:command-line-words"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*command-line-words*</TT>
</DIV><P><A NAME="@vars62"></A><A NAME="VR:command-line-switches"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*command-line-switches*</TT>
</DIV><P>The value of </P><TT class=code>*command-line-words*</TT><P> is a list of strings that
make up the command line, one word per string. The first word on
the command line, i.e. the name of the program invoked (usually
</P><TT class=code>lisp</TT><P>) is stored in </P><TT class=code>*command-line-utility-name*</TT><P>. The
value of </P><TT class=code>*command-line-switches*</TT><P> is a list of
</P><TT class=code>command-line-switch</TT><P> structures, with a structure for each
word on the command line starting with a hyphen. All the command
line words between the program name and the first switch are stored
in </P><TT class=code>*command-line-words*</TT><P>.
</P></BLOCKQUOTE><P>The following functions may be used to examine </P><TT class=code>command-line-switch</TT><P>
structures.
</P><P><BR>
<A NAME="@funs156"></A><A NAME="FN:cmd-switch-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>cmd-switch-name</TT> <TT class=variable>switch</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Returns the name of the switch, less the preceding hyphen and
trailing equal sign (if any).
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs157"></A><A NAME="FN:cmd-switch-value"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>cmd-switch-value</TT> <TT class=variable>switch</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Returns the value designated using an embedded equal sign, if any.
If the switch has no equal sign, then this is null.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs158"></A><A NAME="FN:cmd-switch-words"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>cmd-switch-words</TT> <TT class=variable>switch</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Returns a list of the words between this switch and the next switch
or the end of the command line.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs159"></A><A NAME="FN:cmd-switch-arg"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>cmd-switch-arg</TT> <TT class=variable>switch</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Returns the first non-null value from </P><TT class=code>cmd-switch-value</TT><P>, the
first element in </P><TT class=code>cmd-switch-words</TT><P>, or the first word in
</P><TT class=variable>command-line-words</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs160"></A><A NAME="FN:get-command-line-switch"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>get-command-line-switch</TT> <TT class=variable>sname</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function takes the name of a switch as a string and returns the
value of the switch given on the command line. If no value was
specified, then any following words are returned. If there are no
following words, then </P><TT class=code>t</TT><P> is returned. If the switch was not
specified, then </P><TT class=code>nil</TT><P> is returned.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs161"></A><A NAME="FN:defswitch"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>defswitch</TT> <TT class=variable>name</TT> <TT class=code>&optional</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro causes </P><TT class=variable>function</TT><P> to be called when the switch
</P><TT class=variable>name</TT><P> appears in the command line. Name is a simple-string
that does not begin with a hyphen (unless the switch name really
does begin with one.)</P><P>If </P><TT class=variable>function</TT><P> is not supplied, then the switch is parsed into
</P><TT class=variable>command-line-switches</TT><P>, but otherwise ignored. This suppresses
the undefined switch warning which would otherwise take place. The
warning can also be globally suppressed by
</P><TT class=variable>complain-about-illegal-switches</TT><P>.
</P></BLOCKQUOTE><!--TOC section Useful Variables-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc224">6.2</A>  Useful Variables</H2><!--SEC END --><P><BR>
<A NAME="@vars63"></A><A NAME="VR:stdin"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>system:</TT><TT class=function-name>*stdin*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@vars64"></A><A NAME="VR:stdout"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>system:</TT><TT class=function-name>*stdout*</TT>
</DIV><P><A NAME="@vars65"></A><A NAME="VR:stderr"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>system:</TT><TT class=function-name>*stderr*</TT>
</DIV><P>Streams connected to the standard input, output and error file
descriptors.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars66"></A><A NAME="VR:tty"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>system:</TT><TT class=function-name>*tty*</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A stream connected to </P><TT class=filename>/dev/tty</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@vars67"></A><A NAME="VR:environment-list"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*environment-list*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
The environment variables inherited by the current process, as a
keyword-indexed alist. For example, to access the DISPLAY
environment variable, you could use<BLOCKQUOTE CLASS=lisp> <PRE>
(cdr (assoc :display ext:*environment-list*))
</PRE></BLOCKQUOTE><P>Note that the case of the variable name is preserved when converting
to a keyword. Therefore, you need to specify the keyword properly for
variable names containing lower-case letters,
</P></BLOCKQUOTE><!--TOC section Lisp Equivalents for C Routines-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc225">6.3</A>  Lisp Equivalents for C Routines</H2><!--SEC END --><P>The UNIX documentation describes the system interface in terms of C
procedure headers. The corresponding Lisp function will have a somewhat
different interface, since Lisp argument passing conventions and
datatypes are different.</P><P>The main difference in the argument passing conventions is that Lisp does not
support passing values by reference. In Lisp, all argument and results are
passed by value. Interface functions take some fixed number of arguments and
return some fixed number of values. A given “parameter” in the C
specification will appear as an argument, return value, or both, depending on
whether it is an In parameter, Out parameter, or In/Out parameter. The basic
transformation one makes to come up with the Lisp equivalent of a C routine is
to remove the Out parameters from the call, and treat them as extra return
values. In/Out parameters appear both as arguments and return values. Since
Out and In/Out parameters are only conventions in C, you must determine the
usage from the documentation.</P><P>Thus, the C routine declared as</P><BLOCKQUOTE class=example><PRE>
kern_return_t lookup(servport, portsname, portsid)
port servport;
char *portsname;
int *portsid; /* out */
...
*portsid = <expression to compute portsid field>
return(KERN_SUCCESS);
</PRE></BLOCKQUOTE><P>has as its Lisp equivalent something like</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun lookup (ServPort PortsName)
...
(values
success
<expression to compute portsid field>))
</PRE></BLOCKQUOTE><P>If there are multiple out or in-out arguments, then there are multiple
additional returns values.</P><P>Fortunately, CMUCL programmers rarely have to worry about the
nuances of this translation process, since the names of the arguments and
return values are documented in a way so that the </P><TT class=code>describe</TT><P> function
(and the Hemlock </P><TT class=code>Describe Function Call</TT><P> command, invoked with
<U>C-M-Shift-A</U>) will list this information. Since the names of arguments
and return values are usually descriptive, the information that
</P><TT class=code>describe</TT><P> prints is usually all one needs to write a
call. Most programmers use this on-line documentation nearly
all of the time, and thereby avoid the need to handle bulky
manuals and perform the translation from barbarous tongues.</P><!--TOC section Type Translations-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc226">6.4</A>  Type Translations</H2><!--SEC END --><P>
<A NAME="@concept288"></A>
<A NAME="@concept289"></A>
<A NAME="@concept290"></A></P><P>Lisp data types have very different representations from those used by
conventional languages such as C. Since the system interfaces are
designed for conventional languages, Lisp must translate objects to and
from the Lisp representations. Many simple objects have a direct
translation: integers, characters, strings and floating point numbers
are translated to the corresponding Lisp object. A number of types,
however, are implemented differently in Lisp for reasons of clarity and
efficiency.</P><P>Instances of enumerated types are expressed as keywords in Lisp.
Records, arrays, and pointer types are implemented with the Alien
facility (see section <A HREF="#aliens">8</A>). Access functions are defined
for these types which convert fields of records, elements of arrays,
or data referenced by pointers into Lisp objects (possibly another
object to be referenced with another access function).</P><P>One should dispose of Alien objects created by constructor
functions or returned from remote procedure calls when they are no
longer of any use, freeing the virtual memory associated with that
object. Since Aliens contain pointers to non-Lisp data, the
garbage collector cannot do this itself. If the memory
was obtained from <A NAME="@funs162"></A></P><TT class=code>make-alien</TT><P> or from a foreign function call
to a routine that used </P><TT class=code>malloc</TT><P>, then <A NAME="@funs163"></A></P><TT class=code>free-alien</TT><P> should
be used.</P><!--TOC section System Area Pointers-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc227">6.5</A>  System Area Pointers</H2><!--SEC END --><P>
<A NAME="system-area-pointers"></A></P><P><A NAME="@concept291"></A><A NAME="@concept292"></A><A NAME="@concept293"></A>
Note that in some cases an address is represented by a Lisp integer, and in
other cases it is represented by a real pointer. Pointers are usually used
when an object in the current address space is being referred to. The MACH
virtual memory manipulation calls must use integers, since in principle the
address could be in any process, and Lisp cannot abide random pointers.
Because these types are represented differently in Lisp, one must explicitly
coerce between these representations.</P><P>System Area Pointers (SAPs) provide a mechanism that bypasses the
Alien type system and accesses virtual memory directly. A SAP is a
raw byte pointer into the </P><TT class=code>lisp</TT><P> process address space. SAPs are
represented with a pointer descriptor, so SAP creation can cause
consing. However, the compiler uses a non-descriptor representation
for SAPs when possible, so the consing overhead is generally minimal.
See section <A HREF="#non-descriptor">5.11.2</A>.</P><P><BR>
<A NAME="@funs164"></A><A NAME="FN:sap-int"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>sap-int</TT> <TT class=variable>sap</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs165"></A><A NAME="FN:int-sap"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>int-sap</TT> <TT class=variable>int</TT>
</DIV><P>The function </P><TT class=code>sap-int</TT><P> is used to generate an integer
corresponding to the system area pointer, suitable for passing to
the kernel interfaces (which want all addresses specified as
integers). The function </P><TT class=code>int-sap</TT><P> is used to do the opposite
conversion. The integer representation of a SAP is the byte offset
of the SAP from the start of the address space.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs166"></A><A NAME="FN:sap+"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>sap+</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function adds a byte </P><TT class=variable>offset</TT><P> to </P><TT class=variable>sap</TT><P>, returning a new
SAP.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs167"></A><A NAME="FN:sap-ref-8"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>sap-ref-8</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs168"></A><A NAME="FN:sap-ref-16"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>sap-ref-16</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><P><A NAME="@funs169"></A><A NAME="FN:sap-ref-32"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>sap-ref-32</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><P>These functions return the 8, 16 or 32 bit unsigned integer at
</P><TT class=variable>offset</TT><P> from </P><TT class=variable>sap</TT><P>. The </P><TT class=variable>offset</TT><P> is always a byte
offset, regardless of the number of bits accessed. </P><TT class=code>setf</TT><P> may
be used with the these functions to deposit values into virtual
memory.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs170"></A><A NAME="FN:signed-sap-ref-8"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>signed-sap-ref-8</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs171"></A><A NAME="FN:signed-sap-ref-16"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>signed-sap-ref-16</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><P><A NAME="@funs172"></A><A NAME="FN:signed-sap-ref-32"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>signed-sap-ref-32</TT> <TT class=variable>sap</TT> <TT class=variable>offset</TT>
</DIV><P>These functions are the same as the above unsigned operations,
except that they sign-extend, returning a negative number if the
high bit is set.
</P></BLOCKQUOTE><!--TOC section Unix System Calls-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc228">6.6</A>  Unix System Calls</H2><!--SEC END --><P>You probably won’t have much cause to use them, but all the Unix system
calls are available. The Unix system call functions are in the
</P><TT class=code>Unix</TT><P> package. The name of the interface for a particular system
call is the name of the system call prepended with </P><TT class=code>unix-</TT><P>. The
system usually defines the associated constants without any prefix name.
To find out how to use a particular system call, try using
</P><TT class=code>describe</TT><P> on it. If that is unhelpful, look at the source in
</P><TT class=filename>unix.lisp</TT><P> or consult your system maintainer.</P><P>The Unix system calls indicate an error by returning </P><TT class=code>nil</TT><P> as the
first value and the Unix error number as the second value. If the call
succeeds, then the first value will always be non-</P><TT class=code>nil</TT><P>, often </P><TT class=code>t</TT><P>.</P><P>For example, to use the </P><TT class=code>chdir</TT><P> syscall: </P><BLOCKQUOTE CLASS=lisp> <PRE>
(multiple-value-bind (success errno)
(unix:unix-chdir "/tmp")
(unless success
(error "Can’t change working directory: ~a"
(unix:get-unix-error-msg errno))))
</PRE></BLOCKQUOTE><P><BR>
<A NAME="@funs173"></A><A NAME="FN:get-unix-error-msg"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>Unix:</TT><TT class=function-name>get-unix-error-msg</TT> <TT class=variable>error</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a string describing the Unix error number
</P><TT class=variable>error</TT><P> (this is similar to the Unix function </P><TT class=code>perror</TT><P>).
</P></BLOCKQUOTE><!--TOC section File Descriptor Streams-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc229">6.7</A>  File Descriptor Streams</H2><!--SEC END --><P>
<A NAME="sec:fds"></A></P><P>Many of the UNIX system calls return file descriptors. Instead of using other
UNIX system calls to perform I/O on them, you can create a stream around them.
For this purpose, fd-streams exist. See also <A NAME="@funs174"></A></P><TT class=code>read-n-bytes</TT><P>.</P><P><BR>
<A NAME="@funs175"></A><A NAME="FN:make-fd-stream"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>make-fd-stream</TT> <TT class=variable>descriptor</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:input</TT> <TT class=code>:output</TT>
<TT class=code>:element-type</TT></SPAN><BR>
<TT class=code>:buffering</TT> <TT class=code>:name</TT>
<TT class=code>:file</TT> <TT class=code>:original</TT><BR>
<TT class=code>:delete-original</TT>
<TT class=code>:auto-close</TT><BR>
<TT class=code>:timeout</TT> <TT class=code>:pathname</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function creates a file descriptor stream using
</P><TT class=variable>descriptor</TT><P>. If </P><TT class=code>:input</TT><P> is non-</P><TT class=code>nil</TT><P>, input operations are
allowed. If </P><TT class=code>:output</TT><P> is non-</P><TT class=code>nil</TT><P>, output operations are
allowed. The default is input only. These keywords are defined:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:element-type</TT><BR>
</DT><DD CLASS="dd-list"> is the type of the unit of transaction for
the stream, which defaults to <TT class=code>string-char</TT>. See the Common Lisp
description of <TT class=code>open</TT> for valid values.</DD><DT CLASS="dt-list"><TT class=code>:buffering</TT><BR>
</DT><DD CLASS="dd-list"> is the kind of output buffering desired for
the stream. Legal values are <TT class=code>:none</TT> for no buffering,
<TT class=code>:line</TT> for buffering up to each newline, and <TT class=code>:full</TT> for
full buffering.</DD><DT CLASS="dt-list"><TT class=code>:name</TT><BR>
</DT><DD CLASS="dd-list"> is a simple-string name to use for descriptive
purposes when the system prints an fd-stream. When printing
fd-streams, the system prepends the streams name with <TT class=code>Stream
for </TT>. If <TT class=variable>name</TT> is unspecified, it defaults to a string
containing <TT class=variable>file</TT> or <TT class=variable>descriptor</TT>, in order of preference.</DD><DT CLASS="dt-list"><TT class=code>:file</TT>, <TT class=code>:original</TT><BR>
</DT><DD CLASS="dd-list"> <TT class=variable>file</TT> specifies the defaulted
namestring of the associated file when creating a file stream
(must be a <TT class=code>simple-string</TT>). <TT class=variable>original</TT> is the
<TT class=code>simple-string</TT> name of a backup file containing the original
contents of <TT class=variable>file</TT> while writing <TT class=variable>file</TT>.<P>When you abort the stream by passing </P><TT class=code>t</TT><P> to </P><TT class=code>close</TT><P> as
the second argument, if you supplied both </P><TT class=variable>file</TT><P> and
</P><TT class=variable>original</TT><P>, </P><TT class=code>close</TT><P> will rename the </P><TT class=variable>original</TT><P> name
to the </P><TT class=variable>file</TT><P> name. When you </P><TT class=code>close</TT><P> the stream
normally, if you supplied </P><TT class=variable>original</TT><P>, and
</P><TT class=variable>delete-original</TT><P> is non-</P><TT class=code>nil</TT><P>, </P><TT class=code>close</TT><P> deletes
</P><TT class=variable>original</TT><P>. If </P><TT class=variable>auto-close</TT><P> is true (the default), then
</P><TT class=variable>descriptor</TT><P> will be closed when the stream is garbage
collected.</P></DD><DT CLASS="dt-list"><TT class=code>:pathname</TT><BR>
</DT><DD CLASS="dd-list">: The original pathname passed to open and
returned by <TT class=code>pathname</TT>; not defaulted or translated.</DD><DT CLASS="dt-list"><TT class=code>:timeout</TT><BR>
</DT><DD CLASS="dd-list"> if non-null, then <TT class=variable>timeout</TT> is an integer
number of seconds after which an input wait should time out. If a
read does time out, then the <TT class=code>system:io-timeout</TT> condition is
signalled.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs176"></A><A NAME="FN:fd-stream-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>fd-stream-p</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=code>t</TT><P> if </P><TT class=variable>object</TT><P> is an fd-stream, and
</P><TT class=code>nil</TT><P> if not. Obsolete: use the portable </P><TT class=code>(typep x
’file-stream)</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs177"></A><A NAME="FN:fd-stream-fd"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>fd-stream-fd</TT> <TT class=variable>stream</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This returns the file descriptor associated with </P><TT class=variable>stream</TT><P>.
</P></BLOCKQUOTE><!--TOC section Unix Signals-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc230">6.8</A>  Unix Signals</H2><!--SEC END --><P>
<A NAME="@concept294"></A> <A NAME="@concept295"></A></P><P>CMUCL allows access to all the Unix signals that can be generated
under Unix. It should be noted that if this capability is abused, it is
possible to completely destroy the running Lisp. The following macros and
functions allow access to the Unix interrupt system. The signal names as
specified in section 2 of the <EM>Unix Programmer’s Manual</EM> are exported
from the Unix package.</P><!--TOC subsection Changing Signal Handlers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc231">6.8.1</A>  Changing Signal Handlers</H3><!--SEC END --><P>
<A NAME="signal-handlers"></A></P><P><BR>
<A NAME="@funs178"></A><A NAME="FN:with-enabled-interrupts"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>system:</TT><TT class=function-name>with-enabled-interrupts</TT>
<TT class=variable>specs</TT> <TT class=code>&rest</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro should be called with a list of signal specifications,
</P><TT class=variable>specs</TT><P>. Each element of </P><TT class=variable>specs</TT><P> should be a list of
two elements: the first should be the Unix signal
for which a handler should be established, the second should be a
function to be called when the signal is received One or more signal handlers can be
established in this way. </P><TT class=code>with-enabled-interrupts</TT><P> establishes
the correct signal handlers and then executes the forms in
</P><TT class=variable>body</TT><P>. The forms are executed in an unwind-protect so that the
state of the signal handlers will be restored to what it was before
the </P><TT class=code>with-enabled-interrupts</TT><P> was entered. A signal handler
function specified as NIL will set the Unix signal handler to the
default which is normally either to ignore the signal or to cause a
core dump depending on the particular signal.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs179"></A><A NAME="FN:without-interrupts"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>system:</TT><TT class=function-name>without-interrupts</TT> <TT class=code>&rest</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>It is sometimes necessary to execute a piece a code that can not be
interrupted. This macro the forms in </P><TT class=variable>body</TT><P> with interrupts
disabled. Note that the Unix interrupts are not actually disabled,
rather they are queued until after </P><TT class=variable>body</TT><P> has finished
executing.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs180"></A><A NAME="FN:with-interrupts"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>system:</TT><TT class=function-name>with-interrupts</TT> <TT class=code>&rest</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>When executing an interrupt handler, the system disables interrupts,
as if the handler was wrapped in in a </P><TT class=code>without-interrupts</TT><P>.
The macro </P><TT class=code>with-interrupts</TT><P> can be used to enable interrupts
while the forms in </P><TT class=variable>body</TT><P> are evaluated. This is useful if
</P><TT class=variable>body</TT><P> is going to enter a break loop or do some long
computation that might need to be interrupted.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs181"></A><A NAME="FN:without-hemlock"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>system:</TT><TT class=function-name>without-hemlock</TT> <TT class=code>&rest</TT> <TT class=variable>body</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>For some interrupts, such as SIGTSTP (suspend the Lisp process and
return to the Unix shell) it is necessary to leave Hemlock and then
return to it. This macro executes the forms in </P><TT class=variable>body</TT><P> after
exiting Hemlock. When </P><TT class=variable>body</TT><P> has been executed, control is
returned to Hemlock.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs182"></A><A NAME="FN:enable-interrupt"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>enable-interrupt</TT> <TT class=variable>signal</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function establishes </P><TT class=variable>function</TT><P> as the handler for
</P><TT class=variable>signal</TT><P>.
Unless you want to establish a global signal handler, you should use
the macro </P><TT class=code>with-enabled-interrupts</TT><P> to temporarily establish a
signal handler.
</P><TT class=code>enable-interrupt</TT><P> returns the old function associated with the
signal.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs183"></A><A NAME="FN:ignore-interrupt"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>ignore-interrupt</TT> <TT class=variable>signal</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Ignore-interrupt sets the Unix signal mechanism to ignore
</P><TT class=variable>signal</TT><P> which means that the Lisp process will never see the
signal. Ignore-interrupt returns the old function associated with
the signal or </P><TT class=code>nil</TT><P> if none is currently defined.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs184"></A><A NAME="FN:default-interrupt"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>default-interrupt</TT> <TT class=variable>signal</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Default-interrupt can be used to tell the Unix signal mechanism to
perform the default action for </P><TT class=variable>signal</TT><P>. For details on what
the default action for a signal is, see section 2 of the <EM>Unix
Programmer’s Manual</EM>. In general, it is likely to ignore the
signal or to cause a core dump.
</P></BLOCKQUOTE><!--TOC subsection Examples of Signal Handlers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc232">6.8.2</A>  Examples of Signal Handlers</H3><!--SEC END --><P>The following code is the signal handler used by the Lisp system for the
SIGINT signal.</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(with-interrupts
(break "Software Interrupt" t))))
</PRE></BLOCKQUOTE><P>The </P><TT class=code>without-hemlock</TT><P> form is used to make sure that Hemlock is exited before
a break loop is entered. The </P><TT class=code>with-interrupts</TT><P> form is used to enable
interrupts because the user may want to generate an interrupt while in the
break loop. Finally, break is called to enter a break loop, so the user
can look at the current state of the computation. If the user proceeds
from the break loop, the computation will be restarted from where it was
interrupted.</P><P>The following function is the Lisp signal handler for the SIGTSTP signal
which suspends a process and returns to the Unix shell.</P><BLOCKQUOTE CLASS=lisp> <PRE>
(defun ih-sigtstp (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(Unix:unix-kill (Unix:unix-getpid) Unix:sigstop)))
</PRE></BLOCKQUOTE><P>Lisp uses this interrupt handler to catch the SIGTSTP signal because it is
necessary to get out of Hemlock in a clean way before returning to the shell.</P><P>To set up these interrupt handlers, the following is recommended:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(with-enabled-interrupts ((Unix:SIGINT #’ih-sigint)
(Unix:SIGTSTP #’ih-sigtstp))
<user code to execute with the above signal handlers enabled.>
)
</PRE></BLOCKQUOTE><!--NAME unix.html-->
<!--TOC chapter Event Dispatching with SERVE-EVENT-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc233">Chapter 7</A>  Event Dispatching with SERVE-EVENT</H1><!--SEC END --><P>
<A NAME="serve-event"></A></P><DIV CLASS="center">
<B>by Bill Chiles and Robert MacLachlan</B>
</DIV><P>It is common to have multiple activities simultaneously operating in the same
Lisp process. Furthermore, Lisp programmers tend to expect a flexible
development environment. It must be possible to load and modify application
programs without requiring modifications to other running programs. CMUCL
achieves this by having a central scheduling mechanism based on an
event-driven, object-oriented paradigm.</P><P>An </P><TT class=variable>event</TT><P> is some interesting happening that should cause the Lisp process
to wake up and do something. These events include X events and activity on
Unix file descriptors. The object-oriented mechanism is only available with
the first two, and it is optional with X events as described later in this
chapter. In an X event, the window ID is the object capability and the X event
type is the operation code. The Unix file descriptor input mechanism simply
consists of an association list of a handler to call when input shows up on a
particular file descriptor.</P><!--TOC section Object Sets-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc234">7.1</A>  Object Sets</H2><!--SEC END --><P>
<A NAME="object-sets"></A>
<A NAME="@concept296"></A></P><P>An <EM>object set</EM> is a collection of objects that have the same implementation
for each operation. Externally the object is represented by the object
capability and the operation is represented by the operation code. Within
Lisp, the object is represented by an arbitrary Lisp object, and the
implementation for the operation is represented by an arbitrary Lisp function.
The object set mechanism maintains this translation from the external to the
internal representation.</P><P><BR>
<A NAME="@funs185"></A><A NAME="FN:make-object-set"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>make-object-set</TT> <TT class=variable>name</TT> <TT class=code>&optional</TT> <TT class=variable>default-handler</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function makes a new object set. </P><TT class=variable>Name</TT><P> is a string used
only for purposes of identifying the object set when it is printed.
</P><TT class=variable>Default-handler</TT><P> is the function used as a handler when an
undefined operation occurs on an object in the set. You can define
operations with the </P><TT class=code>serve-</TT><TT class=variable>operation</TT><P> functions exported
the </P><TT class=code>extensions</TT><P> package for X events
(see section <A HREF="#x-serve-mumbles">7.4</A>). Objects are added with
</P><TT class=code>system:add-xwindow-object</TT><P>. Initially the object set has no
objects and no defined operations.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs186"></A><A NAME="FN:object-set-operation"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>object-set-operation</TT> <TT class=variable>object-set</TT> <TT class=variable>operation-code</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the handler function that is the
implementation of the operation corresponding to
</P><TT class=variable>operation-code</TT><P> in </P><TT class=variable>object-set</TT><P>. When set with
</P><TT class=code>setf</TT><P>, the setter function establishes the new handler. The
</P><TT class=code>serve-</TT><TT class=variable>operation</TT><P> functions exported from the
</P><TT class=code>extensions</TT><P> package for X events (see section <A HREF="#x-serve-mumbles">7.4</A>)
call this on behalf of the user when announcing a new operation for
an object set.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs187"></A><A NAME="FN:add-xwindow-object"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>add-xwindow-object</TT> <TT class=variable>window</TT> <TT class=variable>object</TT> <TT class=variable>object-set</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>These functions add </P><TT class=variable>port</TT><P> or </P><TT class=variable>window</TT><P> to </P><TT class=variable>object-set</TT><P>.
</P><TT class=variable>Object</TT><P> is an arbitrary Lisp object that is associated with the
</P><TT class=variable>port</TT><P> or </P><TT class=variable>window</TT><P> capability. </P><TT class=variable>Window</TT><P> is a CLX
window. When an event occurs, </P><TT class=code>system:serve-event</TT><P> passes
</P><TT class=variable>object</TT><P> as an argument to the handler function.
</P></BLOCKQUOTE><!--TOC section The SERVE-EVENT Function-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc235">7.2</A>  The SERVE-EVENT Function</H2><!--SEC END --><P>The </P><TT class=code>system:serve-event</TT><P> function is the standard way for an application
to wait for something to happen. For example, the Lisp system calls
</P><TT class=code>system:serve-event</TT><P> when it wants input from X or a terminal stream.
The idea behind </P><TT class=code>system:serve-event</TT><P> is that it knows the appropriate
action to take when any interesting event happens. If an application calls
</P><TT class=code>system:serve-event</TT><P> when it is idle, then any other applications with
pending events can run. This allows several applications to run “at the
same time” without interference, even though there is only one thread of
control. Note that if an application is waiting for input of any kind,
then other applications will get events.</P><P><BR>
<A NAME="@funs188"></A><A NAME="FN:serve-event"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>serve-event</TT> <TT class=code>&optional</TT> <TT class=variable>timeout</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function waits for an event to happen and then dispatches to
the correct handler function. If specified, </P><TT class=variable>timeout</TT><P> is the
number of seconds to wait before timing out. A time out of zero
seconds is legal and causes </P><TT class=code>system:serve-event</TT><P> to poll for
any events immediately available for processing.
</P><TT class=code>system:serve-event</TT><P> returns </P><TT class=code>t</TT><P> if it serviced at least
one event, and </P><TT class=code>nil</TT><P> otherwise. Depending on the application, when
</P><TT class=code>system:serve-event</TT><P> returns </P><TT class=code>t</TT><P>, you might want to call it
repeatedly with a timeout of zero until it returns </P><TT class=code>nil</TT><P>.</P><P>If input is available on any designated file descriptor, then this
calls the appropriate handler function supplied by
</P><TT class=code>system:add-fd-handler</TT><P>.</P><P>Since events for many different applications may arrive
simultaneously, an application waiting for a specific event must
loop on </P><TT class=code>system:serve-event</TT><P> until the desired event happens.
Since programs such as Hemlock call </P><TT class=code>system:serve-event</TT><P> for
input, applications usually do not need to call
</P><TT class=code>system:serve-event</TT><P> at all; Hemlock allows other
application’s handlers to run when it goes into an input wait.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs189"></A><A NAME="FN:serve-all-events"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>serve-all-events</TT> <TT class=code>&optional</TT> <TT class=variable>timeout</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function is similar to </P><TT class=code>system:serve-event</TT><P>, except it
serves all the pending events rather than just one. It returns
</P><TT class=code>t</TT><P> if it serviced at least one event, and </P><TT class=code>nil</TT><P> otherwise.
</P></BLOCKQUOTE><!--TOC section Using SERVE-EVENT with Unix File Descriptors-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc236">7.3</A>  Using SERVE-EVENT with Unix File Descriptors</H2><!--SEC END --><P>Object sets are not available for use with file descriptors, as there are
only two operations possible on file descriptors: input and output.
Instead, a handler for either input or output can be registered with
</P><TT class=code>system:serve-event</TT><P> for a specific file descriptor. Whenever any input
shows up, or output is possible on this file descriptor, the function
associated with the handler for that descriptor is funcalled with the
descriptor as it’s single argument.</P><P><BR>
<A NAME="@funs190"></A><A NAME="FN:add-fd-handler"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>add-fd-handler</TT> <TT class=variable>fd</TT> <TT class=variable>direction</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function installs and returns a new handler for the file
descriptor </P><TT class=variable>fd</TT><P>. </P><TT class=variable>direction</TT><P> can be either </P><TT class=code>:input</TT><P> if
the system should invoke the handler when input is available or
</P><TT class=code>:output</TT><P> if the system should invoke the handler when output is
possible. This returns a unique object representing the handler,
and this is a suitable argument for </P><TT class=code>system:remove-fd-handler</TT><TT class=variable>function</TT><P> must take one argument, the file descriptor.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs191"></A><A NAME="FN:remove-fd-handler"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>remove-fd-handler</TT> <TT class=variable>handler</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function removes </P><TT class=variable>handler</TT><P>, that </P><TT class=code>add-fd-handler</TT><P> must
have previously returned.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs192"></A><A NAME="FN:with-fd-handler"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>system:</TT><TT class=function-name>with-fd-handler</TT> (<TT class=variable>fd</TT> <TT class=variable>direction</TT> <TT class=variable>function</TT>)
<TT class=code>{<TT class=variable>form</TT>}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro executes the supplied forms with a handler installed
using </P><TT class=variable>fd</TT><P>, </P><TT class=variable>direction</TT><P>, and </P><TT class=variable>function</TT><P>. See
</P><TT class=code>system:add-fd-handler</TT><P>. The given forms are wrapped in an
</P><TT class=code>unwind-protect</TT><P>; the handler is removed (see
</P><TT class=code>system:remove-fd-handler</TT><P>) when done.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs193"></A><A NAME="FN:wait-until-fd-usable"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>wait-until-fd-usable</TT> <TT class=variable>fd</TT> <TT class=variable>direction</TT> <TT class=code>&optional</TT> <TT class=variable>timeout</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function waits for up to </P><TT class=variable>timeout</TT><P> seconds for </P><TT class=variable>fd</TT><P> to
become usable for </P><TT class=variable>direction</TT><P> (either </P><TT class=code>:input</TT><P> or
</P><TT class=code>:output</TT><P>). If </P><TT class=variable>timeout</TT><P> is </P><TT class=code>nil</TT><P> or unspecified, this
waits forever.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs194"></A><A NAME="FN:invalidate-descriptor"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>system:</TT><TT class=function-name>invalidate-descriptor</TT> <TT class=variable>fd</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function removes all handlers associated with </P><TT class=variable>fd</TT><P>. This
should only be used in drastic cases (such as I/O errors, but not
necessarily EOF). Normally, you should use </P><TT class=code>remove-fd-handler</TT><P>
to remove the specific handler.
</P></BLOCKQUOTE><!--TOC section Using SERVE-EVENT with the CLX Interface to X-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc237">7.4</A>  Using SERVE-EVENT with the CLX Interface to X</H2><!--SEC END --><P>
<A NAME="x-serve-mumbles"></A></P><P>Remember from section <A HREF="#object-sets">7.1</A>, an object set is a collection of
objects, CLX windows in this case, with some set of operations, event keywords,
with corresponding implementations, the same handler functions. Since X allows
multiple display connections from a given process, you can avoid using object
sets if every window in an application or display connection behaves the same.
If a particular X application on a single display connection has windows that
want to handle certain events differently, then using object sets is a
convenient way to organize this since you need some way to map the window/event
combination to the appropriate functionality.</P><P>The following is a discussion of functions exported from the </P><TT class=code>extensions</TT><P>
package that facilitate handling CLX events through </P><TT class=code>system:serve-event</TT><P>.
The first two routines are useful regardless of whether you use
</P><TT class=code>system:serve-event</TT><P>:
</P><P><BR>
<A NAME="@funs195"></A><A NAME="FN:open-clx-display"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>open-clx-display</TT> <TT class=code>&optional</TT> <TT class=variable>string</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function parses </P><TT class=variable>string</TT><P> for an X display specification
including display and screen numbers. </P><TT class=variable>String</TT><P> defaults to the
following:
</P><BLOCKQUOTE class=example><PRE>
(cdr (assoc :display ext:*environment-list* :test #’eq))
</PRE></BLOCKQUOTE><P>
If any field in the display specification is missing, this signals
an error. </P><TT class=code>ext:open-clx-display</TT><P> returns the CLX display and
screen.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs196"></A><A NAME="FN:flush-display-events"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>flush-display-events</TT> <TT class=variable>display</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function flushes all the events in </P><TT class=variable>display</TT><P>’s event queue
including the current event, in case the user calls this from within
an event handler.
</P></BLOCKQUOTE><!--TOC subsection Without Object Sets-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc238">7.4.1</A>  Without Object Sets</H3><!--SEC END --><P>Since most applications that use CLX, can avoid the complexity of object sets,
these routines are described in a separate section. The routines described in
the next section that use the object set mechanism are based on these
interfaces.</P><P><BR>
<A NAME="@funs197"></A><A NAME="FN:enable-clx-event-handling"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>enable-clx-event-handling</TT> <TT class=variable>display</TT> <TT class=variable>handler</TT>
</DIV><BLOCKQUOTE CLASS="quote"> <P>This function causes </P><TT class=code>system:serve-event</TT><P> to notice when there
is input on </P><TT class=variable>display</TT><P>’s connection to the X11 server. When this
happens, </P><TT class=code>system:serve-event</TT><P> invokes </P><TT class=variable>handler</TT><P> on
</P><TT class=variable>display</TT><P> in a dynamic context with an error handler bound that
flushes all events from </P><TT class=variable>display</TT><P> and returns. By returning,
the error handler declines to handle the error, but it will have
cleared all events; thus, entering the debugger will not result in
infinite errors due to streams that wait via
</P><TT class=code>system:serve-event</TT><P> for input. Calling this repeatedly on the
same </P><TT class=variable>display</TT><P> establishes </P><TT class=variable>handler</TT><P> as a new handler,
replacing any previous one for </P><TT class=variable>display</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs198"></A><A NAME="FN:disable-clx-event-handling"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>disable-clx-event-handling</TT> <TT class=variable>display</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function undoes the effect of
</P><TT class=code>ext:enable-clx-event-handling</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs199"></A><A NAME="FN:with-clx-event-handling"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>with-clx-event-handling</TT> (<TT class=variable>display</TT> <TT class=variable>handler</TT>) <TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro evaluates each </P><TT class=variable>form</TT><P> in a context where
</P><TT class=code>system:serve-event</TT><P> invokes </P><TT class=variable>handler</TT><P> on </P><TT class=variable>display</TT><P>
whenever there is input on </P><TT class=variable>display</TT><P>’s connection to the X
server. This destroys any previously established handler for
</P><TT class=variable>display</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection With Object Sets-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc239">7.4.2</A>  With Object Sets</H3><!--SEC END --><P>This section discusses the use of object sets and
</P><TT class=code>system:serve-event</TT><P> to handle CLX events. This is necessary
when a single X application has distinct windows that want to handle
the same events in different ways. Basically, you need some way of
asking for a given window which way you want to handle some event
because this event is handled differently depending on the window.
Object sets provide this feature.</P><P>For each CLX event-key symbol-name iXXX (for example,
</P><TT class=variable>key-press</TT><P>), there is a function </P><TT class=code>serve-</TT><P>iXXX of two
arguments, an object set and a function. The </P><TT class=code>serve-</TT><P>iXXX
function establishes the function as the handler for the </P><TT class=code>:XXX</TT><P>
event in the object set. Recall from section <A HREF="#object-sets">7.1</A>,
</P><TT class=code>system:add-xwindow-object</TT><P> associates some Lisp object with a
CLX window in an object set. When </P><TT class=code>system:serve-event</TT><P> notices
activity on a window, it calls the function given to
</P><TT class=code>ext:enable-clx-event-handling</TT><P>. If this function is
</P><TT class=code>ext:object-set-event-handler</TT><P>, it calls the function given to
</P><TT class=code>serve-</TT><P>iXXX, passing the object given to
</P><TT class=code>system:add-xwindow-object</TT><P> and the event’s slots as well as a
couple other arguments described below.</P><P>To use object sets in this way:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Create an object set.</LI><LI CLASS="li-itemize">Define some operations on it using the <TT class=code>serve-</TT>iXXX
functions.</LI><LI CLASS="li-itemize">Add an object for every window on which you receive requests.
This can be the CLX window itself or some structure more meaningful
to your application.</LI><LI CLASS="li-itemize">Call <TT class=code>system:serve-event</TT> to service an X event.
</LI></UL><P><BR>
<A NAME="@funs200"></A><A NAME="FN:object-set-event-handler"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>object-set-event-handler</TT> <TT class=variable>display</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function is a suitable argument to
</P><TT class=code>ext:enable-clx-event-handling</TT><P>. The actual event handlers
defined for particular events within a given object set must take an
argument for every slot in the appropriate event. In addition to
the event slots, </P><TT class=code>ext:object-set-event-handler</TT><P> passes the
following arguments:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The object, as established by
<TT class=code>system:add-xwindow-object</TT>, on which the event occurred.
</LI><LI CLASS="li-itemize">event-key, see <TT class=code>xlib:event-case</TT>.
</LI><LI CLASS="li-itemize">send-event-p, see <TT class=code>xlib:event-case</TT>.
</LI></UL><P>Describing any </P><TT class=code>ext:serve-</TT><TT class=variable>event-key-name</TT><P> function, where
</P><TT class=variable>event-key-name</TT><P> is an event-key symbol-name (for example,
</P><TT class=code>ext:serve-key-press</TT><P>), indicates exactly what all the
arguments are in their correct order.</P><P>When creating an object set for use with
</P><TT class=code>ext:object-set-event-handler</TT><P>, specify
</P><TT class=code>ext:default-clx-event-handler</TT><P> as the default handler for
events in that object set. If no default handler is specified, and
the system invokes the default default handler, it will cause an
error since this function takes arguments suitable for handling port
messages.
</P></BLOCKQUOTE><!--TOC section A SERVE-EVENT Example-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc240">7.5</A>  A SERVE-EVENT Example</H2><!--SEC END --><P>This section contains two examples using </P><TT class=code>system:serve-event</TT><P>. The first
one does not use object sets, and the second, slightly more complicated one
does.</P><!--TOC subsection Without Object Sets Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc241">7.5.1</A>  Without Object Sets Example</H3><!--SEC END --><P>This example defines an input handler for a CLX display connection. It only
recognizes </P><TT class=code>:key-press</TT><P> events. The body of the example loops over
</P><TT class=code>system:serve-event</TT><P> to get input.</P><BLOCKQUOTE CLASS=lisp> <PRE>
(in-package "SERVER-EXAMPLE")
(defun my-input-handler (display)
(xlib:event-case (display :timeout 0)
(:key-press (event-window code state)
(format t "KEY-PRESSED (Window = ~D) = ~S.~%"
(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character display code state))
;; Make XLIB:EVENT-CASE discard the event.
t)))
</PRE></BLOCKQUOTE><BLOCKQUOTE CLASS=lisp> <PRE>
(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."
(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(window (create-window :parent (screen-root screen)
:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press))))
;; Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect
(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display #’my-input-handler)
;; Map the windows to the screen.
(map-window window)
;; Make sure we send all our requests.
(display-force-output display)
;; Call serve-event for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))
;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
;; Get rid of the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don’t choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (deleting-window-drop-event *display* window)
(return)))
;; Close the display.
(xlib:close-display display))))
(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."
(xlib:display-finish-output display)
(let ((result nil))
(xlib:process-event
display :timeout 0
:handler #’(lambda (&key event-window &allow-other-keys)
(if (eq event-window win)
(setf result t)
nil)))
result))
</PRE></BLOCKQUOTE><!--TOC subsection With Object Sets Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc242">7.5.2</A>  With Object Sets Example</H3><!--SEC END --><P>This example involves more work, but you get a little more for your effort. It
defines two objects, </P><TT class=code>input-box</TT><P> and </P><TT class=code>slider</TT><P>, and establishes a
</P><TT class=code>:key-press</TT><P> handler for each object, </P><TT class=code>key-pressed</TT><P> and
</P><TT class=code>slider-pressed</TT><P>. We have two object sets because we handle events on the
windows manifesting these objects differently, but the events come over the
same display connection.</P><BLOCKQUOTE CLASS=lisp> <PRE>
(in-package "SERVER-EXAMPLE")
(defstruct (input-box (:print-function print-input-box)
(:constructor make-input-box (display window)))
"Our program knows about input-boxes, and it doesn’t care how they
are implemented."
display ; The CLX display on which my input-box is displayed.
window) ; The CLX window in which the user types.
;;;
(defun print-input-box (object stream n)
(declare (ignore n))
(format stream "#<Input-Box ~S>" (input-box-display object)))
(defvar *input-box-windows*
(system:make-object-set "Input Box Windows"
#’ext:default-clx-event-handler))
(defun key-pressed (input-box event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)
"This is our :key-press event handler."
(declare (ignore event-key root child same-screen-p x y
root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = ~D) = ~S.~%"
(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display input-box)
key-code modifiers)))
;;;
(ext:serve-key-press *input-box-windows* #’key-pressed)
</PRE></BLOCKQUOTE><BLOCKQUOTE CLASS=lisp> <PRE>
(defstruct (slider (:print-function print-slider)
(:include input-box)
(:constructor %make-slider
(display window window-width max)))
"Our program knows about sliders too, and these provide input values
zero to max."
bits-per-value ; bits per discrete value up to max.
max) ; End value for slider.
;;;
(defun print-slider (object stream n)
(declare (ignore n))
(format stream "#<Slider ~S 0..~D>"
(input-box-display object)
(1- (slider-max object))))
;;;
(defun make-slider (display window max)
(%make-slider display window
(truncate (xlib:drawable-width window) max)
max))
(defvar *slider-windows*
(system:make-object-set "Slider Windows"
#’ext:default-clx-event-handler))
(defun slider-pressed (slider event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)
"This is our :key-press event handler for sliders. Probably this is
a mouse thing, but for simplicity here we take a character typed."
(declare (ignore event-key root child same-screen-p x y
root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = ~D) = ~S –> ~D.~%"
(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display slider)
key-code modifiers)
(truncate x (slider-bits-per-value slider))))
;;;
(ext:serve-key-press *slider-windows* #’slider-pressed)
</PRE></BLOCKQUOTE><BLOCKQUOTE CLASS=lisp> <PRE>
(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."
(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(iwindow (create-window :parent (screen-root screen)
:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))
(swindow (create-window :parent (screen-root screen)
:x 0 :y 300 :width 200 :height 50
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))
(input-box (make-input-box display iwindow))
(slider (make-slider display swindow 15)))
;; Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect
(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display
#’ext:object-set-event-handler)
;; Add the windows to the appropriate object sets.
(system:add-xwindow-object iwindow input-box
*input-box-windows*)
(system:add-xwindow-object swindow slider
*slider-windows*)
;; Map the windows to the screen.
(map-window iwindow)
(map-window swindow)
;; Make sure we send all our requests.
(display-force-output display)
;; Call server for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))
;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
(delete-window iwindow display)
(delete-window swindow display)
;; Close the display.
(xlib:close-display display))))
</PRE></BLOCKQUOTE><BLOCKQUOTE CLASS=lisp> <PRE>
(defun delete-window (window display)
;; Remove the windows from the object sets before destroying them.
(system:remove-xwindow-object window)
;; Destroy the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don’t choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (deleting-window-drop-event display window)
(return))))
(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."
(xlib:display-finish-output display)
(let ((result nil))
(xlib:process-event
display :timeout 0
:handler #’(lambda (&key event-window &allow-other-keys)
(if (eq event-window win)
(setf result t)
nil)))
result))
</PRE></BLOCKQUOTE><!--NAME serve-event.html-->
<!--TOC chapter Alien Objects-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc243">Chapter 8</A>  Alien Objects</H1><!--SEC END --><P>
<A NAME="aliens"></A></P><DIV CLASS="center">
<B>by Robert MacLachlan and William Lott</B>
</DIV><!--TOC section Introduction to Aliens-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc244">8.1</A>  Introduction to Aliens</H2><!--SEC END --><P>Because of Lisp’s emphasis on dynamic memory allocation and garbage
collection, Lisp implementations use unconventional memory representations
for objects. This representation mismatch creates problems when a Lisp
program must share objects with programs written in another language. There
are three different approaches to establishing communication:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
The burden can be placed on the foreign program (and programmer) by
requiring the use of Lisp object representations. The main difficulty with
this approach is that either the foreign program must be written with Lisp
interaction in mind, or a substantial amount of foreign “glue” code must be
written to perform the translation.</LI><LI CLASS="li-itemize">The Lisp system can automatically convert objects back and forth
between the Lisp and foreign representations. This is convenient, but
translation becomes prohibitively slow when large or complex data structures
must be shared.</LI><LI CLASS="li-itemize">The Lisp program can directly manipulate foreign objects through the
use of extensions to the Lisp language. Most Lisp systems make use of
this approach, but the language for describing types and expressing
accesses is often not powerful enough for complex objects to be easily
manipulated.
</LI></UL><P>CMUCL relies primarily on the automatic conversion and direct manipulation
approaches: Aliens of simple scalar types are automatically converted,
while complex types are directly manipulated in their foreign
representation. Any foreign objects that can’t automatically be
converted into Lisp values are represented by objects of type
</P><TT class=code>alien-value</TT><P>. Since Lisp is a dynamically typed language, even
foreign objects must have a run-time type; this type information is
provided by encapsulating the raw pointer to the foreign data within an
</P><TT class=code>alien-value</TT><P> object.</P><P>The Alien type language and operations are most similar to those of the
C language, but Aliens can also be used when communicating with most
other languages that can be linked with C.</P><!--TOC section Alien Types-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc245">8.2</A>  Alien Types</H2><!--SEC END --><P>Alien types have a description language based on nested list structure. For
example:</P><BLOCKQUOTE class=example><PRE>
struct foo {
int a;
struct foo *b[100];
};
</PRE></BLOCKQUOTE><P>has the corresponding Alien type:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(struct foo
(a int)
(b (array (* (struct foo)) 100)))
</PRE></BLOCKQUOTE><!--TOC subsection Defining Alien Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc246">8.2.1</A>  Defining Alien Types</H3><!--SEC END --><P>Types may be either named or anonymous. With structure and union
types, the name is part of the type specifier, allowing recursively
defined types such as:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(struct foo (a (* (struct foo))))
</PRE></BLOCKQUOTE><P>An anonymous structure or union type is specified by using the name
</P><TT class=code>nil</TT><P>. The <A NAME="@funs201"></A></P><TT class=code>with-alien</TT><P> macro defines a local scope which
“captures” any named type definitions. Other types are not
inherently named, but can be given named abbreviations using
</P><TT class=code>def-alien-type</TT><P>.</P><P><BR>
<A NAME="@funs202"></A><A NAME="FN:def-alien-type"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>def-alien-type</TT> name type
</DIV><BLOCKQUOTE CLASS="quote">
This macro globally defines <TT class=variable>name</TT> as a shorthand for the Alien
type <TT class=variable>type</TT>. When introducing global structure and union type
definitions, <TT class=variable>name</TT> may be <TT class=code>nil</TT>, in which case the name to
define is taken from the type’s name.
</BLOCKQUOTE><!--TOC subsection Alien Types and Lisp Types-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc247">8.2.2</A>  Alien Types and Lisp Types</H3><!--SEC END --><P>The Alien types form a subsystem of the CMUCL type system. An
</P><TT class=code>alien</TT><P> type specifier provides a way to use any Alien type as a
Lisp type specifier. For example</P><BLOCKQUOTE CLASS=lisp> <PRE>
(typep foo ’(alien (* int)))
</PRE></BLOCKQUOTE><P>can be used to determine whether </P><TT class=code>foo</TT><P> is a pointer to an
</P><TT class=code>int</TT><P>. </P><TT class=code>alien</TT><P> type specifiers can be used in the same ways
as ordinary type specifiers (like </P><TT class=code>string</TT><P>.) Alien type
declarations are subject to the same precise type checking as any
other declaration (see section <A HREF="#precise-type-checks">4.5.2</A>.)</P><P>Note that the Alien type system overlaps with normal Lisp type
specifiers in some cases. For example, the type specifier
</P><TT class=code>(alien single-float)</TT><P> is identical to </P><TT class=code>single-float</TT><P>, since
Alien floats are automatically converted to Lisp floats. When
</P><TT class=code>type-of</TT><P> is called on an Alien value that is not automatically
converted to a Lisp value, then it will return an </P><TT class=code>alien</TT><P> type
specifier.</P><!--TOC subsection Alien Type Specifiers-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc248">8.2.3</A>  Alien Type Specifiers</H3><!--SEC END --><P>Some Alien type names are Common Lisp symbols, but the names are
still exported from the </P><TT class=code>alien</TT><P> package, so it is legal to say
</P><TT class=code>alien:single-float</TT><P>. These are the basic Alien type specifiers: </P><P><BR>
<BR>
<A NAME="@types31"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>*</TT> <TT class=variable><TT class=variable>type</TT></TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A pointer to an object of the specified </P><TT class=variable>type</TT><P>. If </P><TT class=variable>type</TT><P>
is </P><TT class=code>t</TT><P>, then it means a pointer to anything, similar to
“</P><TT class=code>void *</TT><P>” in ANSI C. Currently, the only way to detect a
null pointer is:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(zerop (sap-int (alien-sap <TT class=variable>ptr</TT>)))
</PRE></BLOCKQUOTE><P>
See section <A HREF="#system-area-pointers">6.5</A>
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types32"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>array</TT> <TT class=variable><TT class=variable>type</TT> <TT class=code>{<TT class=variable>dimension</TT>}</TT><SUP>*</SUP></TT>
</DIV><BLOCKQUOTE CLASS="quote"> <P>An array of the specified </P><TT class=variable>dimensions</TT><P>, holding elements of type
</P><TT class=variable>type</TT><P>. Note that </P><TT class=code>(* int)</TT><P> and </P><TT class=code>(array int)</TT><P> are
considered to be different types when type checking is done; pointer
and array types must be explicitly coerced using </P><TT class=code>cast</TT><P>.</P><P>Arrays are accessed using </P><TT class=code>deref</TT><P>, passing the indices as
additional arguments. Elements are stored in column-major order (as
in C), so the first dimension determines only the size of the memory
block, and not the layout of the higher dimensions. An array whose
first dimension is variable may be specified by using </P><TT class=code>nil</TT><P> as the
first dimension. Fixed-size arrays can be allocated as array
elements, structure slots or </P><TT class=code>with-alien</TT><P> variables. Dynamic
arrays can only be allocated using <A NAME="@funs203"></A></P><TT class=code>make-alien</TT><P>.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types33"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>struct</TT> <TT class=variable><TT class=variable>name</TT>
<TT class=code>{(<TT class=variable>field</TT> <TT class=variable>type</TT> <TT class=code>{<TT class=variable>bits</TT>}</TT>)}</TT><SUP>*</SUP></TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A structure type with the specified </P><TT class=variable>name</TT><P> and </P><TT class=variable>fields</TT><P>.
Fields are allocated at the same positions used by the
implementation’s C compiler. </P><TT class=variable>bits</TT><P> is intended for C-like bit
field support, but is currently unused. If </P><TT class=variable>name</TT><P> is </P><TT class=code>nil</TT><P>,
then the type is anonymous.</P><P>If a named Alien </P><TT class=code>struct</TT><P> specifier is passed to
<A NAME="@funs204"></A></P><TT class=code>def-alien-type</TT><P> or <A NAME="@funs205"></A></P><TT class=code>with-alien</TT><P>, then this defines,
respectively, a new global or local Alien structure type. If no
</P><TT class=variable>fields</TT><P> are specified, then the fields are taken from the
current (local or global) Alien structure type definition of
</P><TT class=variable>name</TT><P>.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types34"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>union</TT> <TT class=variable><TT class=variable>name</TT>
<TT class=code>{(<TT class=variable>field</TT> <TT class=variable>type</TT> <TT class=code>{<TT class=variable>bits</TT>}</TT>)}</TT><SUP>*</SUP></TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Similar to </P><TT class=code>struct</TT><P>, but defines a union type. All fields are
allocated at the same offset, and the size of the union is the size
of the largest field. The programmer must determine which field is
active from context.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types35"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>enum</TT> <TT class=variable><TT class=variable>name</TT> <TT class=code>{<TT class=variable>spec</TT>}</TT><SUP>*</SUP></TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>An enumeration type that maps between integer values and keywords.
If </P><TT class=variable>name</TT><P> is </P><TT class=code>nil</TT><P>, then the type is anonymous. Each
</P><TT class=variable>spec</TT><P> is either a keyword, or a list </P><TT class=code>(<TT class=variable>keyword</TT>
<TT class=variable>value</TT>)</TT><P>. If </P><TT class=variable>integer</TT><P> is not supplied, then it defaults
to one greater than the value for the preceding spec (or to zero if
it is the first spec.)
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types36"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>signed</TT> <TT class=variable><TT class=code>{<TT class=variable>bits</TT>}</TT></TT>
</DIV><BLOCKQUOTE CLASS="quote">
A signed integer with the specified number of bits precision. The
upper limit on integer precision is determined by the machine’s word
size. If no size is specified, the maximum size will be used.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types37"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>integer</TT> <TT class=variable><TT class=code>{<TT class=variable>bits</TT>}</TT></TT>
</DIV><BLOCKQUOTE CLASS="quote">
Identical to <TT class=code>signed</TT>—the distinction between <TT class=code>signed</TT>
and <TT class=code>integer</TT> is purely stylistic.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types38"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>unsigned</TT> <TT class=variable><TT class=code>{<TT class=variable>bits</TT>}</TT></TT>
</DIV><BLOCKQUOTE CLASS="quote">
Like <TT class=code>signed</TT>, but specifies an unsigned integer.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types39"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>boolean</TT> <TT class=variable><TT class=code>{<TT class=variable>bits</TT>}</TT></TT>
</DIV><BLOCKQUOTE CLASS="quote">
Similar to an enumeration type that maps <TT class=code>0</TT> to <TT class=code>nil</TT> and
all other values to <TT class=code>t</TT>. <TT class=variable>bits</TT> determines the amount of
storage allocated to hold the truth value.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types40"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>single-float</TT>
</DIV><BLOCKQUOTE CLASS="quote">
A floating-point number in IEEE single format.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types41"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>double-float</TT>
</DIV><BLOCKQUOTE CLASS="quote">
A floating-point number in IEEE double format.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types42"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>function</TT> <TT class=variable><TT class=variable>result-type</TT> <TT class=code>{<TT class=variable>arg-type</TT>}</TT><SUP>*</SUP></TT>
</DIV><BLOCKQUOTE CLASS="quote">
<A NAME="alien-function-types"></A>
A Alien function that takes arguments of the specified
<TT class=variable>arg-types</TT> and returns a result of type <TT class=variable>result-type</TT>.
Note that the only context where a <TT class=code>function</TT> type is directly
specified is in the argument to <TT class=code>alien-funcall</TT> (see section
<A NAME="@funs206"></A><TT class=code>alien-funcall</TT>.) In all other contexts, functions are
represented by function pointer types: <TT class=code>(* (function ...))</TT>.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types43"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>system-area-pointer</TT>
</DIV><BLOCKQUOTE CLASS="quote">
A pointer which is represented in Lisp as a
<TT class=code>system-area-pointer</TT> object (see section <A HREF="#system-area-pointers">6.5</A>.)
</BLOCKQUOTE><!--TOC subsection The C-Call Package-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc249">8.2.4</A>  The C-Call Package</H3><!--SEC END --><P>The </P><TT class=code>c-call</TT><P> package exports these type-equivalents to the C type
of the same name: </P><TT class=code>char</TT><P>, </P><TT class=code>short</TT><P>, </P><TT class=code>int</TT><P>, </P><TT class=code>long</TT><P>,
</P><TT class=code>unsigned-char</TT><P>, </P><TT class=code>unsigned-short</TT><P>, </P><TT class=code>unsigned-int</TT><P>,
</P><TT class=code>unsigned-long</TT><P>, </P><TT class=code>float</TT><P>, </P><TT class=code>double</TT><P>. </P><TT class=code>c-call</TT><P> also
exports these types:</P><P><BR>
<BR>
<A NAME="@types44"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>void</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This type is used in function types to declare that no useful value
is returned. Evaluation of an <TT class=code>alien-funcall</TT> form will return
zero values.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types45"></A></P><DIV align=left>
[Alien type]<BR>
<TT class=function-name>c-string</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This type is similar to <TT class=code>(* char)</TT>, but is interpreted as a
null-terminated string, and is automatically converted into a Lisp
string when accessed. If the pointer is C <TT class=code>NULL</TT> (or 0), then
accessing gives Lisp <TT class=code>nil</TT>.<P>With Unicode, a Lisp string is not the same as a C string since a
Lisp string uses two bytes for each character. In this case, a
C string is converted to a Lisp string by taking each byte of the
C-string and applying </P><TT class=code>code-char</TT><P> to create each character of
the Lisp string.</P><P>Similarly, a Lisp string is converted to a C string by taking the
low 8 bits of the </P><TT class=code>char-code</TT><P> of each character and assigning
that to each byte of the C string.</P><P>In either case, </P><TT class=code>string-encode</TT><P> and </P><TT class=code>string-decode</TT><P> may be
useful to convert Unicode Lisp strings to or from C strings.</P><P>Assigning a Lisp string to a </P><TT class=code>c-string</TT><P> structure field or
variable stores the contents of the string to the memory already
pointed to by that variable. When an Alien of type </P><TT class=code>(* char)</TT><P>
is assigned to a </P><TT class=code>c-string</TT><P>, then the </P><TT class=code>c-string</TT><P> pointer
is assigned to. This allows </P><TT class=code>c-string</TT><P> pointers to be
initialized. For example:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(def-alien-type nil (struct foo (str c-string)))
(defun make-foo (str)
(let ((my-foo (make-alien (struct foo))))
(setf (slot my-foo ’str) (make-alien char (length str)))
(setf (slot my-foo ’str) str)
my-foo))
</PRE></BLOCKQUOTE><P>Storing Lisp </P><TT class=code>nil</TT><P> writes C </P><TT class=code>NULL</TT><P> to the </P><TT class=code>c-string</TT><P>
pointer.
</P></BLOCKQUOTE><!--TOC section Alien Operations-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc250">8.3</A>  Alien Operations</H2><!--SEC END --><P>This section describes the basic operations on Alien values.</P><!--TOC subsection Alien Access Operations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc251">8.3.1</A>  Alien Access Operations</H3><!--SEC END --><P><BR>
<A NAME="@funs207"></A><A NAME="FN:deref"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>deref</TT> <TT class=variable>pointer-or-array</TT> <TT class=code>&rest</TT><TT class=variable>indices</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the value pointed to by an Alien pointer or
the value of an Alien array element. If a pointer, an optional
single index can be specified to give the equivalent of C pointer
arithmetic; this index is scaled by the size of the type pointed to.
If an array, the number of indices must be the same as the number of
dimensions in the array type. </P><TT class=code>deref</TT><P> can be set with
</P><TT class=code>setf</TT><P> to assign a new value.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs208"></A><A NAME="FN:slot"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>slot</TT> <TT class=variable>struct-or-union</TT> <TT class=variable>slot-name</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function extracts the value of slot </P><TT class=variable>slot-name</TT><P> from the an
Alien </P><TT class=code>struct</TT><P> or </P><TT class=code>union</TT><P>. If </P><TT class=variable>struct-or-union</TT><P> is a
pointer to a structure or union, then it is automatically
dereferenced. This can be set with </P><TT class=code>setf</TT><P> to assign a new
value. Note that </P><TT class=variable>slot-name</TT><P> is evaluated, and need not be a
compile-time constant (but only constant slot accesses are
efficiently compiled.)
</P></BLOCKQUOTE><!--TOC subsection Alien Coercion Operations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc252">8.3.2</A>  Alien Coercion Operations</H3><!--SEC END --><P><BR>
<A NAME="@funs209"></A><A NAME="FN:addr"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>addr</TT> <TT class=variable>alien-expr</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro returns a pointer to the location specified by
</P><TT class=variable>alien-expr</TT><P>, which must be either an Alien variable, a use of
</P><TT class=code>deref</TT><P>, a use of </P><TT class=code>slot</TT><P>, or a use of
<A NAME="@funs210"></A></P><TT class=code>extern-alien</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs211"></A><A NAME="FN:cast"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>cast</TT> <TT class=variable>alien</TT> <TT class=variable>new-type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro converts </P><TT class=variable>alien</TT><P> to a new Alien with the specified
</P><TT class=variable>new-type</TT><P>. Both types must be an Alien pointer, array or
function type. Note that the result is not </P><TT class=code>eq</TT><P> to the
argument, but does refer to the same data bits.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs212"></A><A NAME="FN:sap-alien"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>sap-alien</TT> <TT class=variable>sap</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs213"></A><A NAME="FN:alien-sap"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>alien-sap</TT> <TT class=variable>alien-value</TT>
</DIV><TT class=code>sap-alien</TT><P> converts </P><TT class=variable>sap</TT><P> (a system area pointer
see section <A HREF="#system-area-pointers">6.5</A>) to an Alien value with the specified
</P><TT class=variable>type</TT><P>. </P><TT class=variable>type</TT><P> is not evaluated.</P><TT class=code>alien-sap</TT><P> returns the SAP which points to </P><TT class=variable>alien-value</TT><P>’s
data.</P><P>The </P><TT class=variable>type</TT><P> to </P><TT class=code>sap-alien</TT><P> and the type of the </P><TT class=variable>alien-value</TT><P> to
</P><TT class=code>alien-sap</TT><P> must some Alien pointer, array or record type.
</P></BLOCKQUOTE><!--TOC subsection Alien Dynamic Allocation-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc253">8.3.3</A>  Alien Dynamic Allocation</H3><!--SEC END --><P>Dynamic Aliens are allocated using the </P><TT class=code>malloc</TT><P> library, so foreign code
can call </P><TT class=code>free</TT><P> on the result of </P><TT class=code>make-alien</TT><P>, and Lisp code can
call </P><TT class=code>free-alien</TT><P> on objects allocated by foreign code.</P><P><BR>
<A NAME="@funs214"></A><A NAME="FN:make-alien"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>make-alien</TT> <TT class=variable>type</TT> <TT class=code>{<TT class=variable>size</TT>}</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro returns a dynamically allocated Alien of the specified
</P><TT class=variable>type</TT><P> (which is not evaluated.) The allocated memory is not
initialized, and may contain arbitrary junk. If supplied,
</P><TT class=variable>size</TT><P> is an expression to evaluate to compute the size of the
allocated object. There are two major cases:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
When <TT class=variable>type</TT> is an array type, an array of that type is
allocated and a <TT class=variable>pointer</TT> to it is returned. Note that you
must use <TT class=code>deref</TT> to change the result to an array before you
can use <TT class=code>deref</TT> to read or write elements:<BLOCKQUOTE CLASS=lisp> <PRE>
(defvar *foo* (make-alien (array char 10)))
(type-of *foo*) ==> (alien (* (array (signed 8) 10)))
(setf (deref (deref foo) 0) 10) ==> 10
</PRE></BLOCKQUOTE><P>If supplied, </P><TT class=variable>size</TT><P> is used as the first dimension for the
array.</P></LI><LI CLASS="li-itemize">When <TT class=variable>type</TT> is any other type, then then an object for
that type is allocated, and a <TT class=variable>pointer</TT> to it is returned. So
<TT class=code>(make-alien int)</TT> returns a <TT class=code>(* int)</TT>. If <TT class=variable>size</TT>
is specified, then a block of that many objects is allocated, with
the result pointing to the first one.
</LI></UL></BLOCKQUOTE><P><BR>
<A NAME="@funs215"></A><A NAME="FN:free-alien"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>free-alien</TT> <TT class=variable>alien</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function frees the storage for </P><TT class=variable>alien</TT><P> (which must have
been allocated with </P><TT class=code>make-alien</TT><P> or </P><TT class=code>malloc</TT><P>.)
</P></BLOCKQUOTE><P>See also <A NAME="@funs216"></A></P><TT class=code>with-alien</TT><P>, which stack-allocates Aliens.</P><!--TOC section Alien Variables-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc254">8.4</A>  Alien Variables</H2><!--SEC END --><P>Both local (stack allocated) and external (C global) Alien variables are
supported.</P><!--TOC subsection Local Alien Variables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc255">8.4.1</A>  Local Alien Variables</H3><!--SEC END --><P><BR>
<A NAME="@funs217"></A><A NAME="FN:with-alien"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>with-alien</TT> <TT class=code>{(<TT class=variable>name</TT> <TT class=variable>type</TT>
<TT class=code>{<TT class=variable>initial-value</TT>}</TT>)}</TT><SUP>*</SUP> <TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro establishes local alien variables with the specified
Alien types and names for dynamic extent of the body. The variable
</P><TT class=variable>names</TT><P> are established as symbol-macros; the bindings have
lexical scope, and may be assigned with </P><TT class=code>setq</TT><P> or </P><TT class=code>setf</TT><P>.
This form is analogous to defining a local variable in C: additional
storage is allocated, and the initial value is copied.</P><TT class=code>with-alien</TT><P> also establishes a new scope for named structures
and unions. Any </P><TT class=variable>type</TT><P> specified for a variable may contain
name structure or union types with the slots specified. Within the
lexical scope of the binding specifiers and body, a locally defined
structure type </P><TT class=variable>foo</TT><P> can be referenced by its name using:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(struct foo)
</PRE></BLOCKQUOTE></BLOCKQUOTE><!--TOC subsection External Alien Variables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc256">8.4.2</A>  External Alien Variables</H3><!--SEC END --><P>
<A NAME="external-aliens"></A></P><P>External Alien names are strings, and Lisp names are symbols. When an
external Alien is represented using a Lisp variable, there must be a
way to convert from one name syntax into the other. The macros
</P><TT class=code>extern-alien</TT><P>, </P><TT class=code>def-alien-variable</TT><P> and
<A NAME="@funs218"></A></P><TT class=code>def-alien-routine</TT><P> use this conversion heuristic:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Alien names are converted to Lisp names by uppercasing and
replacing underscores with hyphens.</LI><LI CLASS="li-itemize">Conversely, Lisp names are converted to Alien names by
lowercasing and replacing hyphens with underscores.</LI><LI CLASS="li-itemize">Both the Lisp symbol and Alien string names may be separately
specified by using a list of the form:
<BLOCKQUOTE CLASS=lisp> <PRE>
(<TT class=variable>alien-string</TT> <TT class=variable>lisp-symbol</TT>)
</PRE></BLOCKQUOTE>
</LI></UL><P><BR>
<A NAME="@funs219"></A><A NAME="FN:def-alien-variable"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>def-alien-variable</TT> <TT class=variable>name</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro defines </P><TT class=variable>name</TT><P> as an external Alien variable of the
specified Alien </P><TT class=variable>type</TT><P>. </P><TT class=variable>name</TT><P> and </P><TT class=variable>type</TT><P> are not
evaluated. The Lisp name of the variable (see above) becomes a
global Alien variable in the Lisp namespace. Global Alien variables
are effectively “global symbol macros”; a reference to the
variable fetches the contents of the external variable. Similarly,
setting the variable stores new contents—the new contents must be
of the declared </P><TT class=variable>type</TT><P>.</P><P>For example, it is often necessary to read the global C variable
</P><TT class=code>errno</TT><P> to determine why a particular function call failed. It
is possible to define errno and make it accessible from Lisp by the
following:
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(def-alien-variable "errno" int)
;; Now it is possible to get the value of the C variable errno simply by
;; referencing that Lisp variable:
;;
(print errno)
</PRE></BLOCKQUOTE></BLOCKQUOTE><P><BR>
<A NAME="@funs220"></A><A NAME="FN:extern-alien"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>extern-alien</TT> <TT class=variable>name</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro returns an Alien with the specified </P><TT class=variable>type</TT><P> which
points to an externally defined value. </P><TT class=variable>name</TT><P> is not evaluated,
and may be specified either as a string or a symbol. </P><TT class=variable>type</TT><P> is
an unevaluated Alien type specifier.
</P></BLOCKQUOTE><!--TOC section Alien Data Structure Example-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc257">8.5</A>  Alien Data Structure Example</H2><!--SEC END --><P>Now that we have Alien types, operations and variables, we can manipulate
foreign data structures. This C declaration can be translated into the
following Alien type:</P><BLOCKQUOTE CLASS=lisp> <PRE>
struct foo {
int a;
struct foo *b[100];
};
<==>
(def-alien-type nil
(struct foo
(a int)
(b (array (* (struct foo)) 100))))
</PRE></BLOCKQUOTE><P>With this definition, the following C expression can be translated in this way:</P><BLOCKQUOTE class=example><PRE>
struct foo f;
f.b[7].a
<==>
(with-alien ((f (struct foo)))
(slot (deref (slot f ’b) 7) ’a)
;;
;; Do something with f...
)
</PRE></BLOCKQUOTE><P>Or consider this example of an external C variable and some accesses:</P><BLOCKQUOTE class=example><PRE>
struct c_struct {
short x, y;
char a, b;
int z;
c_struct *n;
};
extern struct c_struct *my_struct;
my_struct->x++;
my_struct->a = 5;
my_struct = my_struct->n;
</PRE></BLOCKQUOTE><P>which can be made be manipulated in Lisp like this:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(def-alien-type nil
(struct c-struct
(x short)
(y short)
(a char)
(b char)
(z int)
(n (* c-struct))))
(def-alien-variable "my_struct" (* c-struct))
(incf (slot my-struct ’x))
(setf (slot my-struct ’a) 5)
(setq my-struct (slot my-struct ’n))
</PRE></BLOCKQUOTE><!--TOC section Loading Unix Object Files-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc258">8.6</A>  Loading Unix Object Files</H2><!--SEC END --><P>CMUCL is able to load foreign object files at runtime, using the
function </P><TT class=code>load-foreign</TT><P>. This function is able to load shared
libraries (that are typically named <CODE>.so</CODE>) via the dlopen
mechanism. It can also load <CODE>.a</CODE> or <CODE>.o</CODE> object files by
calling the linker on the files and libraries to create a loadable
object file. Once loaded, the external symbols that define routines
and variables are made available for future external references (e.g.
by </P><TT class=code>extern-alien</TT><P>.) </P><TT class=code>load-foreign</TT><P> must be run before any of
the defined symbols are referenced.</P><P>Note that if a Lisp core image is saved (using <A NAME="@funs221"></A></P><TT class=code>save-lisp</TT><P>), all
loaded foreign code is lost when the image is restarted. </P><P><BR>
<A NAME="@funs222"></A><A NAME="FN:load-foreign"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ext:</TT><TT class=function-name>load-foreign</TT> <TT class=variable>files</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:libraries</TT> <TT class=code>:base-file</TT> <TT class=code>:env</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=variable>files</TT><P> is a </P><TT class=code>simple-string</TT><P> or list of
</P><TT class=code>simple-string</TT><P>s specifying the names of the object files. If
</P><TT class=variable>files</TT><P> is a simple-string, the file that it designates is
loaded using the platform’s dlopen mechanism. If it is a list of
strings, the platform linker </P><TT class=code>ld</TT><P> is invoked to transform the
object files into a loadable object file. </P><TT class=variable>libraries</TT><P> is a list
of </P><TT class=code>simple-string</TT><P>s specifying libraries in a format that the
platform linker expects. The default value for </P><TT class=variable>libraries</TT><P> is
</P><TT class=code>("-lc")</TT><P> (i.e., the standard C library). </P><TT class=variable>base-file</TT><P> is
the file to use for the initial symbol table information. The
default is the Lisp start up code: </P><TT class=filename>path:lisp</TT><P>. </P><TT class=variable>env</TT><P>
should be a list of simple strings in the format of Unix environment
variables (i.e., </P><TT class=code><TT class=variable>A</TT>=<TT class=variable>B</TT></TT><P>, where </P><TT class=variable>A</TT><P> is an
environment variable and </P><TT class=variable>B</TT><P> is its value). The default value
for </P><TT class=variable>env</TT><P> is the environment information available at the time
Lisp was invoked. Unless you are certain that you want to change
this, you should just use the default.
</P></BLOCKQUOTE><!--TOC section Alien Function Calls-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc259">8.7</A>  Alien Function Calls</H2><!--SEC END --><P>The foreign function call interface allows a Lisp program to call functions
written in other languages. The current implementation of the foreign
function call interface assumes a C calling convention and thus routines
written in any language that adheres to this convention may be called from
Lisp.</P><P>Lisp sets up various interrupt handling routines and other environment
information when it first starts up, and expects these to be in place at all
times. The C functions called by Lisp should either not change the
environment, especially the interrupt entry points, or should make sure
that these entry points are restored when the C function returns to Lisp.
If a C function makes changes without restoring things to the way they were
when the C function was entered, there is no telling what will happen.</P><!--TOC subsection The alien-funcall Primitive-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc260">8.7.1</A>  The alien-funcall Primitive</H3><!--SEC END --><P><BR>
<A NAME="@funs223"></A><A NAME="FN:alien-funcall"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>alien-funcall</TT> <TT class=variable>alien-function</TT> <TT class=code>&rest</TT> <TT class=variable>arguments</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function is the foreign function call primitive:
</P><TT class=variable>alien-function</TT><P> is called with the supplied </P><TT class=variable>arguments</TT><P> and
its value is returned. The </P><TT class=variable>alien-function</TT><P> is an arbitrary
run-time expression; to call a constant function, use
<A NAME="@funs224"></A></P><TT class=code>extern-alien</TT><P> or </P><TT class=code>def-alien-routine</TT><P>.</P><P>The type of </P><TT class=variable>alien-function</TT><P> must be </P><TT class=code>(alien (function
...))</TT><P> or </P><TT class=code>(alien (* (function ...)))</TT><P>,
See section <A HREF="#alien-function-types">8.2.3</A>. The function type is used to
determine how to call the function (as though it was declared with
a prototype.) The type need not be known at compile time, but only
known-type calls are efficiently compiled. Limitations:
</P><UL CLASS="itemize"><LI CLASS="li-itemize">
Structure type return values are not implemented.
</LI><LI CLASS="li-itemize">Passing of structures by value is not implemented.
</LI></UL></BLOCKQUOTE><P>Here is an example which allocates a </P><TT class=code>(struct foo)</TT><P>, calls a foreign
function to initialize it, then returns a Lisp vector of all the
</P><TT class=code>(* (struct foo))</TT><P> objects filled in by the foreign call:</P><BLOCKQUOTE CLASS=lisp> <PRE>
;; Allocate a foo on the stack.
(with-alien ((f (struct foo)))
;;
;; Call some C function to fill in foo fields.
(alien-funcall (extern-alien "mangle_foo" (function void (* foo)))
(addr f))
;;
;; Find how many foos to use by getting the A field.
(let* ((num (slot f ’a))
(result (make-array num)))
;;
;; Get a pointer to the array so that we don’t have to keep
;; extracting it:
(with-alien ((a (* (array (* (struct foo)) 100)) (addr (slot f ’b))))
;;
;; Loop over the first N elements and stash them in the
;; result vector.
(dotimes (i num)
(setf (svref result i) (deref (deref a) i)))
result)))
</PRE></BLOCKQUOTE><!--TOC subsection The def-alien-routine Macro-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc261">8.7.2</A>  The def-alien-routine Macro</H3><!--SEC END --><P><BR>
<A NAME="@funs225"></A><A NAME="FN:def-alien-routine"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>def-alien-routine</TT> <TT class=variable>name</TT> <TT class=variable>result-type</TT>
<TT class=code>{(<TT class=variable>aname</TT> <TT class=variable>atype</TT> <TT class=code>{style}</TT>)}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro is a convenience for automatically generating Lisp
interfaces to simple foreign functions. The primary feature is the
parameter style specification, which translates the C
pass-by-reference idiom into additional return values.</P><TT class=variable>name</TT><P> is usually a string external symbol, but may also be a
symbol Lisp name or a list of the foreign name and the Lisp name.
If only one name is specified, the other is automatically derived,
(see section <A HREF="#external-aliens">8.4.2</A>.)</P><TT class=variable>result-type</TT><P> is the Alien type of the return value. Each
remaining subform specifies an argument to the foreign function.
</P><TT class=variable>aname</TT><P> is the symbol name of the argument to the constructed
function (for documentation) and </P><TT class=variable>atype</TT><P> is the Alien type of
corresponding foreign argument. The semantics of the actual call
are the same as for <A NAME="@funs226"></A></P><TT class=code>alien-funcall</TT><P>. </P><TT class=variable>style</TT><P> should be
one of the following:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:in</TT><BR>
</DT><DD CLASS="dd-list"> specifies that the argument is passed by value.
This is the default. <TT class=code>:in</TT> arguments have no corresponding
return value from the Lisp function.</DD><DT CLASS="dt-list"><TT class=code>:out</TT><BR>
</DT><DD CLASS="dd-list"> specifies a pass-by-reference output value. The
type of the argument must be a pointer to a fixed sized object
(such as an integer or pointer). <TT class=code>:out</TT> and <TT class=code>:in-out</TT>
cannot be used with pointers to arrays, records or functions. An
object of the correct size is allocated, and its address is passed
to the foreign function. When the function returns, the contents
of this location are returned as one of the values of the Lisp
function.</DD><DT CLASS="dt-list"><TT class=code>:copy</TT><BR>
</DT><DD CLASS="dd-list"> is similar to <TT class=code>:in</TT>, but the argument is copied
to a pre-allocated object and a pointer to this object is passed
to the foreign routine.</DD><DT CLASS="dt-list"><TT class=code>:in-out</TT><BR>
</DT><DD CLASS="dd-list"> is a combination of <TT class=code>:copy</TT> and <TT class=code>:out</TT>.
The argument is copied to a pre-allocated object and a pointer to
this object is passed to the foreign routine. On return, the
contents of this location is returned as an additional value.
</DD></DL><P>
Any efficiency-critical foreign interface function should be inline
expanded by preceding </P><TT class=code>def-alien-routine</TT><P> with:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(declaim (inline <TT class=variable>lisp-name</TT>))
</PRE></BLOCKQUOTE><P>In addition to avoiding the Lisp call overhead, this allows
pointers, word-integers and floats to be passed using non-descriptor
representations, avoiding consing (see section <A HREF="#non-descriptor">5.11.2</A>.)
</P></BLOCKQUOTE><!--TOC subsection def-alien-routine Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc262">8.7.3</A>  def-alien-routine Example</H3><!--SEC END --><P>Consider the C function </P><TT class=code>cfoo</TT><P> with the following calling convention:</P><BLOCKQUOTE class=example><PRE>
/* a for update
* i out
*/
void cfoo (char *str, char *a, int *i);
</PRE></BLOCKQUOTE><P>which can be described by the following call to </P><TT class=code>def-alien-routine</TT><P>:</P><BLOCKQUOTE CLASS=lisp> <PRE>
(def-alien-routine "cfoo" void
(str c-string)
(a char :in-out)
(i int :out))
</PRE></BLOCKQUOTE><P>The Lisp function </P><TT class=code>cfoo</TT><P> will have two arguments (</P><TT class=variable>str</TT><P> and </P><TT class=variable>a</TT><P>)
and two return values (</P><TT class=variable>a</TT><P> and </P><TT class=variable>i</TT><P>).</P><!--TOC subsection Calling Lisp from C-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc263">8.7.4</A>  Calling Lisp from C</H3><!--SEC END --><P>CMUCL supports calling Lisp from C via the <A NAME="@funs227"></A></P><TT class=code>def-callback</TT><P>
macro:</P><P><BR>
<A NAME="@funs228"></A><A NAME="FN:def-callback"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>def-callback</TT> <TT class=variable>name</TT> (<TT class=variable>return-type</TT>
<TT class=code>{(arg-name arg-type)}</TT><SUP>*</SUP>) <TT class=code>&body</TT> body
</DIV><BLOCKQUOTE CLASS="quote">
This macro defines a Lisp function that can be called from C and a
Lisp variable. The arguments to the function must be alien types,
and the return type must also be an alien type. This Lisp function
can be accessed via the <A NAME="@funs229"></A><TT class=code>callback</TT> macro.<TT class=variable>name</TT><P> is the name of the Lisp function. It is also the name of
a variable to be used by the </P><TT class=code>callback</TT><P> macro.</P><TT class=variable>return-type</TT><P> is the return type of the function. This must be
a recognized alien type.</P><TT class=variable>arg-name</TT><P> specifies the name of the argument to the function,
and the argument has type </P><TT class=variable>arg-type</TT><P>, which must be an alien type.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs230"></A><A NAME="FN:callback"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>callback</TT> <TT class=variable>callback-symbol</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This macro extracts the appropriate information for the function
named <TT class=variable>callback-symbol</TT> so that it can be called by a C
function. <TT class=variable>callback-symbol</TT> must be a symbol created by the
<TT class=code>def-callback</TT> macro.
</BLOCKQUOTE><P><BR>
<A NAME="@funs231"></A><A NAME="FN:callback-funcall"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>alien:</TT><TT class=function-name>callback-funcall</TT> <TT class=variable>callback-name</TT> <TT class=code>&rest</TT><TT class=variable>args</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This macro does the necessary stuff to call the callback named
<TT class=variable>callback-name</TT> with the given arguments.
</BLOCKQUOTE><!--TOC subsection Callback Example-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc264">8.7.5</A>  Callback Example</H3><!--SEC END --><P>Here is a simple example of using callbacks.
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(use-package :alien)
(use-package :c-call)
(def-callback foo (int (arg1 int) (arg2 int))
(format t "~&foo: ~S, ~S~%" arg1 arg2)
(+ arg1 arg2))
(defun test-foo ()
(callback-funcall foo 555 444444))
</PRE></BLOCKQUOTE><P>In this example, the callback function </P><TT class=code>foo</TT><P> is defined which
takes two C </P><TT class=code>int</TT><P> parameters and returns a </P><TT class=code>int</TT><P>. As this
shows, we can use arbitrary Lisp inside the function.</P><P>The function </P><TT class=code>test-foo</TT><P> shows how we can call this callback
function from Lisp. The macro </P><TT class=code>callback</TT><P> extracts the necessary
information for the callback function </P><TT class=code>foo</TT><P> which can be
converted into a pointer which we can call via </P><TT class=code>alien-funcall</TT><P>.</P><P>The following code is a more complete example where a foreign routine
calls our Lisp routine.
</P><BLOCKQUOTE CLASS=lisp> <PRE>
(use-package :alien)
(use-package :c-call)
(def-alien-routine qsort void
(base (* t))
(nmemb int)
(size int)
(compar (* (function int (* t) (* t)))))
(def-callback my< (int (arg1 (* double))
(arg2 (* double)))
(let ((a1 (deref arg1))
(a2 (deref arg2)))
(cond ((= a1 a2) 0)
((< a1 a2) -1)
(t +1))))
(defun test-qsort ()
(let ((a (make-array 10 :element-type ’double-float
:initial-contents ’(0.1d0 0.5d0 0.2d0 1.2d0 1.5d0
2.5d0 0.0d0 0.1d0 0.2d0 0.3d0))))
(print a)
(qsort (sys:vector-sap a)
(length a)
(alien-size double :bytes)
(alien:callback my<))
(print a)))
</PRE></BLOCKQUOTE><P>We define the alien routine, </P><TT class=code>qsort</TT><P>, and a callback, </P><TT class=code>my<</TT><P>,
to determine whether two </P><TT class=code>double</TT><P>’s are less than, greater than
or equal to each other.</P><P>The test function </P><TT class=code>test-qsort</TT><P> shows how we can call the alien
sort routine with our Lisp comparison routine to produce a sorted
array.</P><!--TOC subsection Accessing Lisp Arrays-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc265">8.7.6</A>  Accessing Lisp Arrays</H3><!--SEC END --><P>Due to the way CMUCL manages memory, the amount of memory that can
be dynamically allocated by </P><TT class=code>malloc</TT><P> or <A NAME="@funs232"></A></P><TT class=code>make-alien</TT><P> is
limited<SUP><A NAME="text15" HREF="#note15">1</A></SUP>.</P><P>To overcome this limitation, it is possible to access the content of
Lisp arrays which are limited only by the amount of physical memory
and swap space available. However, this technique is only useful if
the foreign function takes pointers to memory instead of allocating
memory for itself. In latter case, you will have to modify the
foreign functions.</P><P>This technique takes advantage of the fact that CMUCL has
specialized array types (see section <A HREF="#specialized-array-types">5.11.8</A>) that match
a typical C array. For example, a </P><TT class=code>(simple-array double-float
(100))</TT><P> is stored in memory in essentially the same way as the C
array </P><TT class=code>double x[100]</TT><P> would be. The following function allows us
to get the physical address of such a Lisp array:</P><BLOCKQUOTE class=example><PRE>
(defun array-data-address (array)
"Return the physical address of where the actual data of an array is
stored.
ARRAY must be a specialized array type in CMUCL. This means ARRAY
must be an array of one of the following types:
double-float
single-float
(unsigned-byte 32)
(unsigned-byte 16)
(unsigned-byte 8)
(signed-byte 32)
(signed-byte 16)
(signed-byte 8)
"
(declare (type (or (simple-array (signed-byte 8))
(simple-array (signed-byte 16))
(simple-array (signed-byte 32))
(simple-array (unsigned-byte 8))
(simple-array (unsigned-byte 16))
(simple-array (unsigned-byte 32))
(simple-array single-float)
(simple-array double-float)
(simple-array (complex single-float))
(simple-array (complex double-float)))
array)
(optimize (speed 3) (safety 0))
(ext:optimize-interface (safety 3)))
;; with-array-data will get us to the actual data. However, because
;; the array could have been displaced, we need to know where the
;; data starts.
(lisp::with-array-data ((data array)
(start)
(end))
(declare (ignore end))
;; DATA is a specialized simple-array. Memory is laid out like this:
;;
;; byte offset Value
;; 0 type code (should be 70 for double-float vector)
;; 4 4 * number of elements in vector
;; 8 1st element of vector
;; ... ...
;;
(let ((addr (+ 8 (logandc1 7 (kernel:get-lisp-obj-address data))))
(type-size
(let ((type (array-element-type data)))
(cond ((or (equal type ’(signed-byte 8))
(equal type ’(unsigned-byte 8)))
1)
((or (equal type ’(signed-byte 16))
(equal type ’(unsigned-byte 16)))
2)
((or (equal type ’(signed-byte 32))
(equal type ’(unsigned-byte 32)))
4)
((equal type ’single-float)
4)
((equal type ’double-float)
8)
(t
(error "Unknown specialized array element type"))))))
(declare (type (unsigned-byte 32) addr)
(optimize (speed 3) (safety 0) (ext:inhibit-warnings 3)))
(system:int-sap (the (unsigned-byte 32)
(+ addr (* type-size start)))))))
</PRE></BLOCKQUOTE><P>We note, however, that the system function
<A NAME="@funs233"></A></P><TT class=code>system:vector-sap</TT><P> will do the same thing as above does.</P><P>Assume we have the C function below that we wish to use:</P><BLOCKQUOTE class=example><PRE>
double dotprod(double* x, double* y, int n)
{
int k;
double sum = 0;
for (k = 0; k < n; ++k) {
sum += x[k] * y[k];
}
return sum;
}
</PRE></BLOCKQUOTE><P>The following example generates two large arrays in Lisp, and calls the C
function to do the desired computation. This would not have been
possible using </P><TT class=code>malloc</TT><P> or </P><TT class=code>make-alien</TT><P> since we need about
16 MB of memory to hold the two arrays.</P><BLOCKQUOTE class=example><PRE>
(alien:def-alien-routine "dotprod" c-call:double
(x (* double-float) :in)
(y (* double-float) :in)
(n c-call:int :in))
(defun test-dotprod ()
(let ((x (make-array 10000 :element-type ’double-float
:initial-element 2d0))
(y (make-array 10000 :element-type ’double-float
:initial-element 10d0)))
(sys:without-gcing
(let ((x-addr (sys:vector-sap x))
(y-addr (sys:vector-sap y)))
(dotprod x-addr y-addr 10000)))))
</PRE></BLOCKQUOTE><P>In this example, we have used </P><TT class=code>sys:vector-sap</TT><P> instead of
</P><TT class=code>array-data-address</TT><P>, but we could have used </P><TT class=code>(sys:int-sap
(array-data-address x))</TT><P> as well.</P><P>Also, we have wrapped the inner </P><TT class=code>let</TT><P> expression in a
</P><TT class=code>sys:without-gcing</TT><P> that disables garbage collection for the
duration of the body. This will prevent garbage collection from
moving </P><TT class=code>x</TT><P> and </P><TT class=code>y</TT><P> arrays after we have obtained the (now
erroneous) addresses but before the call to </P><TT class=code>dotprod</TT><P> is made.</P><!--TOC section Step-by-Step Alien Example-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc266">8.8</A>  Step-by-Step Alien Example</H2><!--SEC END --><P>This section presents a complete example of an interface to a somewhat
complicated C function. This example should give a fairly good idea
of how to get the effect you want for almost any kind of C function.
Suppose you have the following C function which you want to be able to
call from Lisp in the file </P><TT class=filename>test.c</TT><P>:</P><PRE CLASS="verbatim">
struct c_struct
{
int x;
char *s;
};
struct c_struct *c_function (i, s, r, a)
int i;
char *s;
struct c_struct *r;
int a[10];
{
int j;
struct c_struct *r2;
printf("i = %d\n", i);
printf("s = %s\n", s);
printf("r->x = %d\n", r->x);
printf("r->s = %s\n", r->s);
for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a[j]);
r2 = (struct c_struct *) malloc (sizeof(struct c_struct));
r2->x = i + 5;
r2->s = "A C string";
return(r2);
};
</PRE><P>It is possible to call this function from Lisp using the file </P><TT class=filename>test.lisp</TT><P>
whose contents is:</P><BLOCKQUOTE CLASS=lisp> <PRE>
;;; -*- Package: test-c-call -*-
(in-package "TEST-C-CALL")
(use-package "ALIEN")
(use-package "C-CALL")
;;; Define the record c-struct in Lisp.
(def-alien-type nil
(struct c-struct
(x int)
(s c-string)))
;;; Define the Lisp function interface to the C routine. It returns a
;;; pointer to a record of type c-struct. It accepts four parameters:
;;; i, an int; s, a pointer to a string; r, a pointer to a c-struct
;;; record; and a, a pointer to the array of 10 ints.
;;;
;;; The INLINE declaration eliminates some efficiency notes about heap
;;; allocation of Alien values.
(declaim (inline c-function))
(def-alien-routine c-function
(* (struct c-struct))
(i int)
(s c-string)
(r (* (struct c-struct)))
(a (array int 10)))
;;; A function which sets up the parameters to the C function and
;;; actually calls it.
(defun call-cfun ()
(with-alien ((ar (array int 10))
(c-struct (struct c-struct)))
(dotimes (i 10) ; Fill array.
(setf (deref ar i) i))
(setf (slot c-struct ’x) 20)
(setf (slot c-struct ’s) "A Lisp String")
(with-alien ((res (* (struct c-struct))
(c-function 5 "Another Lisp String" (addr c-struct) ar)))
(format t "Returned from C function.~%")
(multiple-value-prog1
(values (slot res ’x)
(slot res ’s))
;;
;; Deallocate result <EM> after</EM> we are done using it.
(free-alien res)))))
</PRE></BLOCKQUOTE><P>To execute the above example, it is necessary to compile the C routine as
follows:</P><BLOCKQUOTE class=example><PRE>
cc -c test.c
</PRE></BLOCKQUOTE><P>In order to enable incremental loading with some linkers, you may need to say:</P><BLOCKQUOTE class=example><PRE>
cc -G 0 -c test.c
</PRE></BLOCKQUOTE><P>Once the C code has been compiled, you can start up Lisp and load it in:</P><BLOCKQUOTE class=example><PRE>
% lisp
;;; Lisp should start up with its normal prompt.
;;; Compile the Lisp file. This step can be done separately. You don’t have
;;; to recompile every time.
* (compile-file "test.lisp")
;;; Load the foreign object file to define the necessary symbols. This must
;;; be done before loading any code that refers to these symbols. next block
;;; of comments are actually the output of LOAD-FOREIGN. Different linkers
;;; will give different warnings, but some warning about redefining the code
;;; size is typical.
* (load-foreign "test.o")
;;; Running library:load-foreign.csh...
;;; Loading object file...
;;; Parsing symbol table...
Warning: "_gp" moved from #x00C082C0 to #x00C08460.
Warning: "end" moved from #x00C00340 to #x00C004E0.
;;; o.k. now load the compiled Lisp object file.
* (load "test")
;;; Now we can call the routine that sets up the parameters and calls the C
;;; function.
* (test-c-call::call-cfun)
;;; The C routine prints the following information to standard output.
i = 5
s = Another Lisp string
r->x = 20
r->s = A Lisp string
a[0] = 0.
a[1] = 1.
a[2] = 2.
a[3] = 3.
a[4] = 4.
a[5] = 5.
a[6] = 6.
a[7] = 7.
a[8] = 8.
a[9] = 9.
;;; Lisp prints out the following information.
Returned from C function.
;;; Return values from the call to test-c-call::call-cfun.
10
"A C string"
*
</PRE></BLOCKQUOTE><P>If any of the foreign functions do output, they should not be called
from within Hemlock. Depending on the situation, various strange
behavior occurs. Under X, the output goes to the window in which Lisp
was started; on a terminal, the output will overwrite the Hemlock
screen image; in a Hemlock slave, standard output is
</P><TT class=filename>/dev/null</TT><P> by default, so any output is discarded.
</P><!--NAME aliens.html-->
<!--BEGIN NOTES chapter-->
<HR CLASS="ffootnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note15" HREF="#text15">1</A></DT><DD CLASS="dd-thefootnotes">CMUCL mmaps a large piece of memory for its own
use and this memory is typically about 256 MB above the start of the C
heap. Thus, only about 256 MB of memory can be dynamically allocated.
In earlier versions, this limit was closer to 8 MB.
</DD></DL>
<!--END NOTES-->
<!--TOC chapter Interprocess Communication under LISP-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc267">Chapter 9</A>  Interprocess Communication under LISP</H1><!--SEC END --><P>
<A NAME="remote"></A></P><DIV CLASS="center">
<B>by William Lott and Bill Chiles</B>
</DIV><P>CMUCL offers a facility for interprocess communication (IPC)
on top of using Unix system calls and the complications of that level
of IPC. There is a simple remote-procedure-call (RPC) package build
on top of TCP/IP sockets.</P><!--TOC section The REMOTE Package-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc268">9.1</A>  The REMOTE Package</H2><!--SEC END --><P>The </P><TT class=code>remote</TT><P> package provides simple RPC facility including
interfaces for creating servers, connecting to already existing
servers, and calling functions in other Lisp processes. The routines
for establishing a connection between two processes,
</P><TT class=code>create-request-server</TT><P> and </P><TT class=code>connect-to-remote-server</TT><P>,
return </P><TT class=variable>wire</TT><P> structures. A wire maintains the current state of
a connection, and all the RPC forms require a wire to indicate where
to send requests.</P><!--TOC subsection Connecting Servers and Clients-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc269">9.1.1</A>  Connecting Servers and Clients</H3><!--SEC END --><P>Before a client can connect to a server, it must know the network address on
which the server accepts connections. Network addresses consist of a host
address or name, and a port number. Host addresses are either a string of the
form </P><TT class=code>VANCOUVER.SLISP.CS.CMU.EDU</TT><P> or a 32 bit unsigned integer. Port
numbers are 16 bit unsigned integers. Note: </P><TT class=variable>port</TT><P> in this context has
nothing to do with Mach ports and message passing.</P><P>When a process wants to receive connection requests (that is, become a
server), it first picks an integer to use as the port. Only one server
(Lisp or otherwise) can use a given port number on a given machine at
any particular time. This can be an iterative process to find a free
port: picking an integer and calling </P><TT class=code>create-request-server</TT><P>. This
function signals an error if the chosen port is unusable. You will
probably want to write a loop using </P><TT class=code>handler-case</TT><P>, catching
conditions of type error, since this function does not signal more
specific conditions.</P><P><BR>
<A NAME="@funs234"></A><A NAME="FN:create-request-server"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>create-request-server</TT> <TT class=variable>port</TT> <TT class=code>&optional</TT> <TT class=variable>on-connect</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>create-request-server</TT><P> sets up the current Lisp to accept
connections on the given port. If port is unavailable for any
reason, this signals an error. When a client connects to this port,
the acceptance mechanism makes a wire structure and invokes the
</P><TT class=variable>on-connect</TT><P> function. Invoking this function has a couple of
purposes, and </P><TT class=variable>on-connect</TT><P> may be </P><TT class=code>nil</TT><P> in which case the
system foregoes invoking any function at connect time.</P><P>The </P><TT class=variable>on-connect</TT><P> function is both a hook that allows you access
to the wire created by the acceptance mechanism, and it confirms the
connection. This function takes two arguments, the wire and the
host address of the connecting process. See the section on host
addresses below. When </P><TT class=variable>on-connect</TT><P> is </P><TT class=code>nil</TT><P>, the request server
allows all connections. When it is non-</P><TT class=code>nil</TT><P>, the function returns
two values, whether to accept the connection and a function the
system should call when the connection terminates. Either value may
be </P><TT class=code>nil</TT><P>, but when the first value is </P><TT class=code>nil</TT><P>, the acceptance mechanism
destroys the wire.</P><TT class=code>create-request-server</TT><P> returns an object that
</P><TT class=code>destroy-request-server</TT><P> uses to terminate a connection.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs235"></A><A NAME="FN:destroy-request-server"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>destroy-request-server</TT> <TT class=variable>server</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>destroy-request-server</TT><P> takes the result of
</P><TT class=code>create-request-server</TT><P> and terminates that server. Any
existing connections remain intact, but all additional connection
attempts will fail.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs236"></A><A NAME="FN:connect-to-remote-server"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>connect-to-remote-server</TT> <TT class=variable>host</TT> <TT class=variable>port</TT> <TT class=code>&optional</TT> <TT class=variable>on-death</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>connect-to-remote-server</TT><P> attempts to connect to a remote
server at the given </P><TT class=variable>port</TT><P> on </P><TT class=variable>host</TT><P> and returns a wire
structure if it is successful. If </P><TT class=variable>on-death</TT><P> is non-</P><TT class=code>nil</TT><P>, it is
a function the system invokes when this connection terminates.
</P></BLOCKQUOTE><!--TOC subsection Remote Evaluations-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc270">9.1.2</A>  Remote Evaluations</H3><!--SEC END --><P>After the server and client have connected, they each have a wire
allowing function evaluation in the other process. This RPC mechanism
has three flavors: for side-effect only, for a single value, and for
multiple values.</P><P>Only a limited number of data types can be sent across wires as
arguments for remote function calls and as return values: integers
inclusively less than 32 bits in length, symbols, lists, and
</P><TT class=variable>remote-objects</TT><P> (see section <A HREF="#remote-objs">9.1.3</A>). The system sends symbols
as two strings, the package name and the symbol name, and if the
package doesn’t exist remotely, the remote process signals an error.
The system ignores other slots of symbols. Lists may be any tree of
the above valid data types. To send other data types you must
represent them in terms of these supported types. For example, you
could use </P><TT class=code>prin1-to-string</TT><P> locally, send the string, and use
</P><TT class=code>read-from-string</TT><P> remotely.</P><P><BR>
<A NAME="@funs237"></A><A NAME="FN:remote"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote</TT> <TT class=variable>wire</TT> <TT class=code>{call-specs}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>The </P><TT class=code>remote</TT><P> macro arranges for the process at the other end of
</P><TT class=variable>wire</TT><P> to invoke each of the functions in the </P><TT class=variable>call-specs</TT><P>.
To make sure the system sends the remote evaluation requests over
the wire, you must call </P><TT class=code>wire-force-output</TT><P>.</P><P>Each of </P><TT class=variable>call-specs</TT><P> looks like a function call textually, but
it has some odd constraints and semantics. The function position of
the form must be the symbolic name of a function. </P><TT class=code>remote</TT><P>
evaluates each of the argument subforms for each of the
</P><TT class=variable>call-specs</TT><P> locally in the current context, sending these
values as the arguments for the functions.</P><P>Consider the following example:</P><PRE CLASS="verbatim">(defun write-remote-string (str)
(declare (simple-string str))
(wire:remote wire
(write-string str)))
</PRE><P>The value of </P><TT class=code>str</TT><P> in the local process is passed over the wire
with a request to invoke </P><TT class=code>write-string</TT><P> on the value. The
system does not expect to remotely evaluate </P><TT class=code>str</TT><P> for a value
in the remote process.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs238"></A><A NAME="FN:wire-force-output"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-force-output</TT> <TT class=variable>wire</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>wire-force-output</TT><P> flushes all internal buffers associated
with </P><TT class=variable>wire</TT><P>, sending the remote requests. This is necessary
after a call to </P><TT class=code>remote</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs239"></A><A NAME="FN:remote-value"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-value</TT> <TT class=variable>wire</TT> <TT class=variable>call-spec</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The </P><TT class=code>remote-value</TT><P> macro is similar to the </P><TT class=code>remote</TT><P> macro.
</P><TT class=code>remote-value</TT><P> only takes one </P><TT class=variable>call-spec</TT><P>, and it returns
the value returned by the function call in the remote process. The
value must be a valid type the system can send over a wire, and
there is no need to call </P><TT class=code>wire-force-output</TT><P> in conjunction
with this interface.</P><P>If client unwinds past the call to </P><TT class=code>remote-value</TT><P>, the server
continues running, but the system ignores the value the server sends
back.</P><P>If the server unwinds past the remotely requested call, instead of
returning normally, </P><TT class=code>remote-value</TT><P> returns two values, </P><TT class=code>nil</TT><P>
and </P><TT class=code>t</TT><P>. Otherwise this returns the result of the remote
evaluation and </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs240"></A><A NAME="FN:remote-value-bind"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-value-bind</TT> <TT class=variable>wire</TT> (<TT class=code>{variable}</TT><SUP>*</SUP>) remote-form
<TT class=code>{local-forms}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>remote-value-bind</TT><P> is similar to </P><TT class=code>multiple-value-bind</TT><P>
except the values bound come from </P><TT class=variable>remote-form</TT><P>’s evaluation in
the remote process. The </P><TT class=variable>local-forms</TT><P> execute in an implicit
</P><TT class=code>progn</TT><P>.</P><P>If the client unwinds past the call to </P><TT class=code>remote-value-bind</TT><P>, the
server continues running, but the system ignores the values the
server sends back.</P><P>If the server unwinds past the remotely requested call, instead of
returning normally, the </P><TT class=variable>local-forms</TT><P> never execute, and
</P><TT class=code>remote-value-bind</TT><P> returns </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Remote Objects-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc271">9.1.3</A>  Remote Objects</H3><!--SEC END --><P>
<A NAME="remote-objs"></A></P><P>The wire mechanism only directly supports a limited number of data
types for transmission as arguments for remote function calls and as
return values: integers inclusively less than 32 bits in length,
symbols, lists. Sometimes it is useful to allow remote processes to
refer to local data structures without allowing the remote process
to operate on the data. We have </P><TT class=variable>remote-objects</TT><P> to support
this without the need to represent the data structure in terms of
the above data types, to send the representation to the remote
process, to decode the representation, to later encode it again, and
to send it back along the wire.</P><P>You can convert any Lisp object into a remote-object. When you send
a remote-object along a wire, the system simply sends a unique token
for it. In the remote process, the system looks up the token and
returns a remote-object for the token. When the remote process
needs to refer to the original Lisp object as an argument to a
remote call back or as a return value, it uses the remote-object it
has which the system converts to the unique token, sending that
along the wire to the originating process. Upon receipt in the
first process, the system converts the token back to the same
(</P><TT class=code>eq</TT><P>) remote-object.</P><P><BR>
<A NAME="@funs241"></A><A NAME="FN:make-remote-object"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>make-remote-object</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=code>make-remote-object</TT><P> returns a remote-object that has
</P><TT class=variable>object</TT><P> as its value. The remote-object can be passed across
wires just like the directly supported wire data types.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs242"></A><A NAME="FN:remote-object-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-object-p</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The function </P><TT class=code>remote-object-p</TT><P> returns </P><TT class=code>t</TT><P> if </P><TT class=variable>object</TT><P>
is a remote object and </P><TT class=code>nil</TT><P> otherwise.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs243"></A><A NAME="FN:remote-object-local-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-object-local-p</TT> <TT class=variable>remote</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The function </P><TT class=code>remote-object-local-p</TT><P> returns </P><TT class=code>t</TT><P> if
</P><TT class=variable>remote</TT><P> refers to an object in the local process. This is can
only occur if the local process created </P><TT class=variable>remote</TT><P> with
</P><TT class=code>make-remote-object</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs244"></A><A NAME="FN:remote-object-eq"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-object-eq</TT> <TT class=variable>obj1</TT> <TT class=variable>obj2</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The function </P><TT class=code>remote-object-eq</TT><P> returns </P><TT class=code>t</TT><P> if </P><TT class=variable>obj1</TT><P> and
</P><TT class=variable>obj2</TT><P> refer to the same (</P><TT class=code>eq</TT><P>) lisp object, regardless of
which process created the remote-objects.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs245"></A><A NAME="FN:remote-object-value"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>remote-object-value</TT> <TT class=variable>remote</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the original object used to create the given
remote object. It is an error if some other process originally
created the remote-object.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs246"></A><A NAME="FN:forget-remote-translation"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>forget-remote-translation</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function removes the information and storage necessary to
translate remote-objects back into </P><TT class=variable>object</TT><P>, so the next
</P><TT class=code>gc</TT><P> can reclaim the memory. You should use this when you no
longer expect to receive references to </P><TT class=variable>object</TT><P>. If some remote
process does send a reference to </P><TT class=variable>object</TT><P>,
</P><TT class=code>remote-object-value</TT><P> signals an error.
</P></BLOCKQUOTE><!--TOC section The WIRE Package-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc272">9.2</A>  The WIRE Package</H2><!--SEC END --><P>The </P><TT class=code>wire</TT><P> package provides for sending data along wires. The
</P><TT class=code>remote</TT><P> package sits on top of this package. All data sent
with a given output routine must be read in the remote process with
the complementary fetching routine. For example, if you send so a
string with </P><TT class=code>wire-output-string</TT><P>, the remote process must know
to use </P><TT class=code>wire-get-string</TT><P>. To avoid rigid data transfers and
complicated code, the interface supports sending
</P><TT class=variable>tagged</TT><P> data. With tagged data, the system sends a tag
announcing the type of the next data, and the remote system takes
care of fetching the appropriate type.</P><P>When using interfaces at the wire level instead of the RPC level,
the remote process must read everything sent by these routines. If
the remote process leaves any input on the wire, it will later
mistake the data for an RPC request causing unknown lossage.</P><!--TOC subsection Untagged Data-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc273">9.2.1</A>  Untagged Data</H3><!--SEC END --><P>When using these routines both ends of the wire know exactly what types are
coming and going and in what order. This data is restricted to the following
types:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
8 bit unsigned bytes.</LI><LI CLASS="li-itemize">32 bit unsigned bytes.</LI><LI CLASS="li-itemize">32 bit integers.</LI><LI CLASS="li-itemize">simple-strings less than 65535 in length.
</LI></UL><P><BR>
<A NAME="@funs247"></A><A NAME="FN:wire-output-byte"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-output-byte</TT> <TT class=variable>wire</TT> <TT class=variable>byte</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs248"></A><A NAME="FN:wire-get-byte"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-get-byte</TT> <TT class=variable>wire</TT>
</DIV><P><A NAME="@funs249"></A><A NAME="FN:wire-output-number"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-output-number</TT> <TT class=variable>wire</TT> <TT class=variable>number</TT>
</DIV><P><A NAME="@funs250"></A><A NAME="FN:wire-get-number"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-get-number</TT> <TT class=variable>wire</TT> <TT class=code>&optional</TT>
<TT class=variable>signed</TT>
</DIV><P><A NAME="@funs251"></A><A NAME="FN:wire-output-string"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-output-string</TT> <TT class=variable>wire</TT> <TT class=variable>string</TT>
</DIV><P><A NAME="@funs252"></A><A NAME="FN:wire-get-string"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-get-string</TT> <TT class=variable>wire</TT>
</DIV><P>These functions either output or input an object of the specified
data type. When you use any of these output routines to send data
across the wire, you must use the corresponding input routine
interpret the data.
</P></BLOCKQUOTE><!--TOC subsection Tagged Data-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc274">9.2.2</A>  Tagged Data</H3><!--SEC END --><P>When using these routines, the system automatically transmits and interprets
the tags for you, so both ends can figure out what kind of data transfers
occur. Sending tagged data allows a greater variety of data types: integers
inclusively less than 32 bits in length, symbols, lists, and </P><TT class=variable>remote-objects</TT><P>
(see section <A HREF="#remote-objs">9.1.3</A>). The system sends symbols as two strings, the
package name and the symbol name, and if the package doesn’t exist remotely,
the remote process signals an error. The system ignores other slots of
symbols. Lists may be any tree of the above valid data types. To send other
data types you must represent them in terms of these supported types. For
example, you could use </P><TT class=code>prin1-to-string</TT><P> locally, send the string, and use
</P><TT class=code>read-from-string</TT><P> remotely.</P><P><BR>
<A NAME="@funs253"></A><A NAME="FN:wire-output-object"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-output-object</TT> <TT class=variable>wire</TT> <TT class=variable>object</TT> <TT class=code>&optional</TT> <TT class=variable>cache-it</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs254"></A><A NAME="FN:wire-get-object"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-get-object</TT> <TT class=variable>wire</TT>
</DIV><P>The function </P><TT class=code>wire-output-object</TT><P> sends </P><TT class=variable>object</TT><P> over
</P><TT class=variable>wire</TT><P> preceded by a tag indicating its type.</P><P>If </P><TT class=variable>cache-it</TT><P> is non-</P><TT class=code>nil</TT><P>, this function only sends </P><TT class=variable>object</TT><P>
the first time it gets </P><TT class=variable>object</TT><P>. Each end of the wire
associates a token with </P><TT class=variable>object</TT><P>, similar to remote-objects,
allowing you to send the object more efficiently on successive
transmissions. </P><TT class=variable>cache-it</TT><P> defaults to </P><TT class=code>t</TT><P> for symbols and
</P><TT class=code>nil</TT><P> for other types. Since the RPC level requires function
names, a high-level protocol based on a set of function calls saves
time in sending the functions’ names repeatedly.</P><P>The function </P><TT class=code>wire-get-object</TT><P> reads the results of
</P><TT class=code>wire-output-object</TT><P> and returns that object.
</P></BLOCKQUOTE><!--TOC subsection Making Your Own Wires-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc275">9.2.3</A>  Making Your Own Wires</H3><!--SEC END --><P>You can create wires manually in addition to the </P><TT class=code>remote</TT><P>
package’s interface creating them for you. To create a wire, you need
a Unix <EM>file descriptor</EM>. If you are unfamiliar with Unix file
descriptors, see section 2 of the Unix manual pages.</P><P><BR>
<A NAME="@funs255"></A><A NAME="FN:make-wire"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>make-wire</TT> <TT class=variable>descriptor</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>The function </P><TT class=code>make-wire</TT><P> creates a new wire when supplied with
the file descriptor to use for the underlying I/O operations.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs256"></A><A NAME="FN:wire-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-p</TT> <TT class=variable>object</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=code>t</TT><P> if </P><TT class=variable>object</TT><P> is indeed a wire,
</P><TT class=code>nil</TT><P> otherwise.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs257"></A><A NAME="FN:wire-fd"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>wire:</TT><TT class=function-name>wire-fd</TT> <TT class=variable>wire</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the file descriptor used by the </P><TT class=variable>wire</TT><P>.
</P></BLOCKQUOTE><!--TOC section Out-Of-Band Data-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc276">9.3</A>  Out-Of-Band Data</H2><!--SEC END --><P>The TCP/IP protocol allows users to send data asynchronously, otherwise
known as </P><TT class=variable>out-of-band</TT><P> data. When using this feature, the operating
system interrupts the receiving process if this process has chosen to be
notified about out-of-band data. The receiver can grab this input
without affecting any information currently queued on the socket.
Therefore, you can use this without interfering with any current
activity due to other wire and remote interfaces.</P><P>Unfortunately, most implementations of TCP/IP are broken, so use of
out-of-band data is limited for safety reasons. You can only reliably
send one character at a time.</P><P>The Wire package is built on top of CMUCLs networking support. In
view of this, it is possible to use the routines described in section
<A HREF="#internet-oob">10.6</A> for handling and sending out-of-band data. These
all take a Unix file descriptor instead of a wire, but you can fetch a
wire’s file descriptor with </P><TT class=code>wire-fd</TT><P>.
</P><!--NAME ipc.html-->
<!--TOC chapter Networking Support-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc277">Chapter 10</A>  Networking Support</H1><!--SEC END --><P>
<A NAME="internet"></A></P><DIV CLASS="center">
<B>by Mario S. Mommer</B>
</DIV><P>This chapter documents the IPv4 networking and local sockets support
offered by CMUCL. It covers most of the basic sockets interface
functionality in a convenient and transparent way.</P><P>For reasons of space it would be impossible to include a thorough
introduction to network programming, so we assume some basic knowledge
of the matter.</P><!--TOC section Byte Order Converters-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc278">10.1</A>  Byte Order Converters</H2><!--SEC END --><P>These are the functions that convert integers from host byte order to
network byte order (big-endian).</P><P><BR>
<A NAME="@funs258"></A><A NAME="FN:htonl"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>htonl</TT> <TT class=variable>integer</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Converts a 32 bit integer from host byte order to network byte
order.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs259"></A><A NAME="FN:htons"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>htons</TT> <TT class=variable>integer</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Converts a 16 bit integer from host byte order to network byte
order.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs260"></A><A NAME="FN:ntohs"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>ntohs</TT> <TT class=variable>integer</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Converts a 32 bit integer from network byte order to host
byte order.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs261"></A><A NAME="FN:ntohl"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>ntohl</TT> <TT class=variable>integer</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Converts a 32 bit integer from network byte order to host byte
order.</P></BLOCKQUOTE><!--TOC section Domain Name Services (DNS)-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc279">10.2</A>  Domain Name Services (DNS)</H2><!--SEC END --><P>The networking support of CMUCL includes the possibility of doing
DNS lookups. The function </P><P><BR>
<A NAME="@funs262"></A><A NAME="FN:lookup-host-entry"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>lookup-host-entry</TT> <TT class=variable>host</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>returns a structure of type </P><TT class=variable>host-entry</TT><P> (explained below) for
the given </P><TT class=variable>host</TT><P>. If </P><TT class=variable>host</TT><P> is an integer, it will be
assumed to be the IP address in host (byte-)order. If it is a string,
it can contain either the host name or the IP address in dotted
format.</P><P>This function works by completing the structure </P><TT class=variable>host-entry</TT><P>.
That is, if the user provides the IP address, then the structure will
contain that information and also the domain names. If the user
provides the domain name, the structure will be complemented with
the IP addresses along with the any aliases the host might have.</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types46"></A></P><DIV align=left>
[structure]<BR>
<TT class=function-name>host-entry</TT>
</DIV><BLOCKQUOTE CLASS="quote"><TT class=variable>name</TT> <TT class=variable>aliases</TT>
<TT class=variable>addr-type</TT> <TT class=variable>addr-list</TT><P>This structure holds all information available at request time on a
given host. The entries are self-explanatory. Aliases is a list of
strings containing alternative names of the host, and addr-list a
list of addresses stored in host byte order. The field
</P><TT class=variable>addr-type</TT><P> contains the number of the address family, as
specified in <TT>socket.h</TT>, to which the addresses belong. Since
only addresses of the IPv4 family are currently supported, this slot
always has the value 2.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs263"></A><A NAME="FN:ip-string"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>ip-string</TT> <TT class=variable>addr</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function takes an IP address in host order and returns a string
containing it in dotted format.</P></BLOCKQUOTE><!--TOC section Binding to Interfaces-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc280">10.3</A>  Binding to Interfaces</H2><!--SEC END --><P>In this section, functions for creating sockets bound to an interface
are documented.</P><P><BR>
<A NAME="@funs264"></A><A NAME="FN:create-inet-listener"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>create-inet-listener</TT> <TT class=variable>port</TT> <TT class=code>&optional</TT> <TT class=variable>kind</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:reuse-address</TT> <TT class=code>:backlog</TT> <TT class=code>:host</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Creates a socket and binds it to a port, prepared to receive
connections of kind </P><TT class=variable>kind</TT><P> (which defaults to </P><TT class=code>:stream</TT><P>),
queuing up to </P><TT class=variable>backlog</TT><P> of them. If </P><TT class=code>:reuse-address</TT><TT class=variable>T</TT><P>
is used, the option SO_REUSEADDR is used in the call to </P><TT class=variable>bind</TT><P>.
If no value is given for </P><TT class=code>:host</TT><P>, it will try to bind to the
default IP address of the machine where the Lisp process is running.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs265"></A><A NAME="FN:create-unix-listener"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>create-unix-listener</TT> <TT class=variable>path</TT> <TT class=code>&optional</TT> <TT class=variable>kind</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline">
<TT class=code>:backlog</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Creates a socket and binds it to the file name given by </P><TT class=variable>path</TT><P>,
prepared to receive connections of kind </P><TT class=variable>kind</TT><P> (which defaults
to </P><TT class=code>:stream</TT><P>), queuing up to </P><TT class=variable>backlog</TT><P> of them.
</P></BLOCKQUOTE><!--TOC section Accepting Connections-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc281">10.4</A>  Accepting Connections</H2><!--SEC END --><P>Once a socket is bound to its interface, we have to explicitly accept
connections. This task is performed by the functions we document here.</P><P><BR>
<A NAME="@funs266"></A><A NAME="FN:accept-tcp-connection"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>accept-tcp-connection</TT> <TT class=variable>unconnected</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Waits until a connection arrives on the (internet family) socket
</P><TT class=variable>unconnected</TT><P>. Returns the file descriptor of the connection.
These can be conveniently encapsulated using file descriptor
streams; see <A HREF="#sec:fds">6.7</A>.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs267"></A><A NAME="FN:accept-unix-connection"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>accept-unix-connection</TT> <TT class=variable>unconnected</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Waits until a connection arrives on the (unix family) socket
</P><TT class=variable>unconnected</TT><P>. Returns the file descriptor of the connection.
These can be conveniently encapsulated using file descriptor
streams; see <A HREF="#sec:fds">6.7</A>.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs268"></A><A NAME="FN:accept-network-stream"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>accept-network-stream</TT> <TT class=variable>socket</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:buffering</TT> <TT class=code>:timeout</TT> <TT class=code>:wait-max</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Accept a connect from the specified </P><TT class=variable>socket</TT><P> and returns a stream
connected to connection.
</P></BLOCKQUOTE><!--TOC section Connecting-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc282">10.5</A>  Connecting</H2><!--SEC END --><P>The task performed by the functions we present next is connecting to
remote hosts.</P><P><BR>
<A NAME="@funs269"></A><A NAME="FN:connect-to-inet-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>connect-to-inet-socket</TT> <TT class=variable>host</TT> <TT class=variable>port</TT> <TT class=code>&optional</TT> <TT class=variable>kind</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:local-host</TT> <TT class=code>:local-port</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Tries to open a connection to the remote host </P><TT class=variable>host</TT><P> (which may
be an IP address in host order, or a string with either a host name
or an IP address in dotted format) on port </P><TT class=variable>port</TT><P>. Returns the
file descriptor of the connection. The optional parameter
</P><TT class=variable>kind</TT><P> can be either </P><TT class=code>:stream</TT><P> (the default) or </P><TT class=code>:datagram</TT><P>.</P><P>If </P><TT class=variable>local-host</TT><P> and </P><TT class=variable>local-port</TT><P> are specified, the socket
that is created is also bound to the specified </P><TT class=variable>local-host</TT><P> and
</P><TT class=variable>port</TT><P>.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs270"></A><A NAME="FN:connect-to-unix-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>connect-to-unix-socket</TT> <TT class=variable>path</TT> <TT class=code>&optional</TT> <TT class=variable>kind</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Opens a connection to the unix “address” given by </P><TT class=variable>path</TT><P>.
Returns the file descriptor of the connection. The type of
connection is given by </P><TT class=variable>kind</TT><P>, which can be either </P><TT class=code>:stream</TT><P>
(the default) or </P><TT class=code>:datagram</TT><P>.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs271"></A><A NAME="FN:open-network-stream"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>open-network-stream</TT> <TT class=variable>host</TT> <TT class=variable>port</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:buffering</TT> <TT class=code>:timeout</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>Return a stream connected to the specified </P><TT class=variable>port</TT><P> on the given </P><TT class=variable>host</TT><P>.
</P></BLOCKQUOTE><!--TOC section Out-of-Band Data-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc283">10.6</A>  Out-of-Band Data</H2><!--SEC END --><P>
<A NAME="internet-oob"></A></P><P>Out-of-band data is data transmitted with a higher priority than
ordinary data. This is usually used by either side of the connection
to signal exceptional conditions. Due to the fact that most TCP/IP
implementations are broken in this respect, only single characters can
reliably be sent this way.</P><P><BR>
<A NAME="@funs272"></A><A NAME="FN:add-oob-handler"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>add-oob-handler</TT> <TT class=variable>fd</TT> <TT class=variable>char</TT> <TT class=variable>handler</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Sets the function passed in </P><TT class=variable>handler</TT><P> as a handler for the
character </P><TT class=variable>char</TT><P> on the connection whose descriptor is </P><TT class=variable>fd</TT><P>.
In case this character arrives, the function in </P><TT class=variable>handler</TT><P> is
called without any argument.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs273"></A><A NAME="FN:remove-oob-handler"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>remove-oob-handler</TT> <TT class=variable>fd</TT> <TT class=variable>char</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Removes the handler for the character </P><TT class=variable>char</TT><P> from the connection
with the file descriptor </P><TT class=variable>fd</TT></BLOCKQUOTE><P><BR>
<A NAME="@funs274"></A><A NAME="FN:remove-all-oob-handlers"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>remove-all-oob-handlers</TT> <TT class=variable>fd</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>After calling this function, the connection whose descriptor is
</P><TT class=variable>fd</TT><P> will ignore any out-of-band character it receives.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs275"></A><A NAME="FN:send-character-out-of-band"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>send-character-out-of-band</TT> <TT class=variable>fd</TT> <TT class=variable>char</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Sends the character </P><TT class=variable>char</TT><P> through the connection </P><TT class=variable>fd</TT><P> out
of band.</P></BLOCKQUOTE><!--TOC section Unbound Sockets, Socket Options, and Closing Sockets-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc284">10.7</A>  Unbound Sockets, Socket Options, and Closing Sockets</H2><!--SEC END --><P>These functions create unbound sockets. This is usually not necessary,
since connectors and listeners create their own.</P><P><BR>
<A NAME="@funs276"></A><A NAME="FN:create-unix-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>create-unix-socket</TT> <TT class=code>&optional</TT> <TT class=variable>type</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Creates a unix socket for the unix address family, of type
</P><TT class=variable>:stream</TT><P> and (on success) returns its file descriptor.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs277"></A><A NAME="FN:create-inet-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>create-inet-socket</TT> <TT class=code>&optional</TT> <TT class=variable>kind</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Creates a unix socket for the internet address family, of type
</P><TT class=variable>:stream</TT><P> and (on success) returns its file descriptor.</P></BLOCKQUOTE><P>
<BR>
<BR>
</P><P>Once a socket is created, it is sometimes useful to bind the socket to a
local address using </P><TT class=code>bind-inet-socket</TT><P>:</P><P><BR>
<A NAME="@funs278"></A><A NAME="FN:bind-inet-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>bind-inet-socket</TT> <TT class=variable>socket</TT> <TT class=variable>host</TT> <TT class=variable>port</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Bind the </P><TT class=variable>socket</TT><P> to a local interface address specified
by </P><TT class=variable>host</TT><P> and </P><TT class=variable>port</TT><P>. </P></BLOCKQUOTE><P>
<BR>
<BR>
</P><P>Further, it is desirable to be able to change socket options. This is
performed by the following two functions, which are essentially
wrappers for system calls to <TT>getsockopt</TT> and <TT>setsockopt</TT>.</P><P><BR>
<A NAME="@funs279"></A><A NAME="FN:get-socket-option"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>get-socket-option</TT> <TT class=variable>socket</TT> <TT class=variable>level</TT> <TT class=variable>optname</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Gets the value of option </P><TT class=variable>optname</TT><P> from the socket </P><TT class=variable>socket</TT><P>.</P></BLOCKQUOTE><P><BR>
<A NAME="@funs280"></A><A NAME="FN:set-socket-option"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>set-socket-option</TT> <TT class=variable>socket</TT> <TT class=variable>level</TT> <TT class=variable>optname</TT> <TT class=variable>optval</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Sets the value of option </P><TT class=variable>optname</TT><P> from the socket </P><TT class=variable>socket</TT><P>
to the value </P><TT class=variable>optval</TT><P>.</P></BLOCKQUOTE><P>
<BR>
<BR>
</P><P>For information on possible options and values we refer to the
manpages of <TT>getsockopt</TT> and <TT>setsockopt</TT>, and to <TT>socket.h</TT></P><P>Finally, the function</P><P><BR>
<A NAME="@funs281"></A><A NAME="FN:close-socket"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>close-socket</TT> <TT class=variable>socket</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>Closes the socket given by the file descriptor </P><TT class=variable>socket</TT><P>.</P></BLOCKQUOTE><!--TOC section Unix Datagrams-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc285">10.8</A>  Unix Datagrams</H2><!--SEC END --><P>Datagram network is supported with the following functions.</P><P><BR>
<A NAME="@funs282"></A><A NAME="FN:inet-recvfrom"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>inet-recvfrom</TT> <TT class=variable>fd</TT> <TT class=variable>buffer</TT> <TT class=variable>size</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:flags</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
A simple interface to the Unix <TT class=code>recvfrom</TT> function. Returns
three values: bytecount, source address as integer, and source
port. Bytecount can of course be negative, to indicate faults.
</BLOCKQUOTE><P><BR>
<A NAME="@funs283"></A><A NAME="FN:inet-sendto"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>inet-sendto</TT> <TT class=variable>fd</TT> <TT class=variable>buffer</TT> <TT class=variable>size</TT> <TT class=variable>addr</TT> <TT class=variable>port</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:flags</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
A simple interface to the Unix <TT class=code>sendto</TT> function.
</BLOCKQUOTE><P><BR>
<A NAME="@funs284"></A><A NAME="FN:inet-shutdown"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>inet-shutdown</TT> <TT class=variable>fd</TT> <TT class=variable>level</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>A simple interface to the Unix </P><TT class=code>shutdown</TT><P> function. For
</P><TT class=code>level</TT><P>, you may use the following symbols to close one or
both ends of a socket: </P><TT class=code>shut-rd</TT><P>, </P><TT class=code>shut-wr</TT><P>,
</P><TT class=code>shut-rdwr</TT><P>.</P></BLOCKQUOTE><!--TOC section Errors-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc286">10.9</A>  Errors</H2><!--SEC END --><P>Errors that occur during socket operations signal a
</P><TT class=code>socket-error</TT><P> condition, a subtype of the </P><TT class=code>error</TT><P>
condition. Currently this condition includes just the Unix
</P><TT class=code>errno</TT><P> associated with the error.
</P><!--NAME internet.html-->
<!--TOC chapter Debugger Programmer’s Interface-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc287">Chapter 11</A>  Debugger Programmer’s Interface</H1><!--SEC END --><P>
<A NAME="debug-internals"></A></P><P>The debugger programmers interface is exported from from the
</P><TT class=code>DEBUG-INTERNALS</TT><P> or </P><TT class=code>DI</TT><P> package. This is a CMU
extension that allows debugging tools to be written without detailed
knowledge of the compiler or run-time system.</P><P>Some of the interface routines take a code-location as an argument. As
described in the section on code-locations, some code-locations are
unknown. When a function calls for a </P><TT class=variable>basic-code-location</TT><P>, it
takes either type, but when it specifically names the argument
</P><TT class=variable>code-location</TT><P>, the routine will signal an error if you give it an
unknown code-location.</P><!--TOC section DI Exceptional Conditions-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc288">11.1</A>  DI Exceptional Conditions</H2><!--SEC END --><P>Some of these operations fail depending on the availability debugging
information. In the most severe case, when someone saved a Lisp image
stripping all debugging data structures, no operations are valid. In
this case, even backtracing and finding frames is impossible. Some
interfaces can simply return values indicating the lack of information,
or their return values are naturally meaningful in light missing data.
Other routines, as documented below, will signal
</P><TT class=code>serious-condition</TT><P>s when they discover awkward situations. This
interface does not provide for programs to detect these situations other
than by calling a routine that detects them and signals a condition.
These are serious-conditions because the program using the interface
must handle them before it can correctly continue execution. These
debugging conditions are not errors since it is no fault of the
programmers that the conditions occur.</P><!--TOC subsection Debug-conditions-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc289">11.1.1</A>  Debug-conditions</H3><!--SEC END --><P>The debug internals interface signals conditions when it can’t adhere
to its contract. These are serious-conditions because the program
using the interface must handle them before it can correctly continue
execution. These debugging conditions are not errors since it is no
fault of the programmers that the conditions occur. The interface
does not provide for programs to detect these situations other than
calling a routine that detects them and signals a condition.</P><P><BR>
<BR>
<A NAME="@types47"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>debug-condition</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This condition inherits from serious-condition, and all debug-conditions
inherit from this. These must be handled, but they are not programmer errors.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types48"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>no-debug-info</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This condition indicates there is absolutely no debugging information
available.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types49"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>no-debug-function-returns</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This condition indicates the system cannot return values from a frame since
its debug-function lacks debug information details about returning values.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types50"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>no-debug-blocks</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This condition indicates that a function was not compiled with debug-block
information, but this information is necessary necessary for some requested
operation.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types51"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>no-debug-variables</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Similar to <TT class=code>no-debug-blocks</TT>, except that variable information was
requested.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types52"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>lambda-list-unavailable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Similar to <TT class=code>no-debug-blocks</TT>, except that lambda list information was
requested.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types53"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>invalid-value</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This condition indicates a debug-variable has </P><TT class=code>:invalid</TT><P> or </P><TT class=code>:unknown</TT><P>
value in a particular frame.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types54"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>ambiguous-variable-name</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This condition indicates a user supplied debug-variable name identifies more
than one valid variable in a particular frame.
</P></BLOCKQUOTE><!--TOC subsection Debug-errors-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc290">11.1.2</A>  Debug-errors</H3><!--SEC END --><P>These are programmer errors resulting from misuse of the debugging tools’
programmers’ interface. You could have avoided an occurrence of one of these
by using some routine to check the use of the routine generating the error.</P><P><BR>
<BR>
<A NAME="@types55"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>debug-error</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This condition inherits from error, and all user programming errors inherit
from this condition.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types56"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>unhandled-condition</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This error results from a signalled <TT class=code>debug-condition</TT> occurring
without anyone handling it.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types57"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>unknown-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This error indicates the invalid use of an unknown-code-location.
</BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types58"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>unknown-debug-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This error indicates an attempt to use a debug-variable in conjunction with an
inappropriate debug-function; for example, checking the variable’s validity
using a code-location in the wrong debug-function will signal this error.
</P></BLOCKQUOTE><P><BR>
<BR>
<A NAME="@types59"></A></P><DIV align=left>
[Condition]<BR>
<TT class=function-name>frame-function-mismatch</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This error indicates you called a function returned by
</P><TT class=code>preprocess-for-eval</TT><P>
on a frame other than the one for which the function had been prepared.
</P></BLOCKQUOTE><!--TOC section Debug-variables-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc291">11.2</A>  Debug-variables</H2><!--SEC END --><P>Debug-variables represent the constant information about where the system
stores argument and local variable values. The system uniquely identifies with
an integer every instance of a variable with a particular name and package. To
access a value, you must supply the frame along with the debug-variable since
these are particular to a function, not every instance of a variable on the
stack.</P><P><BR>
<A NAME="@funs285"></A><A NAME="FN:debug-variable-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-name</TT> <TT class=variable>debug-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the name of the </P><TT class=variable>debug-variable</TT><P>. The
name is the name of the symbol used as an identifier when writing
the code.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs286"></A><A NAME="FN:debug-variable-package"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-package</TT> <TT class=variable>debug-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the package name of the </P><TT class=variable>debug-variable</TT><P>.
This is the package name of the symbol used as an identifier when
writing the code.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs287"></A><A NAME="FN:debug-variable-symbol"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-symbol</TT> <TT class=variable>debug-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the symbol from interning
</P><TT class=code>debug-variable-name</TT><P> in the package named by
</P><TT class=code>debug-variable-package</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs288"></A><A NAME="FN:debug-variable-id"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-id</TT> <TT class=variable>debug-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the integer that makes </P><TT class=variable>debug-variable</TT><P>’s
name and package name unique with respect to other
</P><TT class=variable>debug-variable</TT><P>’s in the same function.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs289"></A><A NAME="FN:debug-variable-validity"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-validity</TT> <TT class=variable>debug-variable</TT> <TT class=variable>basic-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns three values reflecting the validity of
</P><TT class=variable>debug-variable</TT><P>’s value at </P><TT class=variable>basic-code-location</TT><P>:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:valid</TT><BR>
</DT><DD CLASS="dd-list"> The value is known to be available.
</DD><DT CLASS="dt-list"><TT class=code>:invalid</TT><BR>
</DT><DD CLASS="dd-list"> The value is known to be unavailable.
</DD><DT CLASS="dt-list"><TT class=code>:unknown</TT><BR>
</DT><DD CLASS="dd-list"> The value’s availability is unknown.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs290"></A><A NAME="FN:debug-variable-value"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-value</TT> <TT class=variable>debug-variable</TT>
<TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the value stored for </P><TT class=variable>debug-variable</TT><P> in
</P><TT class=variable>frame</TT><P>. The value may be invalid. This is </P><TT class=code>SETF</TT><P>’able.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs291"></A><A NAME="FN:debug-variable-valid-value"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-valid-value</TT> <TT class=variable>debug-variable</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the value stored for </P><TT class=variable>debug-variable</TT><P> in
</P><TT class=variable>frame</TT><P>. If the value is not </P><TT class=code>:valid</TT><P>, then this signals an
</P><TT class=code>invalid-value</TT><P> error.
</P></BLOCKQUOTE><!--TOC section Frames-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc292">11.3</A>  Frames</H2><!--SEC END --><P>Frames describe a particular call on the stack for a particular thread. This
is the environment for name resolution, getting arguments and locals, and
returning values. The stack conceptually grows up, so the top of the stack is
the most recently called function.</P><TT class=code>top-frame</TT><P>, </P><TT class=code>frame-down</TT><P>, </P><TT class=code>frame-up</TT><P>, and
</P><TT class=code>frame-debug-function</TT><P> can only fail when there is absolutely no
debug information available. This can only happen when someone saved a
Lisp image specifying that the system dump all debugging data.</P><P><BR>
<A NAME="@funs292"></A><A NAME="FN:top-frame"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>top-frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function never returns the frame for itself, always the frame
before calling </P><TT class=code>top-frame</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs293"></A><A NAME="FN:frame-down"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>frame-down</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This returns the frame immediately below </P><TT class=variable>frame</TT><P> on the stack.
When </P><TT class=variable>frame</TT><P> is the bottom of the stack, this returns </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs294"></A><A NAME="FN:frame-up"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>frame-up</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This returns the frame immediately above </P><TT class=variable>frame</TT><P> on the stack.
When </P><TT class=variable>frame</TT><P> is the top of the stack, this returns </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs295"></A><A NAME="FN:frame-debug-function"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>frame-debug-function</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the debug-function for the function whose call
</P><TT class=variable>frame</TT><P> represents.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs296"></A><A NAME="FN:frame-code-location"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>frame-code-location</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the code-location where </P><TT class=variable>frame</TT><P>’s
debug-function will continue running when program execution returns
to </P><TT class=variable>frame</TT><P>. If someone interrupted this frame, the result could
be an unknown code-location.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs297"></A><A NAME="FN:frame-catches"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>frame-catches</TT> <TT class=variable>frame</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns an a-list for all active catches in
</P><TT class=variable>frame</TT><P> mapping catch tags to the code-locations at which the
catch re-enters.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs298"></A><A NAME="FN:eval-in-frame"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>eval-in-frame</TT> <TT class=variable>frame</TT> <TT class=variable>form</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This evaluates </P><TT class=variable>form</TT><P> in </P><TT class=variable>frame</TT><P>’s environment. This can
signal several different debug-conditions since its success relies
on a variety of inexact debug information: </P><TT class=code>invalid-value</TT><P>,
</P><TT class=code>ambiguous-variable-name</TT><P>, </P><TT class=code>frame-function-mismatch</TT><P>. See
also <A NAME="@funs299"></A></P><TT class=code>preprocess-for-eval</TT><P>.
</P></BLOCKQUOTE><!--TOC section Debug-functions-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc293">11.4</A>  Debug-functions</H2><!--SEC END --><P>Debug-functions represent the static information about a function determined at
compile time—argument and variable storage, their lifetime information,
etc. The debug-function also contains all the debug-blocks representing
basic-blocks of code, and these contains information about specific
code-locations in a debug-function.</P><P><BR>
<A NAME="@funs300"></A><A NAME="FN:do-debug-function-blocks"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>do-debug-function-blocks</TT> (<TT class=variable>block-var</TT> <TT class=variable>debug-function</TT> <TT class=code>{result-form}</TT>)
<TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This executes the forms in a context with </P><TT class=variable>block-var</TT><P> bound to
each debug-block in </P><TT class=variable>debug-function</TT><P> successively.
</P><TT class=variable>Result-form</TT><P> is an optional form to execute for a return value,
and </P><TT class=code>do-debug-function-blocks</TT><P> returns </P><TT class=code>nil</TT><P>if there is no
</P><TT class=variable>result-form</TT><P>. This signals a </P><TT class=code>no-debug-blocks</TT><P> condition
when the </P><TT class=variable>debug-function</TT><P> lacks debug-block information.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs301"></A><A NAME="FN:debug-function-lambda-list"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-function-lambda-list</TT> <TT class=variable>debug-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a list representing the lambda-list for
</P><TT class=variable>debug-function</TT><P>. The list has the following structure:
</P><BLOCKQUOTE class=example><PRE>
(required-var1 required-var2
...
(:optional var3 suppliedp-var4)
(:optional var5)
...
(:rest var6) (:rest var7)
...
(:keyword keyword-symbol var8 suppliedp-var9)
(:keyword keyword-symbol var10)
...
)
</PRE></BLOCKQUOTE><P>
Each </P><TT class=code>var</TT><TT class=variable>n</TT><P> is a debug-variable; however, the symbol
</P><TT class=code>:deleted</TT><P> appears instead whenever the argument remains
unreferenced throughout </P><TT class=variable>debug-function</TT><P>.</P><P>If there is no lambda-list information, this signals a
</P><TT class=code>lambda-list-unavailable</TT><P> condition.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs302"></A><A NAME="FN:do-debug-function-variables"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>do-debug-function-variables</TT> (<TT class=variable>var</TT> <TT class=variable>debug-function</TT> <TT class=code>{result}</TT>)
<TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro executes each </P><TT class=variable>form</TT><P> in a context with </P><TT class=variable>var</TT><P>
bound to each debug-variable in </P><TT class=variable>debug-function</TT><P>. This returns
the value of executing </P><TT class=variable>result</TT><P> (defaults to </P><TT class=code>nil</TT><P>). This may
iterate over only some of </P><TT class=variable>debug-function</TT><P>’s variables or none
depending on debug policy; for example, possibly the compilation
only preserved argument information.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs303"></A><A NAME="FN:debug-variable-info-available"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-variable-info-available</TT> <TT class=variable>debug-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns whether there is any variable information for
</P><TT class=variable>debug-function</TT><P>. This is useful for distinguishing whether
there were no locals in a function or whether there was no variable
information. For example, if </P><TT class=code>do-debug-function-variables</TT><P>
executes its forms zero times, then you can use this function to
determine the reason.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs304"></A><A NAME="FN:debug-function-symbol-variables"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-function-symbol-variables</TT> <TT class=variable>debug-function</TT> <TT class=variable>symbol</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a list of debug-variables in
</P><TT class=variable>debug-function</TT><P> having the same name and package as
</P><TT class=variable>symbol</TT><P>. If </P><TT class=variable>symbol</TT><P> is uninterned, then this returns a
list of debug-variables without package names and with the same name
as </P><TT class=variable>symbol</TT><P>. The result of this function is limited to the
availability of variable information in </P><TT class=variable>debug-function</TT><P>; for
example, possibly </P><TT class=variable>debug-function</TT><P> only knows about its
arguments.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs305"></A><A NAME="FN:ambiguous-debug-variables"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>ambiguous-debug-variables</TT> <TT class=variable>debug-function</TT> <TT class=variable>name-prefix-string</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a list of debug-variables in
</P><TT class=variable>debug-function</TT><P> whose names contain </P><TT class=variable>name-prefix-string</TT><P> as
an initial substring. The result of this function is limited to the
availability of variable information in </P><TT class=variable>debug-function</TT><P>; for
example, possibly </P><TT class=variable>debug-function</TT><P> only knows about its
arguments.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs306"></A><A NAME="FN:preprocess-for-eval"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>preprocess-for-eval</TT> <TT class=variable>form</TT> <TT class=variable>basic-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a function of one argument that evaluates
</P><TT class=variable>form</TT><P> in the lexical context of </P><TT class=variable>basic-code-location</TT><P>.
This allows efficient repeated evaluation of </P><TT class=variable>form</TT><P> at a certain
place in a function which could be useful for conditional breaking.
This signals a </P><TT class=code>no-debug-variables</TT><P> condition when the
code-location’s debug-function has no debug-variable information
available. The returned function takes a frame as an argument. See
also <A NAME="@funs307"></A></P><TT class=code>eval-in-frame</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs308"></A><A NAME="FN:function-debug-function"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>function-debug-function</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a debug-function that represents debug
information for </P><TT class=variable>function</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs309"></A><A NAME="FN:debug-function-kind"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-function-kind</TT> <TT class=variable>debug-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the kind of function </P><TT class=variable>debug-function</TT><P>
represents. The value is one of the following:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:optional</TT><BR>
</DT><DD CLASS="dd-list"> This kind of function is an entry point to an
ordinary function. It handles optional defaulting, parsing
keywords, etc.
</DD><DT CLASS="dt-list"><TT class=code>:external</TT><BR>
</DT><DD CLASS="dd-list"> This kind of function is an entry point to an
ordinary function. It checks argument values and count and calls
the defined function.
</DD><DT CLASS="dt-list"><TT class=code>:top-level</TT><BR>
</DT><DD CLASS="dd-list"> This kind of function executes one or more
random top-level forms from a file.
</DD><DT CLASS="dt-list"><TT class=code>:cleanup</TT><BR>
</DT><DD CLASS="dd-list"> This kind of function represents the cleanup
forms in an <TT class=code>unwind-protect</TT>.
</DD><DT CLASS="dt-list"><TT class=code>nil</TT><BR>
</DT><DD CLASS="dd-list"> This kind of function is not one of the above; that is,
it is not specially marked in any way.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs310"></A><A NAME="FN:debug-function-function"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-function-function</TT> <TT class=variable>debug-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the Common Lisp function associated with the
</P><TT class=variable>debug-function</TT><P>. This returns </P><TT class=code>nil</TT><P> if the function is
unavailable or is non-existent as a user callable function object.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs311"></A><A NAME="FN:debug-function-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-function-name</TT> <TT class=variable>debug-function</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the name of the function represented by
</P><TT class=variable>debug-function</TT><P>. This may be a string or a cons; do not assume
it is a symbol.
</P></BLOCKQUOTE><!--TOC section Debug-blocks-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc294">11.5</A>  Debug-blocks</H2><!--SEC END --><P>Debug-blocks contain information pertinent to a specific range of code in a
debug-function.</P><P><BR>
<A NAME="@funs312"></A><A NAME="FN:do-debug-block-locations"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>do-debug-block-locations</TT> (<TT class=variable>code-var</TT> <TT class=variable>debug-block</TT> <TT class=code>{result}</TT>)
<TT class=code>{form}</TT><SUP>*</SUP>
</DIV><BLOCKQUOTE CLASS="quote"><P>This macro executes each </P><TT class=variable>form</TT><P> in a context with </P><TT class=variable>code-var</TT><P>
bound to each code-location in </P><TT class=variable>debug-block</TT><P>. This returns the
value of executing </P><TT class=variable>result</TT><P> (defaults to </P><TT class=code>nil</TT><P>).
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs313"></A><A NAME="FN:debug-block-successors"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-block-successors</TT> <TT class=variable>debug-block</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the list of possible code-locations where
execution may continue when the basic-block represented by
</P><TT class=variable>debug-block</TT><P> completes its execution.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs314"></A><A NAME="FN:debug-block-elsewhere-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-block-elsewhere-p</TT> <TT class=variable>debug-block</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns whether </P><TT class=variable>debug-block</TT><P> represents elsewhere
code. This is code the compiler has moved out of a function’s code
sequence for optimization reasons. Code-locations in these blocks
are unsuitable for stepping tools, and the first code-location has
nothing to do with a normal starting location for the block.
</P></BLOCKQUOTE><!--TOC section Breakpoints-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc295">11.6</A>  Breakpoints</H2><!--SEC END --><P>A breakpoint represents a function the system calls with the current frame when
execution passes a certain code-location. A break point is active or inactive
independent of its existence. They also have an extra slot for users to tag
the breakpoint with information.</P><P><BR>
<A NAME="@funs315"></A><A NAME="FN:make-breakpoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>make-breakpoint</TT> <TT class=variable>hook-function</TT> <TT class=variable>what</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:kind</TT> <TT class=code>:info</TT>
<TT class=code>:function-end-cookie</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function creates and returns a breakpoint. When program
execution encounters the breakpoint, the system calls
</P><TT class=variable>hook-function</TT><P>. </P><TT class=variable>hook-function</TT><P> takes the current frame
for the function in which the program is running and the breakpoint
object.</P><TT class=variable>what</TT><P> and </P><TT class=variable>kind</TT><P> determine where in a function the system
invokes </P><TT class=variable>hook-function</TT><P>. </P><TT class=variable>what</TT><P> is either a code-location
or a debug-function. </P><TT class=variable>kind</TT><P> is one of </P><TT class=code>:code-location</TT><P>,
</P><TT class=code>:function-start</TT><P>, or </P><TT class=code>:function-end</TT><P>. Since the starts and
ends of functions may not have code-locations representing them,
designate these places by supplying </P><TT class=variable>what</TT><P> as a debug-function
and </P><TT class=variable>kind</TT><P> indicating the </P><TT class=code>:function-start</TT><P> or
</P><TT class=code>:function-end</TT><P>. When </P><TT class=variable>what</TT><P> is a debug-function and
</P><TT class=variable>kind</TT><P> is </P><TT class=code>:function-end</TT><P>, then hook-function must take two
additional arguments, a list of values returned by the function and
a function-end-cookie.</P><TT class=variable>info</TT><P> is information supplied by and used by the user.</P><TT class=variable>function-end-cookie</TT><P> is a function. To implement function-end
breakpoints, the system uses starter breakpoints to establish the
function-end breakpoint for each invocation of the function. Upon
each entry, the system creates a unique cookie to identify the
invocation, and when the user supplies a function for this argument,
the system invokes it on the cookie. The system later invokes the
function-end breakpoint hook on the same cookie. The user may save
the cookie when passed to the function-end-cookie function for later
comparison in the hook function.</P><P>This signals an error if </P><TT class=variable>what</TT><P> is an unknown code-location.</P><P><EM>Note: Breakpoints in interpreted code or byte-compiled code are
not implemented. Function-end breakpoints are not implemented for
compiled functions that use the known local return convention
(e.g. for block-compiled or self-recursive functions.)</EM></P></BLOCKQUOTE><P><BR>
<A NAME="@funs316"></A><A NAME="FN:activate-breakpoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>activate-breakpoint</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function causes the system to invoke the </P><TT class=variable>breakpoint</TT><P>’s
hook-function until the next call to </P><TT class=code>deactivate-breakpoint</TT><P> or
</P><TT class=code>delete-breakpoint</TT><P>. The system invokes breakpoint hook
functions in the opposite order that you activate them.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs317"></A><A NAME="FN:deactivate-breakpoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>deactivate-breakpoint</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function stops the system from invoking the </P><TT class=variable>breakpoint</TT><P>’s
hook-function.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs318"></A><A NAME="FN:breakpoint-active-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>breakpoint-active-p</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This returns whether </P><TT class=variable>breakpoint</TT><P> is currently active.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs319"></A><A NAME="FN:breakpoint-hook-function"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>breakpoint-hook-function</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the </P><TT class=variable>breakpoint</TT><P>’s function the system
calls when execution encounters </P><TT class=variable>breakpoint</TT><P>, and it is active.
This is </P><TT class=code>SETF</TT><P>’able.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs320"></A><A NAME="FN:breakpoint-info"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>breakpoint-info</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=variable>breakpoint</TT><P>’s information supplied by the
user. This is </P><TT class=code>SETF</TT><P>’able.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs321"></A><A NAME="FN:breakpoint-kind"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>breakpoint-kind</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the </P><TT class=variable>breakpoint</TT><P>’s kind specification.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs322"></A><A NAME="FN:breakpoint-what"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>breakpoint-what</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the </P><TT class=variable>breakpoint</TT><P>’s what specification.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs323"></A><A NAME="FN:delete-breakpoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>delete-breakpoint</TT> <TT class=variable>breakpoint</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function frees system storage and removes computational
overhead associated with </P><TT class=variable>breakpoint</TT><P>. After calling this,
</P><TT class=variable>breakpoint</TT><P> is useless and can never become active again.
</P></BLOCKQUOTE><!--TOC section Code-locations-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc296">11.7</A>  Code-locations</H2><!--SEC END --><P>Code-locations represent places in functions where the system has correct
information about the function’s environment and where interesting operations
can occur—asking for a local variable’s value, setting breakpoints,
evaluating forms within the function’s environment, etc.</P><P>Sometimes the interface returns unknown code-locations. These
represent places in functions, but there is no debug information
associated with them. Some operations accept these since they may
succeed even with missing debug data. These operations’ argument is
named </P><TT class=variable>basic-code-location</TT><P> indicating they take known and unknown
code-locations. If an operation names its argument
</P><TT class=variable>code-location</TT><P>, and you supply an unknown one, it will signal an
error. For example, </P><TT class=code>frame-code-location</TT><P> may return an unknown
code-location if someone interrupted Lisp in the given frame. The
system knows where execution will continue, but this place in the code
may not be a place for which the compiler dumped debug information.</P><P><BR>
<A NAME="@funs324"></A><A NAME="FN:code-location-debug-function"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-debug-function</TT> <TT class=variable>basic-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the debug-function representing information
about the function corresponding to the code-location.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs325"></A><A NAME="FN:code-location-debug-block"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-debug-block</TT> <TT class=variable>basic-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the debug-block containing code-location if it
is available. Some debug policies inhibit debug-block information,
and if none is available, then this signals a </P><TT class=code>no-debug-blocks</TT><P>
condition.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs326"></A><A NAME="FN:code-location-top-level-form-offset"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-top-level-form-offset</TT> <TT class=variable>code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the number of top-level forms before the one
containing </P><TT class=variable>code-location</TT><P> as seen by the compiler in some
compilation unit. A compilation unit is not necessarily a single
file, see the section on debug-sources.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs327"></A><A NAME="FN:code-location-form-number"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-form-number</TT> <TT class=variable>code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the number of the form corresponding to
</P><TT class=variable>code-location</TT><P>. The form number is derived by walking the
subforms of a top-level form in depth-first order. While walking
the top-level form, count one in depth-first order for each subform
that is a cons. See <A NAME="@funs328"></A></P><TT class=code>form-number-translations</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs329"></A><A NAME="FN:code-location-debug-source"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-debug-source</TT> <TT class=variable>code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns </P><TT class=variable>code-location</TT><P>’s debug-source.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs330"></A><A NAME="FN:code-location-unknown-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location-unknown-p</TT> <TT class=variable>basic-code-location</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns whether </P><TT class=variable>basic-code-location</TT><P> is unknown.
It returns </P><TT class=code>nil</TT><P> when the code-location is known.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs331"></A><A NAME="FN:code-location="></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>code-location=</TT> <TT class=variable>code-location1</TT>
<TT class=variable>code-location2</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns whether the two code-locations are the same.
</P></BLOCKQUOTE><!--TOC section Debug-sources-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc297">11.8</A>  Debug-sources</H2><!--SEC END --><P>Debug-sources represent how to get back the source for some code. The
source is either a file (</P><TT class=code>compile-file</TT><P> or </P><TT class=code>load</TT><P>), a
lambda-expression (</P><TT class=code>compile</TT><P>, </P><TT class=code>defun</TT><P>, </P><TT class=code>defmacro</TT><P>), or
a stream (something particular to CMUCL, </P><TT class=code>compile-from-stream</TT><P>).</P><P>When compiling a source, the compiler counts each top-level form it
processes, but when the compiler handles multiple files as one block
compilation, the top-level form count continues past file boundaries.
Therefore </P><TT class=code>code-location-top-level-form-offset</TT><P> returns an offset
that does not always start at zero for the code-location’s
debug-source. The offset into a particular source is
</P><TT class=code>code-location-top-level-form-offset</TT><P> minus
</P><TT class=code>debug-source-root-number</TT><P>.</P><P>Inside a top-level form, a code-location’s form number indicates the
subform corresponding to the code-location.</P><P><BR>
<A NAME="@funs332"></A><A NAME="FN:debug-source-from"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-from</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns an indication of the type of source. The
following are the possible values:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:file</TT><BR>
</DT><DD CLASS="dd-list"> from a file (obtained by <TT class=code>compile-file</TT> if
compiled).
</DD><DT CLASS="dt-list"><TT class=code>:lisp</TT><BR>
</DT><DD CLASS="dd-list"> from Lisp (obtained by <TT class=code>compile</TT> if
compiled).
</DD><DT CLASS="dt-list"><TT class=code>:stream</TT><BR>
</DT><DD CLASS="dd-list"> from a non-file stream (CMUCL supports
<TT class=code>compile-from-stream</TT>).
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs333"></A><A NAME="FN:debug-source-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-name</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the actual source in some sense represented by
debug-source, which is related to </P><TT class=code>debug-source-from</TT><P>:
</P><DL CLASS="list"><DT CLASS="dt-list">
<TT class=code>:file</TT><BR>
</DT><DD CLASS="dd-list"> the pathname of the file.
</DD><DT CLASS="dt-list"><TT class=code>:lisp</TT><BR>
</DT><DD CLASS="dd-list"> a lambda-expression.
</DD><DT CLASS="dt-list"><TT class=code>:stream</TT><BR>
</DT><DD CLASS="dd-list"> some descriptive string that’s otherwise
useless.
</DD></DL></BLOCKQUOTE><P><BR>
<A NAME="@funs334"></A><A NAME="FN:debug-source-created"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-created</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the universal time someone created the source.
This may be </P><TT class=code>nil</TT><P> if it is unavailable.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs335"></A><A NAME="FN:debug-source-compiled"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-compiled</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the time someone compiled the source. This is
</P><TT class=code>nil</TT><P> if the source is uncompiled.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs336"></A><A NAME="FN:debug-source-root-number"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-root-number</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This returns the number of top-level forms processed by the compiler
before compiling this source. If this source is uncompiled, this is
zero. This may be zero even if the source is compiled since the
first form in the first file compiled in one compilation, for
example, must have a root number of zero—the compiler saw no other
top-level forms before it.
</P></BLOCKQUOTE><!--TOC section Source Translation Utilities-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc298">11.9</A>  Source Translation Utilities</H2><!--SEC END --><P>These two functions provide a mechanism for converting the rather
obscure (but highly compact) representation of source locations into an
actual source form:</P><P><BR>
<A NAME="@funs337"></A><A NAME="FN:debug-source-start-positions"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>debug-source-start-positions</TT> <TT class=variable>debug-source</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the file position of each top-level form as a
vector if </P><TT class=variable>debug-source</TT><P> is from a </P><TT class=code>:file</TT><P>. If
</P><TT class=code>debug-source-from</TT><P> is </P><TT class=code>:lisp</TT><P> or </P><TT class=code>:stream</TT><P>, or the file
is byte-compiled, then the result is </P><TT class=code>nil</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs338"></A><A NAME="FN:form-number-translations"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>form-number-translations</TT> <TT class=variable>form</TT>
<TT class=variable>tlf-number</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns a table mapping form numbers (see
</P><TT class=code>code-location-form-number</TT><P>) to source-paths. A source-path
indicates a descent into the top-level-form </P><TT class=variable>form</TT><P>, going
directly to the subform corresponding to a form number.
</P><TT class=variable>tlf-number</TT><P> is the top-level-form number of </P><TT class=variable>form</TT><P>.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs339"></A><A NAME="FN:source-path-context"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>source-path-context</TT> <TT class=variable>form</TT> <TT class=variable>path</TT> <TT class=variable>context</TT>
</DIV><BLOCKQUOTE CLASS="quote"><P>This function returns the subform of </P><TT class=variable>form</TT><P> indicated by the
source-path. </P><TT class=variable>Form</TT><P> is a top-level form, and </P><TT class=variable>path</TT><P> is a
source-path into it. </P><TT class=variable>Context</TT><P> is the number of enclosing forms
to return instead of directly returning the source-path form. When
</P><TT class=variable>context</TT><P> is non-zero, the form returned contains a marker,
</P><TT class=code>#:****HERE****</TT><P>, immediately before the form indicated by
</P><TT class=variable>path</TT><P>.
</P></BLOCKQUOTE><!--NAME debug-internals.html-->
<!--TOC chapter Cross-Referencing Facility-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc299">Chapter 12</A>  Cross-Referencing Facility</H1><!--SEC END --><P>
<A NAME="xref"></A>
<A NAME="@concept297"></A>
</P><DIV CLASS="center">
<B>by Eric Marsden</B>
</DIV><P>The CMUCL cross-referencing facility (abbreviated XREF) assists in
the analysis of static dependency relationships in a program. It
provides introspection capabilities such as the ability to know which
functions may call a given function, and the program contexts in which
a particular global variable is used. The compiler populates a
database of cross-reference information, which can be queried by the
user to know:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
the list of program contexts (functions, macros, top-level forms)
where a given function may be called at runtime, either directly or
indirectly (via its function-object);</LI><LI CLASS="li-itemize">the list of program contexts where a given global variable may be
read;</LI><LI CLASS="li-itemize">the list of program contexts that bind a global variable;</LI><LI CLASS="li-itemize">the list of program contexts where a given global variable may be
modified during the execution of the program.
</LI></UL><P>A global variable is either a dynamic variable or a constant variable,
for instance declared using </P><TT class=code>defvar</TT><P> or </P><TT class=code>defparameter</TT><P> or
</P><TT class=code>defconstant</TT><P>.</P><!--TOC section Populating the cross-reference database-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc300">12.1</A>  Populating the cross-reference database</H2><!--SEC END --><P><BR>
<A NAME="@vars68"></A><A NAME="VR:record-xref-info"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>c:</TT><TT class=function-name>*record-xref-info*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
When non-NIL, code that is compiled (either using
<TT class=code>compile-file</TT>, or by calling <TT class=code>compile</TT> from the
listener), will be analyzed for cross-references. Defaults to
<TT class=code>nil</TT>.
</BLOCKQUOTE><P>Cross-referencing information is only generated by the compiler; the
interpreter does not populate the cross-reference database. XREF
analysis is independent of whether the compiler is generating native
code or byte code, and of whether it is compiling from a file, from a
stream, or is invoked interactively from the listener. </P><P>Alternatively, the </P><TT class=code>::xref</TT><P> option to </P><TT class=code>compile-file</TT><P> may be
specified to populate the cross-reference database when compiling a
file. In this case, loading the generated fasl file in a fresh lisp
will also populate the cross-reference database.</P><P><BR>
<A NAME="@funs340"></A><A NAME="FN:init-xref-database"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>init-xref-database</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Reinitializes the database of cross-references. This can be used to
reclaim the space occupied by the database contents, or to discard
stale cross-reference information.
</BLOCKQUOTE><!--TOC section Querying the cross-reference database-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc301">12.2</A>  Querying the cross-reference database</H2><!--SEC END --><P>CMUCL provides a number of functions in the XREF package that may
be used to query the cross-reference database:</P><P><BR>
<A NAME="@funs341"></A><A NAME="FN:who-calls"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>who-calls</TT> <TT class=variable>function</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns the list of xref-contexts where <TT class=variable>function</TT> (either a
symbol that names a function, or a function object) may be called
at runtime. XREF does not record calls to macro-functions (such as
<TT class=code>defun</TT>) or to special forms (such as <TT class=code>eval-when</TT>).
</BLOCKQUOTE><P><BR>
<A NAME="@funs342"></A><A NAME="FN:who-references"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>who-references</TT> <TT class=variable>global-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns the list of program contexts that may reference
<TT class=variable>global-variable</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs343"></A><A NAME="FN:who-binds"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>who-binds</TT> <TT class=variable>global-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns a list of program contexts where the specified global
variable may be bound at runtime (for example using <TT class=code>LET</TT>).
</BLOCKQUOTE><P><BR>
<A NAME="@funs344"></A><A NAME="FN:who-sets"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>who-sets</TT> <TT class=variable>global-variable</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns a list of program contexts where the given global variable
may be modified at runtime (for example using <TT class=code>SETQ</TT>).
</BLOCKQUOTE><P>An <I>xref-context</I> is the originating site of a cross-reference.
It identifies a portion of a program, and is defined by an
</P><TT class=code>xref-context</TT><P> structure, that comprises a name, a source file and a
source-path. </P><P><BR>
<A NAME="@funs345"></A><A NAME="FN:xref-context-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>xref-context-name</TT> <TT class=variable>context</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns the name slot of an xref-context, which is one of:
<UL CLASS="itemize"><LI CLASS="li-itemize">
a global function, which is named by a symbol or by a list of the form
<TT class=code>(setf foo)</TT>. </LI><LI CLASS="li-itemize">a macro, named by a list <CODE>(:macro foo)</CODE>.</LI><LI CLASS="li-itemize">an inner function (<TT class=code>flet</TT>, <TT class=code>labels</TT>, or anonymous lambdas) that
is named by a list of the form <TT class=code>(:internal outer inner)</TT>.</LI><LI CLASS="li-itemize">a method, named by a list of the form
<CODE>(:method foo (specializer1 specializer2)</CODE>. </LI><LI CLASS="li-itemize">a string <CODE>"Top-Level Form"</CODE> that identifies a reference from a
top-level form. Note that multiple references from top-level forms
will only be listed once. </LI><LI CLASS="li-itemize">a compiler-macro, named by a string of the form
<CODE>(:compiler-macro foo)</CODE>. </LI><LI CLASS="li-itemize">a string such as <CODE>"DEFSTRUCT FOO"</CODE>, identifying a reference from
within a structure accessor or constructor or copier.</LI><LI CLASS="li-itemize">a string such as
<PRE CLASS="verbatim"> "Creation Form for #<KERNEL::CLASS-CELL STRUCT-FOO>"
</PRE></LI><LI CLASS="li-itemize">a string such as <CODE>"defun foo"</CODE>, or <CODE>"defmethod bar (t)"</CODE>,
that identifies a reference from within code that has been generated
by the compiler for that form. For example, the compilation of a
<TT class=code>defclass</TT> form causes accessor functions to be generated by the
compiler; this code is compiler-generated (it does not appear in the
source file), and so is identified by the XREF facility by a string.
</LI></UL>
</BLOCKQUOTE><P><BR>
<A NAME="@funs346"></A><A NAME="FN:xref-context-file"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>xref-context-file</TT> context
</DIV><BLOCKQUOTE CLASS="quote">
Return the truename (in the sense of the variable
<A NAME="@vars69"></A><TT class=code>*compile-file-truename*</TT>) of the source file from which the
referencing forms were compiled. This slot will be <TT class=code>nil</TT> if the
code was compiled from a stream, or interactively from the
listener.
</BLOCKQUOTE><P><BR>
<A NAME="@funs347"></A><A NAME="FN:xref-context-source-path"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>xref:</TT><TT class=function-name>xref-context-source-path</TT> context
</DIV><BLOCKQUOTE CLASS="quote">
Return a list of positive integers identifying the form that
contains the cross-reference. The first integer in the source-path
is the number of the top-level form containing the cross-reference
(for example, 2 identifies the second top-level form in the source
file). The second integer in the source-path identifies the form
within this top-level form that contains the cross-reference, and so
on. This function will always return <TT class=code>nil</TT> if the file slot of an
xref-context is <TT class=code>nil</TT>.</BLOCKQUOTE><!--TOC section Example usage-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc302">12.3</A>  Example usage</H2><!--SEC END --><P>In this section, we will illustrate use of the XREF facility on a
number of simple examples.</P><P>Consider the following program fragment, that defines a global
variable and a function.</P><PRE CLASS="verbatim"> (defvar *variable-one* 42)
(defun function-one (x)
(princ (* x *variable-one*)))
</PRE><P>We save this code in a file named </P><TT class=code>example.lisp</TT><P>, enable
cross-referencing, clear any previous cross-reference information,
compile the file, and can then query the cross-reference database
(output has been modified for readability).</P><PRE CLASS="verbatim"> USER> (setf c:*record-xref-info* t)
USER> (xref:init-xref-database)
USER> (compile-file "example")
USER> (xref:who-calls 'princ)
(#<xref-context function-one in #p"example.lisp">)
USER> (xref:who-references '*variable-one*)
(#<xref-context function-one in #p"example.lisp">)
</PRE><P>From this example, we see that the compiler has noted the call to the
global function </P><TT class=code>princ</TT><P> in </P><TT class=code>function-one</TT><P>, and the reference
to the global variable </P><TT class=code>*variable-one*</TT><P>. </P><P>Suppose that we add the following code to the previous file. </P><PRE CLASS="verbatim">(defconstant +constant-one+ 1)
(defstruct struct-one
slot-one
(slot-two +constant-one+ :type integer)
(slot-three 42 :read-only t))
(defmacro with-different-one (&body body)
`(let ((*variable-one* 666))
,@body))
(defun get-variable-one () *variable-one*)
(defun (setf get-variable-one) (new-value)
(setq *variable-one* new-value))
</PRE><P>In the following example, we detect references x and y.</P><P>The following function illustrates the effect that various forms of
optimization carried out by the CMUCL compiler can have on the
cross-references that are reported for a particular program. The
compiler is able to detect that the evaluated condition is always
false, and that the first clause of the </P><TT class=code>if</TT><P> will never be taken
(this optimization is called dead-code elimination). XREF will
therefore not register a call to the function </P><TT class=code>sin</TT><P> from the
function </P><TT class=code>foo</TT><P>. Likewise, no calls to the functions </P><TT class=code>sqrt</TT><P>
and </P><TT class=code><</TT><P> are registered, because the compiler has eliminated the
code that evaluates the condition. Finally, no call to the function
</P><TT class=code>expt</TT><P> is generated, because the compiler was able to evaluate
the result of the expression </P><TT class=code>(expt 3 2)</TT><P> at compile-time (though
a process called constant-folding).</P><PRE CLASS="verbatim">;; zero call references are registered for this function!
(defun constantly-nine (x)
(if (< (sqrt x) 0)
(sin x)
(expt 3 2)))
</PRE><!--TOC section Limitations of the cross-referencing facility-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc303">12.4</A>  Limitations of the cross-referencing facility</H2><!--SEC END --><P>No cross-reference information is available for interpreted functions.
The cross-referencing database is not persistent: unless you save an
image using </P><TT class=code>save-lisp</TT><P>, the database will be empty each time
CMUCL is restarted. There is no mechanism that saves
cross-reference information in FASL files, so loading a system from
compiled code will not populate the cross-reference database. The XREF
database currently accumulates “stale” information: when compiling a
file, it does not delete any cross-references that may have previously
been generated for that file. This latter limitation will be removed
in a future release. </P><P>The cross-referencing facility is only able to analyze the static
dependencies in a program; it does not provide any information about
runtime (dynamic) dependencies. For instance, XREF is able to identify
the list of program contexts where a given function may be called, but
is not able to determine which contexts will be activated when the
program is executed with a specific set of input parameters. However,
the static analysis that is performed by the CMUCL compiler does
allow XREF to provide more information than would be available from a
mere syntactic analysis of a program. References that occur from
within unreachable code will not be displayed by XREF, because the
CMUCL compiler deletes dead code before cross-references are
analyzed. Certain “trivial” function calls (where the result of the
function call can be evaluated at compile-time) may be eliminated by
optimizations carried out by the compiler; see the example below.</P><P>If you examine the entire database of cross-reference information (by
accessing undocumented internals of the XREF package), you will note
that XREF notes “bogus” cross-references to function calls that are
inserted by the compiler. For example, in safe code, the CMUCL
compiler inserts a call to an internal function called
</P><TT class=code>c::%verify-argument-count</TT><P>, so that the number of arguments
passed to the function is checked each time it is called. The XREF
facility does not distinguish between user code and these forms that
are introduced during compilation. This limitation should not be
visible if you use the documented functions in the XREF package. </P><P>As of the 18e release of CMUCL, the cross-referencing facility is
experimental; expect details of its implementation to change in future
releases. In particular, the names given to CLOS methods and to inner
functions will change in future releases. </P><!--NAME cross-referencing.html-->
<!--TOC chapter Internationalization-->
<H1 CLASS="chapter"><!--SEC ANCHOR --><A NAME="htoc304">Chapter 13</A>  Internationalization</H1><!--SEC END --><P>
<A NAME="i18n"></A>
<A NAME="@concept298"></A></P><P>CMUCL supports internationalization by supporting Unicode
characters internally and by adding support for external formats to
convert from the internal format to an appropriate external character
coding format.</P><P>To understand the support for Unicode, we refer the reader to the
<A HREF="http://www.unicode.org/">Unicode standard</A>.
</P><!--TOC section Changes-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc305">13.1</A>  Changes</H2><!--SEC END --><P>To support internationalization, the following changes to Common Lisp
functions have been done.</P><!--TOC subsection Design Choices-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc306">13.1.1</A>  Design Choices</H3><!--SEC END --><P>To support Unicode, there are many approaches. One choice is to
support both 8-bit </P><TT class=code>base-char</TT><P> and a 21-bit (or larger)
</P><TT class=code>character</TT><P> since Unicode codepoints use 21 bits. This generally
means strings are much larger, and complicates the compiler by having
to support both </P><TT class=code>base-char</TT><P> and </P><TT class=code>character</TT><P> types and the
corresponding string types. This also adds complexity for the user to
understand the difference between the different string and character
types.</P><P>Another choice is to have just one character and string type that can
hold the entire Unicode codepoint. While simplifying the compiler and
reducing the burden on the user, this significantly increases memory
usage for strings.</P><P>The solution chosen by CMUCL is to tradeoff the size and complexity
by having only 16-bit characters. Most of the important languages can
be encoded using only 16-bits. The rest of the codepoints are for
rare languages or ancient scripts. Thus, the memory usage is
significantly reduced while still supporting the the most important
languages. Compiler complexity is also reduced since </P><TT class=code>base-char</TT><P>
and </P><TT class=code>character</TT><P> are the same as are the string types.. But we
still want to support the full Unicode character set. This is
achieved by making strings be UTF-16 strings internally. Hence, Lisp
strings are UTF-16 strings, and Lisp characters are UTF-16 code-units.</P><!--TOC subsection Characters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc307">13.1.2</A>  Characters</H3><!--SEC END --><P>
<A NAME="sec:i18n:characters"></A></P><P>Characters are now 16 bits long instead of 8 bits, and </P><TT class=code>base-char</TT><P>
and </P><TT class=code>character</TT><P> types are the same. This difference is
naturally indicated by changing </P><TT class=code>char-code-limit</TT><P> from 256 to
65536.</P><!--TOC subsection Strings-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc308">13.1.3</A>  Strings</H3><!--SEC END --><P>
<A NAME="sec:i18n:strings"></A></P><P>In CMUCL there is only one type of string—</P><TT class=code>base-string</TT><P> and
</P><TT class=code>string</TT><P> are the same. </P><P>Internally, the strings are encoded using UTF-16. This means that in
some rare cases the number of Lisp characters in a string is not the
same as the number of codepoints in the string.</P><!--TOC section External Formats-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc309">13.2</A>  External Formats</H2><!--SEC END --><P>To be able to communicate to the external world, CMUCL supports
external formats to convert to and from the external world to
CMUCL’s string format. The external format is specified in several
ways. The standard streams </P><TT class=variable>*standard-input*</TT><P>,
</P><TT class=variable>*standard-output*</TT><P>, and </P><TT class=variable>*standard-error*</TT><P> take the format
from the value specified by </P><TT class=variable>*default-external-format*</TT><P>. The
default value of </P><TT class=variable>*default-external-format*</TT><P> is </P><TT class=code>:iso8859-1</TT><P>.</P><P>For files, </P><TT class=code>OPEN</TT><P> takes the </P><TT class=code>:external-format</TT><P>
parameter to specify the format. The default external format is
</P><TT class=code>:default</TT><P>. </P><!--TOC subsection Available External Formats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc310">13.2.1</A>  Available External Formats</H3><!--SEC END --><P>The available external formats are listed below in
Table <A HREF="#table:external-formats">13.1</A>. The first column gives the
external format, and the second column gives a list of aliases that
can be used for this format. The set of aliases can be changed by
changing the </P><TT class=filename>aliases</TT><P> file.</P><P>For all of these formats, if an illegal sequence is encountered, no
error or warning is signaled. Instead, the offending sequence is
silently replaced with the Unicode REPLACEMENT CHARACTER (U+FFFD).</P><BLOCKQUOTE CLASS="table"><DIV CLASS="center"><DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV>
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD VALIGN=top ALIGN=left NOWRAP> <B>Format</B></TD><TD VALIGN=top ALIGN=left NOWRAP><B>Aliases</B></TD><TD VALIGN=top ALIGN=left><B>Description</B></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-1</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin1</TT> <TT class=code>:latin-1</TT> <TT class=code>:iso-8859-1</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-1</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-2</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin2</TT> <TT class=code>:latin-2</TT> <TT class=code>:iso-8859-2</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-2</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-3</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin3</TT> <TT class=code>:latin-3</TT> <TT class=code>:iso-8859-3</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-3</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-4</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin4</TT> <TT class=code>:latin-4</TT> <TT class=code>:iso-8859-4</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-4</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-5</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:cyrillic</TT> <TT class=code>:iso-8859-5</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-5</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-6</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:arabic</TT> <TT class=code>:iso-8859-6</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-6</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-7</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:greek</TT> <TT class=code>:iso-8859-7</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-7</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-8</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:hebrew</TT> <TT class=code>:iso-8859-8</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-8</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-9</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin5</TT> <TT class=code>:latin-5</TT> <TT class=code>:iso-8859-9</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-9</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-10</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin6</TT> <TT class=code>:latin-6</TT> <TT class=code>:iso-8859-10</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-10</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-13</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin7</TT> <TT class=code>:latin-7</TT> <TT class=code>:iso-8859-13</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-13</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-14</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin8</TT> <TT class=code>:latin-8</TT> <TT class=code>:iso-8859-14</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-14</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:iso8859-15</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:latin9</TT> <TT class=code>:latin-9</TT> <TT class=code>:iso-8859-15</TT></TD><TD VALIGN=top ALIGN=left>ISO8859-15</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-8</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf</TT> <TT class=code>:utf8</TT></TD><TD VALIGN=top ALIGN=left>UTF-8</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-16</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf16</TT></TD><TD VALIGN=top ALIGN=left>UTF-16 with optional BOM</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-16-be</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf-16be</TT> <TT class=code>:utf16-be</TT></TD><TD VALIGN=top ALIGN=left>UTF-16 big-endian (without BOM)</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-16-le</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf-16le</TT> <TT class=code>:utf16-le</TT></TD><TD VALIGN=top ALIGN=left>UTF-16 little-endian (without BOM)</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-32</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf32</TT></TD><TD VALIGN=top ALIGN=left>UTF-32 with optional BOM</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-32-be</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf-32be</TT> <TT class=code>:utf32-be</TT></TD><TD VALIGN=top ALIGN=left>UTF-32 big-endian (without BOM)</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:utf-32-le</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:utf-32le</TT> <TT class=code>:utf32-le</TT></TD><TD VALIGN=top ALIGN=left>UTF-32 little-endian (without BOM)</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1250</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1251</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1252</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:windows-1252</TT> <TT class=code>:windows-cp1252</TT> <TT class=code>:windows-latin1</TT></TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1253</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1254</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1255</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1256</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1257</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cp1258</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:koi8-r</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-cyrillic</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-greek</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-icelandic</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-latin2</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-roman</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:mac-turkish</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left> </TD></TR>
</TABLE>
<DIV CLASS="caption"><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left>Table 13.1: External formats</TD></TR>
</TABLE></DIV>
<A NAME="table:external-formats"></A>
<DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV></DIV></BLOCKQUOTE><!--TOC subsection Composing External Formats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc311">13.2.2</A>  Composing External Formats</H3><!--SEC END --><P>A composing external format is an external format that converts between
one codepoint and another, rather than between codepoints and octets.
A composing external format must be used in conjunction with another
(octet-producing) external format. This is specified by
using a list as the external format. For example, we can use
</P><TT class=code>’(<TT class=code>:latin1</TT> <TT class=code>:crlf</TT>)</TT><P> as the external format. In this
particular example, the external format is latin1, but whenever a
carriage-return/linefeed sequence is read, it is converted to the Lisp
</P><TT class=code>#\Newline</TT><P> character. Conversely, whenever a string is written,
a Lisp </P><TT class=code>#\Newline</TT><P> character is converted to a
carriage-return/linefeed sequence. Without the </P><TT class=code>:crlf</TT><P> composing
format, the carriage-return and linefeed will be read in as separate
characters, and on output the Lisp </P><TT class=code>#\Newline</TT><P> character is
output as a single linefeed character.</P><P>Table <A HREF="#table:composing-formats">13.2</A> lists the available composing formats.</P><BLOCKQUOTE CLASS="table"><DIV CLASS="center"><DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV>
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1><TR><TD VALIGN=top ALIGN=left NOWRAP> <B>Format</B></TD><TD VALIGN=top ALIGN=left NOWRAP><B>Aliases</B></TD><TD VALIGN=top ALIGN=left><B>Description</B></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:crlf</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:dos</TT></TD><TD VALIGN=top ALIGN=left>Composing format for converting to/from DOS (CR/LF)
end-of-line sequence to <TT class=code>#\Newline</TT></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:cr</TT></TD><TD VALIGN=top ALIGN=left NOWRAP><TT class=code>:mac</TT></TD><TD VALIGN=top ALIGN=left>Composing format for converting to/from DOS (CR/LF)
end-of-line sequence to <TT class=code>#\Newline</TT></TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:beta-gk</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left>Composing format that translates (lower-case) Beta
code (an ASCII encoding of ancient Greek)</TD></TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP> <TT class=code>:final-sigma</TT></TD><TD VALIGN=top ALIGN=left NOWRAP> </TD><TD VALIGN=top ALIGN=left>Composing format that attempts to detect sigma in
word-final position and change it from U+3C3 to U+3C2</TD></TR>
</TABLE>
<DIV CLASS="caption"><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left>Table 13.2: Composing external formats</TD></TR>
</TABLE></DIV>
<A NAME="table:composing-formats"></A>
<DIV CLASS="center"><HR WIDTH="80%" SIZE=2></DIV></DIV></BLOCKQUOTE><!--TOC section Dictionary-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc312">13.3</A>  Dictionary</H2><!--SEC END --><!--TOC subsection Variables-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc313">13.3.1</A>  Variables</H3><!--SEC END --><P><BR>
<A NAME="@vars70"></A><A NAME="VR:default-external-format"></A>
</P><DIV align=left>
[Variable]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>*default-external-format*</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This is the default external format to use for all newly opened
files. It is also the default format to use for
<TT class=variable>*standard-input*</TT>, <TT class=variable>*standard-output*</TT>, and
<TT class=variable>*standard-error*</TT>. The default value is <TT class=code>:iso8859-1</TT>.<P>Setting this will cause the standard streams to start using the new
format immediately. If a stream has been created with external
format </P><TT class=code>:default</TT><P>, then setting </P><TT class=variable>*default-external-format*</TT><P>
will cause all subsequent input and output to use the new value of
</P><TT class=variable>*default-external-format*</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Characters-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc314">13.3.2</A>  Characters</H3><!--SEC END --><P>Remember that CMUCL’s characters are only 16-bits long but Unicode
codepoints are up to 21 bits long. Hence there are codepoints that
cannot be represented via Lisp characters. Operating on individual
characters is not recommended. Operations on strings are better.
(This would be true even if CMUCL’s characters could hold a
full Unicode codepoint.)</P><P><BR>
<A NAME="@funs348"></A><A NAME="FN:char-equal"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-equal</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs349"></A><A NAME="FN:char-not-equal"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-not-equal</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><P><A NAME="@funs350"></A><A NAME="FN:char-lessp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-lessp</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><P><A NAME="@funs351"></A><A NAME="FN:char-greaterp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-greaterp</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><P><A NAME="@funs352"></A><A NAME="FN:char-not-greaterp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-not-greaterp</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><P><A NAME="@funs353"></A><A NAME="FN:char-not-lessp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-not-lessp</TT> <TT class=code>&rest</TT> <TT class=variable>characters</TT>
</DIV><P>
For the comparison, the characters are converted to lowercase and
the corresponding </P><TT class=code>char-code</TT><P> are compared.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs354"></A><A NAME="FN:alpha-char-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alpha-char-p</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns non-nil if the Unicode category is a letter category.
</BLOCKQUOTE><P><BR>
<A NAME="@funs355"></A><A NAME="FN:alphanumericp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>alphanumericp</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns non-nil if the Unicode category is a letter category or an ASCII
digit.
</BLOCKQUOTE><P><BR>
<A NAME="@funs356"></A><A NAME="FN:digit-char-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>digit-char-p</TT> <TT class=variable>character</TT> <TT class=code>&optional</TT> <TT class=variable>radix</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Only recognizes ASCII digits (and ASCII letters if the radix is larger
than 10).
</BLOCKQUOTE><P><BR>
<A NAME="@funs357"></A><A NAME="FN:graphic-char-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>graphic-char-p</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns non-nil if the Unicode category is a graphic category.
</BLOCKQUOTE><P><BR>
<A NAME="@funs358"></A><A NAME="FN:upper-case-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>upper-case-p</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs359"></A><A NAME="FN:lower-case-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lower-case-p</TT> <TT class=variable>character</TT>
</DIV><P>
Returns non-nil if the Unicode category is an uppercase
(lowercase) character.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs360"></A><A NAME="FN:title-case-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp:</TT><TT class=function-name>title-case-p</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns non-nil if the Unicode category is a titlecase character.
</BLOCKQUOTE><P><BR>
<A NAME="@funs361"></A><A NAME="FN:both-case-p"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>both-case-p</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Returns non-nil if the Unicode category is an uppercase,
lowercase, or titlecase character.
</BLOCKQUOTE><P><BR>
<A NAME="@funs362"></A><A NAME="FN:char-upcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-upcase</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs363"></A><A NAME="FN:char-downcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-downcase</TT> <TT class=variable>character</TT>
</DIV><P>
The Unicode uppercase (lowercase) letter is returned.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs364"></A><A NAME="FN:char-titlecase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp:</TT><TT class=function-name>char-titlecase</TT> <TT class=variable>character</TT>
</DIV><BLOCKQUOTE CLASS="quote">
The Unicode titlecase letter is returned.
</BLOCKQUOTE><P><BR>
<A NAME="@funs365"></A><A NAME="FN:char-name"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>char-name</TT> <TT class=variable>char</TT>
</DIV><BLOCKQUOTE CLASS="quote">
If possible the name of the character <TT class=variable>char</TT> is returned. If
there is a Unicode name, the Unicode name is returned, except
spaces are converted to underscores and the string is capitalized
via <TT class=code>string-capitalize</TT>. If there is no Unicode name, the
form <TT class=code>#\U+xxxx</TT> is returned where “xxxx” is the
<TT class=code>char-code</TT> of the character, in hexadecimal.
</BLOCKQUOTE><P><BR>
<A NAME="@funs366"></A><A NAME="FN:name-char"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>name-char</TT> <TT class=variable>name</TT>
</DIV><BLOCKQUOTE CLASS="quote">
The inverse to <TT class=code>char-name</TT>. If no character has the name
<TT class=variable>name</TT>, then <TT class=code>nil</TT> is returned. Unicode names are not
case-sensitive, and spaces and underscores are optional.
</BLOCKQUOTE><!--TOC subsection Strings-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc315">13.3.3</A>  Strings</H3><!--SEC END --><P>Strings in CMUCL are UTF-16 strings. That is, for Unicode code
points greater than 65535, surrogate pairs are used. We refer the
reader to the Unicode standard for more information about surrogate
pairs. We just want to make a note that because of the UTF-16
encoding of strings, there is a distinction between Lisp characters
and Unicode codepoints. The standard string operations know about
this encoding and handle the surrogate pairs correctly.</P><P><BR>
<A NAME="@funs367"></A><A NAME="FN:string-upcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-upcase</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:casing</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs368"></A><A NAME="FN:string-downcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-downcase</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:casing</TT></SPAN>
</DIV><P><A NAME="@funs369"></A><A NAME="FN:string-capitalize"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-capitalize</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:casing</TT></SPAN>
</DIV><P>
The case of the </P><TT class=variable>string</TT><P> is changed appropriately. Surrogate
pairs are handled correctly. The conversion to the appropriate case
is done based on the Unicode conversion. The additional argument
</P><TT class=code>:casing</TT><P> controls how case conversion is done. The default
value is </P><TT class=code>:simple</TT><P>, which uses simple Unicode case conversion.
If </P><TT class=code>:casing</TT><P> is </P><TT class=code>:full</TT><P>, then full Unicode case conversion is
done where the string may actually increase in length.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs370"></A><A NAME="FN:nstring-upcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>nstring-upcase</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT> <TT class=code>:end</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs371"></A><A NAME="FN:nstring-downcase"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>nstring-downcase</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT> <TT class=code>:end</TT></SPAN>
</DIV><P><A NAME="@funs372"></A><A NAME="FN:nstring-capitalize"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>nstring-capitalize</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT></SPAN>
</DIV><P>
The case of the </P><TT class=variable>string</TT><P> is changed appropriately. Surrogate
pairs are handled correctly. The conversion to the appropriate case
is done based on the Unicode conversion. (Full casing is not
available because the string length cannot be increased when needed.)
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs373"></A><A NAME="FN:string="></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string=</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT>
<TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs374"></A><A NAME="FN:string/="></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string/=</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs375"></A><A NAME="FN:string$></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string<</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs376"></A><A NAME="FN:string$>$"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string></TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs377"></A><A NAME="FN:string$></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string<=</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs378"></A><A NAME="FN:string$>$="></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string>=</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P>
The string comparison is done in codepoint order. (This is
different from just comparing the order of the individual characters
due to surrogate pairs.) Unicode collation is not done.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs379"></A><A NAME="FN:string-equal"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-equal</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT>
<TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs380"></A><A NAME="FN:string-not-equal"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-not-equal</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs381"></A><A NAME="FN:string-lessp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-lessp</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs382"></A><A NAME="FN:string-greaterp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-greaterp</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs383"></A><A NAME="FN:string-not-greaterp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-not-greaterp</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P><A NAME="@funs384"></A><A NAME="FN:string-not-lessp"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-not-lessp</TT> <TT class=variable>s1</TT> <TT class=variable>s2</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start1</TT> <TT class=code>:end1</TT> <TT class=code>:start2</TT> <TT class=code>:end2</TT></SPAN>
</DIV><P>
Each codepoint in each string is converted to lowercase and the
appropriate comparison of the codepoint values is done. Unicode
collation is not done.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs385"></A><A NAME="FN:string-left-trim"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-left-trim</TT> <TT class=variable>bag</TT> <TT class=variable>string</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs386"></A><A NAME="FN:string-right-trim"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-right-trim</TT> <TT class=variable>bag</TT> <TT class=variable>string</TT>
</DIV><P><A NAME="@funs387"></A><A NAME="FN:string-trim"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-trim</TT> <TT class=variable>bag</TT> <TT class=variable>string</TT>
</DIV><P>
Removes any characters in </P><TT class=code>bag</TT><P> from the left, right, or both
ends of the string </P><TT class=code>string</TT><P>, respectively. This has potential
problems if you want to remove a surrogate character from the
string, since a single character cannot represent a surrogate. As
an extension, if </P><TT class=code>bag</TT><P> is a string, we properly handle
surrogate characters in the </P><TT class=code>bag</TT><P>.
</P></BLOCKQUOTE><!--TOC subsection Sequences-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc316">13.3.4</A>  Sequences</H3><!--SEC END --><P>Since strings are also sequences, the sequence functions can be used
on strings. We note here some issues with these functions. Most
issues are due to the fact that strings are UTF-16 strings and
characters are UTF-16 code units, not Unicode codepoints.</P><P><BR>
<A NAME="@funs388"></A><A NAME="FN:remove-duplicates"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>remove-duplicates</TT> <TT class=variable>sequence</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:from-end</TT> <TT class=code>:test</TT> <TT class=code>:test-not</TT> <TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:key</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<P><A NAME="@funs389"></A><A NAME="FN:delete-duplicates"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>delete-duplicates</TT> <TT class=variable>sequence</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:from-end</TT> <TT class=code>:test</TT> <TT class=code>:test-not</TT> <TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:key</TT></SPAN>
</DIV><P>
Because of surrogate pairs these functions may remove a high or low
surrogate value, leaving the string in an invalid state. Use these
functions carefully with strings.
</P></BLOCKQUOTE><!--TOC subsection Reader-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc317">13.3.5</A>  Reader</H3><!--SEC END --><P>To support Unicode characters, the reader has been extended to
recognize characters written in hexadecimal. Thus </P><TT class=code>#\U+41</TT><P> is
the ASCII capital letter “A”, since 41 is the hexadecimal code for
that letter. The Unicode name of the character is also recognized,
except spaces in the name are replaced by underscores.</P><P>Recall, however, that characters in CMUCL are only 16 bits long so
many Unicode characters cannot be represented. However, strings can
represent all Unicode characters.</P><P>When symbols are read, the symbol name is converted to Unicode NFC
form before interning the symbol into the package. Hence,
</P><TT class=code>symbol-name (intern “string”)</TT><P> may produce a string that is
not </P><TT class=code>string=</TT><P> to “string”. However, after conversion to NFC
form, the strings will be identical.</P><!--TOC subsection Printer-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc318">13.3.6</A>  Printer</H3><!--SEC END --><P>When printing characters, if the character is a graphic character, the
character is printed. Thus </P><TT class=code>#\U+41</TT><P> is printed as
</P><TT class=code>#\A</TT><P>. If the character is not a graphic character, the Lisp
name (e.g., </P><TT class=code>#\Tab</TT><P>) is used if possible;
if there is no Lisp name, the Unicode name is used. If there is no
Unicode name, the hexadecimal char-code is
printed. For example, </P><TT class=code>#\U+34e</TT><P>, which is not a graphic
character, is printed as </P><TT class=code>#\Combining_Upwards_Arrow_Below</TT><P>,
and </P><TT class=code>#\U+9f</TT><P> which is not a graphic character and does not have a
Unicode name, is printed as </P><TT class=code>#\U+009F</TT><P>.</P><!--TOC subsection Miscellaneous-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc319">13.3.7</A>  Miscellaneous</H3><!--SEC END --><!--TOC subsubsection Files-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->13.3.7.1  Files</H4><!--SEC END --><P>CMUCL loads external formats using the search-list
</P><TT class=filename>ext-formats:</TT><P>. The </P><TT class=filename>aliases</TT><P> file is also located using
this search-list.</P><P>The Unicode data base is stored in compressed form in the file
</P><TT class=filename>ext-formats:unidata.bin</TT><P>. If this file is not found, Unicode
support is severely reduced; you can only use ASCII characters.</P><P><BR>
<A NAME="@funs390"></A><A NAME="FN:open"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>open</TT> <TT class=variable>filename</TT> <TT class=code>&rest</TT><TT class=variable>options</TT>
<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:direction</TT> <TT class=code>:element-type</TT> <TT class=code>:if-exists</TT>
<TT class=code>:if-does-not-exist</TT><BR>
<TT class=code>:class</TT> <TT class=code>:mapped</TT>
<TT class=code>:input-handle</TT> <TT class=code>:output-handle</TT><BR>
<TT class=code>:external-format</TT> <TT class=code>:decoding-error</TT>
<TT class=code>:encoding-error</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote"><P>The main options are covered elsewhere. Here we describe the
options specific to Unicode. The option </P><TT class=code>:external-format</TT><P>
specifies the external format to use for reading and writing the
file. The external format is a keyword.</P><P>The options </P><TT class=code>:decoding-error</TT><P> and </P><TT class=code>:encoding-error</TT><P> are used
to specify how encoding and decoding errors are handled. The
default value on </P><TT class=code>nil</TT><P>means the external format handles errors
itself and typically replaces invalid sequences with the Unicode
replacement character.</P><P>Otherwise, the value for </P><TT class=code>decoding-error</TT><P> is either a
character, a symbol or a function. If a character is
specified. it is used as the replacement character for any invalid
decoding. If a symbol or a function is given, it must be a
function of three arguments: a message string to be printed, the
offending octet, and the number of octets read. If the function
returns, it should return two values: the code point to use as the
replacement character and the number of octets read. In addition,
</P><TT class=code>t</TT><P> may be specified. This indicates that a continuable error
is signaled, which, if continued, the Unicode replacement
character is used.</P><P>For </P><TT class=code>encoding-error</TT><P>, a character, symbol, or function can be
specified, like </P><TT class=code>decoding-error</TT><P>, with the same meaning. The
function, however, takes two arguments: a format message string
and the incorrect codepoint. If the function returns, it should
be the replacement codepoint.
</P></BLOCKQUOTE><!--TOC subsubsection Utilities-->
<H4 CLASS="subsubsection"><!--SEC ANCHOR -->13.3.7.2  Utilities</H4><!--SEC END --><P><BR>
<A NAME="@funs391"></A><A NAME="FN:set-system-external-format"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>stream:</TT><TT class=function-name>set-system-external-format</TT> <TT class=variable>terminal</TT> <TT class=code>&optional</TT> <TT class=variable>filenames</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This function changes the external format used for
<TT class=variable>*standard-input*</TT>, <TT class=variable>*standard-output*</TT>, and
<TT class=variable>*standard-error*</TT> to the external format specified by
<TT class=variable>terminal</TT>. Additionally, the Unix file name encoding can be
set to the value specified by <TT class=variable>filenames</TT> if non-<TT class=code>nil</TT>.
</BLOCKQUOTE><P><BR>
<A NAME="@funs392"></A><A NAME="FN:list-all-external-formats"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>list-all-external-formats</TT>
</DIV><BLOCKQUOTE CLASS="quote">
list all of the vailable external formats. A list is returned where
each element is a list of the external format name and a list of
aliases for the format. No distinction is made between external
formats and composing external formats.
</BLOCKQUOTE><P><BR>
<A NAME="@funs393"></A><A NAME="FN:describe-external-format"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>extensions:</TT><TT class=function-name>describe-external-format</TT> external-format
</DIV><BLOCKQUOTE CLASS="quote">
Print a description of the given <TT class=variable>external-format</TT>. This may
cause the external format to be loaded (silently) if it is not
already loaded.
</BLOCKQUOTE><P>Since strings are UTF-16 and hence may contain surrogate pairs, some
utility functions are provided to make access easier.</P><P><BR>
<A NAME="@funs394"></A><A NAME="FN:codepoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp:</TT><TT class=function-name>codepoint</TT> <TT class=variable>string</TT> <TT class=variable>i</TT>
<TT class=code>&optional</TT> <TT class=variable>end</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Return the codepoint value from <TT class=variable>string</TT> at position <TT class=variable>i</TT>.
If code unit at that position is a surrogate value, it is combined
with either the previous or following code unit (when possible) to
compute the codepoint. The first return value is the codepoint
itself. The second return value is <TT class=code>nil</TT> if the position is not a
surrogate pair. Otherwise, +1 or −1 is returned if the position
is the high (leading) or low (trailing) surrogate value, respectively.<P>This is useful for iterating through a string in codepoint sequence.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs395"></A><A NAME="FN:surrogates-to-codepoint"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp:</TT><TT class=function-name>surrogates-to-codepoint</TT> <TT class=variable>hi</TT> <TT class=variable>lo</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Convert the given <TT class=variable>hi</TT> and <TT class=variable>lo</TT> surrogate characters to the
corresponding codepoint value
</BLOCKQUOTE><P><BR>
<A NAME="@funs396"></A><A NAME="FN:surrogates"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>lisp:</TT><TT class=function-name>surrogates</TT> <TT class=variable>codepoint</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Convert the given <TT class=variable>codepoint</TT> value to the corresponding high
and low surrogate characters. If the codepoint is less than 65536,
the second value is <TT class=code>nil</TT> since the codepoint does not need to be
represented as a surrogate pair.
</BLOCKQUOTE><P><BR>
<A NAME="@funs397"></A><A NAME="FN:string-encode"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>stream:</TT><TT class=function-name>string-encode</TT> <TT class=variable>string</TT>
<TT class=variable>external-format</TT> <TT class=code>&optional</TT> (<TT class=variable>start</TT> 0) <TT class=variable>end</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>string-encode</TT> encodes <TT class=variable>string</TT> using the format
<TT class=variable>external-format</TT>, producing an array of octets. Each octet is
converted to a character via <TT class=code>code-char</TT> and the resulting
string is returned.<P>The optional argument </P><TT class=variable>start</TT><P>, defaulting to 0, specifies the
starting index and </P><TT class=variable>end</TT><P>, defaulting to the length of the
string, is the end of the string.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs398"></A><A NAME="FN:string-decode"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>stream:</TT><TT class=function-name>string-decode</TT> <TT class=variable>string</TT>
<TT class=variable>external-format</TT> <TT class=code>&optional</TT> (<TT class=variable>start</TT> 0) <TT class=variable>end</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>string-decode</TT> decodes <TT class=variable>string</TT> using the format
<TT class=variable>external-format</TT> and produces a new string. Each character of
<TT class=variable>string</TT> is converted to octet (by <TT class=code>char-code</TT>) and the
resulting array of octets is used by the external format to produce
a string. This is the inverse of <TT class=code>string-encode</TT>.<P>The optional argument </P><TT class=variable>start</TT><P>, defaulting to 0, specifies the
starting index and </P><TT class=variable>end</TT><P>, defaulting to the length of the
string, is the end of the string.</P><TT class=variable>string</TT><P> must consist of characters whose </P><TT class=code>char-code</TT><P> is
less than 256.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs399"></A><A NAME="FN:string-to-octets"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>string-to-octets</TT> <TT class=variable>string</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:external-format</TT> <TT class=code>:buffer</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>string-to-octets</TT> converts <TT class=variable>string</TT> to a sequence of
octets according to the external format specified by
<TT class=variable>external-format</TT>. The string to be converted is bounded by
<TT class=variable>start</TT>, which defaults to 0, and <TT class=variable>end</TT>, which defaults to
the length of the string. If <TT class=variable>buffer</TT> is specified, the octets
are placed in <TT class=variable>buffer</TT>. If <TT class=variable>buffer</TT> is not specified, a new
array is allocated to hold the octets. In all cases the buffer is
returned.
</BLOCKQUOTE><P><BR>
<A NAME="@funs400"></A><A NAME="FN:octets-to-string"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>octets-to-string</TT> <TT class=variable>octets</TT> <TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=code>:start</TT>
<TT class=code>:end</TT> <TT class=code>:external-format</TT> <TT class=code>:string</TT> <TT class=code>:s-start</TT>
<TT class=code>:s-end</TT> <TT class=code>:state</TT></SPAN>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>octets-to-string</TT> converts the sequence of octets in
<TT class=variable>octets</TT> to a string. <TT class=variable>octets</TT> must be a
<TT class=code>(simple-array (unsigned-byte 8) (*))</TT>. The octets to be
converted are bounded by <TT class=variable>start</TT> and <TT class=variable>end</TT>, which default to
0 and the length of the array, respectively. The conversion is
performed according to the external format specified by
<TT class=variable>external-format</TT>. If <TT class=variable>string</TT> is specified, the octets are
converted and stored in <TT class=variable>string</TT>, starting at <TT class=variable>s-start</TT>
(defaulting to 0) and ending just before <TT class=variable>s-end</TT> (defaulting to
the end of <TT class=variable>string</TT>. <TT class=variable>string</TT> must be <TT class=code>simple-string</TT>.
If the bounded string is not large enough to hold all of the
characters, then some octets will not be converted. If <TT class=variable>string</TT>
is not specified, a new string is created.<P>The </P><TT class=variable>state</TT><P> is used as the initial state of for the external
format. This is useful when converting buffers of octets where the
buffers are not on character boundaries, and state information is
needed between buffers.</P><P>Four values are returned: the string, the number of characters
written to the string, and the number of octets consumed to produce
the characters, and the final state of external format after
converting the octets.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs401"></A><A NAME="FN:list-all-external-formats"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>list-all-external-formats</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>list-all-external-formats</TT> produces a list of all known
external formats and the known aliases for for them. Each element
of the list is a list consisting of the name of the external format
and a list of the known aliases for the format.
</BLOCKQUOTE><P><BR>
<A NAME="@funs402"></A><A NAME="FN:describe-external-format"></A></P><DIV align=left>
[Function]<BR>
<TT class=function-name>describe-external-format</TT> <TT class=variable>external-format</TT>
</DIV><BLOCKQUOTE CLASS="quote">
<TT class=code>describe-external-format</TT> prints a description of the
specified external-format.
</BLOCKQUOTE><!--TOC section Writing External Formats-->
<H2 CLASS="section"><!--SEC ANCHOR --><A NAME="htoc320">13.4</A>  Writing External Formats</H2><!--SEC END --><!--TOC subsection External Formats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc321">13.4.1</A>  External Formats</H3><!--SEC END --><P>
Users may write their own external formats. It is probably easiest to
look at existing external formats to see how do this.</P><P>An external format basically needs two functions:
</P><TT class=code>octets-to-code</TT><P> to convert octets to Unicode codepoints and
</P><TT class=code>code-to-octets</TT><P> to convert Unicode codepoints to octets. The
external format is defined using the macro
</P><TT class=code>stream::define-external-format</TT><P>.</P><P><BR>
<A NAME="@funs403"></A><A NAME="FN:b"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>[</TT><TT class=function-name>b</TT> a
</DIV><BLOCKQUOTE CLASS="quote">se]stream:define-external-format<TT class=variable>name</TT>
(<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=variable>base</TT> <TT class=variable>min</TT> <TT class=variable>max</TT> <TT class=variable>size</TT>
<TT class=variable>documentation</TT></SPAN>)
(<TT class=code>&rest</TT> <TT class=variable>slots</TT>)<BR>
<TT class=variable>octets-to-code</TT> <TT class=variable>code-to-octets</TT>
<TT class=variable>flush-state</TT> <TT class=variable>copy-state</TT><P>If </P><TT class=code>:base</TT><P> is not given, this defines a new external format of
the name </P><TT class=code>:name</TT><P>. </P><TT class=variable>min</TT><P>, </P><TT class=variable>max</TT><P>, and </P><TT class=variable>size</TT><P> are the
minimum and maximum number of octets that make up a character.
(</P><TT class=code><TT class=code>:size</TT> n</TT><P> is just a short cut for </P><TT class=code><TT class=code>:min</TT> n
<TT class=code>:max</TT> n</TT><P>.) The description of the external format can be
given using </P><TT class=code>:documentation</TT><P>. The arguments </P><TT class=variable>octets-to-code</TT><P>
and </P><TT class=variable>code-to-octets</TT><P> are not optional in this case. They
specify how to convert octets to codepoints and vice versa,
respectively. These should be backquoted forms for the body of a
function to do the conversion. See the description below for these
functions. Some good examples are the external format for
</P><TT class=code>:utf-8</TT><P> or </P><TT class=code>:utf-16</TT><P>. The </P><TT class=code>:slots</TT><P> argument is a list of
read-only slots, similar to defstruct. The slot names are available
as local variables inside the </P><TT class=variable>code-to-octets</TT><P> and
</P><TT class=variable>octets-to-code</TT><P> bodies. </P><P>If </P><TT class=code>:base</TT><P> is given, then an external format is defined with the
name </P><TT class=code>:name</TT><P> that is based on a previously defined format
</P><TT class=code>:base</TT><P>. The </P><TT class=variable>slots</TT><P> are inherited from the </P><TT class=code>:base</TT><P> format
by default, although the definition may alter their values and add
new slots. See, for example, the </P><TT class=code>:mac-greek</TT><P> external format. </P></BLOCKQUOTE><P><BR>
<A NAME="@funs404"></A><A NAME="FN:octets-to-code"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>octets-to-code</TT> <TT class=variable>state</TT> <TT class=variable>input</TT>
<TT class=variable>unput</TT> <TT class=variable>error</TT> <TT class=code>&rest</TT> <TT class=variable>args</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This defines a form to be used by an external format to convert
octets to a code point. <TT class=variable>state</TT> is a form that can be used by
the body to access the state variable of a stream. This can be used
for any reason to hold anything needed by <TT class=code>octets-to-code</TT>.
<TT class=variable>input</TT> is a form that returns one octet from the input stream.
<TT class=variable>unput</TT> will put back <TT class=variable>N</TT> octets to the stream. <TT class=variable>args</TT> is a
list of variables that need to be defined for any symbols in the
body of the macro.<TT class=variable>error</TT><P> controls how errors are handled. If </P><TT class=code>nil</TT><P>, some suitable
replacement character is used. That is, any errors are silently
ignored and replaced by some replacement character. If non-</P><TT class=code>nil</TT><P>,
</P><TT class=variable>error</TT><P> is a symbol or function that is called to handle the
error. This function takes three arguments: a message string, the
invalid octet (or </P><TT class=code>nil</TT><P>), and a count of the number of octets that
have been read so far. If the function returns, it should be the
codepoint of the desired replacement character.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs405"></A><A NAME="FN:code-to-octets"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>code-to-octets</TT> <TT class=variable>code</TT> <TT class=variable>state</TT>
<TT class=variable>output</TT> <TT class=variable>error</TT> <TT class=code>&rest</TT> <TT class=variable>args</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Defines a form to be used by the external format to convert a code
point to octets for output. <TT class=variable>code</TT> is the code point to be
converted. <TT class=variable>state</TT> is a form to access the current value of the
stream’s state variable. <TT class=variable>output</TT> is a form that writes one
octet to the output stream.<P>Similar to </P><TT class=code>octets-to-code</TT><P>, </P><TT class=variable>error</TT><P> indicates how errors
should be handled. If </P><TT class=code>nil</TT><P>, some default replacement character is
substituted. If non-</P><TT class=code>nil</TT><P>, </P><TT class=variable>error</TT><P> should be a symbol or
function. This function takes two arguments: a message string and
the invalid codepoint. If the function returns, it should be the
codepoint that will be substituted for the invalid codepoint.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs406"></A><A NAME="FN:flush-state"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>flush-state</TT> <TT class=variable>state</TT>
<TT class=variable>output</TT> <TT class=variable>error</TT> <TT class=code>&rest</TT> <TT class=variable>args</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Defines a form to be used by the external format to flush out
any state when an output stream is closed. Similar to
<TT class=code>code-to-octets</TT>, but there is no code point to be output. The
<TT class=variable>error</TT> argument indicates how to handle errors. If <TT class=code>nil</TT>, some
default replacement character is used. Otherwise, <TT class=variable>error</TT> is a
symbol or function that will be called with a message string and
codepoint of the offending state. If the function returns, it
should be the codepoint of a suitable replacement.<P>If </P><TT class=code>flush-state</TT><P> is </P><TT class=code>nil</TT><P>, then nothing special is needed to
flush the state to the output.</P><P>This is called only when an output character stream is being closed.
</P></BLOCKQUOTE><P><BR>
<A NAME="@funs407"></A><A NAME="FN:copy-state"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>copy-state</TT> <TT class=variable>state</TT> <TT class=code>&rest</TT> <TT class=variable>args</TT>
</DIV><BLOCKQUOTE CLASS="quote">
Defines a form to copy any state needed by the external format.
This should probably be a deep copy so that if the original
state is modified, the copy is not.<P>If not given, then nothing special is needed to copy the state
either because there is no state for the external format or that no
special copier is needed.
</P></BLOCKQUOTE><!--TOC subsection Composing External Formats-->
<H3 CLASS="subsection"><!--SEC ANCHOR --><A NAME="htoc322">13.4.2</A>  Composing External Formats</H3><!--SEC END --><P><BR>
<A NAME="@funs408"></A><A NAME="FN:define-composing-external-format"></A></P><DIV align=left>
[Macro]<BR>
<TT class=function-name>stream:</TT><TT class=function-name>define-composing-external-format</TT> <TT class=variable>name</TT>
(<TT class=code>&key</TT> <SPAN style="text-decoration:overline"><TT class=variable>min</TT> <TT class=variable>max</TT> <TT class=variable>size</TT> <TT class=variable>documentation</TT></SPAN>) <TT class=variable>input</TT>
<TT class=variable>output</TT>
</DIV><BLOCKQUOTE CLASS="quote">
This is the same as <TT class=code>define-external-format</TT>, except that a
composing external format is created.
</BLOCKQUOTE><!--NAME unicode.html-->
<P><A NAME="@concept299"></A>
</P><!--TOC chapter Function Index-->
<H1 CLASS="chapter"><!--SEC ANCHOR -->Function Index</H1><!--SEC END --><P></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">
-, <A HREF="#@funs23"><B>2.7</B></A>, <A HREF="#@funs26"><B>2.7.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">accept-network-stream, <A HREF="#@funs268"><B>10.4</B></A>
</LI><LI CLASS="li-indexenv">accept-tcp-connection, <A HREF="#@funs266"><B>10.4</B></A>
</LI><LI CLASS="li-indexenv">accept-unix-connection, <A HREF="#@funs267"><B>10.4</B></A>
</LI><LI CLASS="li-indexenv">activate-breakpoint, <A HREF="#@funs316"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">add-fd-handler, <A HREF="#@funs190"><B>7.3</B></A>
</LI><LI CLASS="li-indexenv">add-oob-handler, <A HREF="#@funs272"><B>10.6</B></A>
</LI><LI CLASS="li-indexenv">add-xwindow-object, <A HREF="#@funs187"><B>7.1</B></A>
</LI><LI CLASS="li-indexenv">addr, <A HREF="#@funs209"><B>8.3.2</B></A>
</LI><LI CLASS="li-indexenv">alien-funcall, <A HREF="#@funs206">8.2.3</A>, <A HREF="#@funs223"><B>8.7.1</B></A>, <A HREF="#@funs226">8.7.2</A>
</LI><LI CLASS="li-indexenv">alien-sap, <A HREF="#@funs213"><B>8.3.2</B></A>
</LI><LI CLASS="li-indexenv">alpha-char-p, <A HREF="#@funs354"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">alphanumericp, <A HREF="#@funs355"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">ambiguous-debug-variables, <A HREF="#@funs305"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">ambiguous-files, <A HREF="#@funs70"><B>2.17.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">b, <A HREF="#@funs403"><B>13.4.1</B></A>
</LI><LI CLASS="li-indexenv">bind-inet-socket, <A HREF="#@funs278"><B>10.7</B></A>
</LI><LI CLASS="li-indexenv">both-case-p, <A HREF="#@funs361"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">break, <A HREF="#@funs110">3.1</A>
</LI><LI CLASS="li-indexenv">breakpoint-active-p, <A HREF="#@funs318"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">breakpoint-hook-function, <A HREF="#@funs319"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">breakpoint-info, <A HREF="#@funs320"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">breakpoint-kind, <A HREF="#@funs321"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">breakpoint-what, <A HREF="#@funs322"><B>11.6</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">callback, <A HREF="#@funs229">8.7.4</A>, <A HREF="#@funs230"><B>8.7.4</B></A>
</LI><LI CLASS="li-indexenv">callback-funcall, <A HREF="#@funs231"><B>8.7.4</B></A>
</LI><LI CLASS="li-indexenv">cancel-finalization, <A HREF="#@funs34"><B>2.7.4</B></A>
</LI><LI CLASS="li-indexenv">cast, <A HREF="#@funs211"><B>8.3.2</B></A>
</LI><LI CLASS="li-indexenv">ceiling, <A HREF="#@funs9">2.1.2.5</A>
</LI><LI CLASS="li-indexenv">char-downcase, <A HREF="#@funs363"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-equal, <A HREF="#@funs348"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-greaterp, <A HREF="#@funs351"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-lessp, <A HREF="#@funs350"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-name, <A HREF="#@funs365"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-not-equal, <A HREF="#@funs349"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-not-greaterp, <A HREF="#@funs352"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-not-lessp, <A HREF="#@funs353"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-titlecase, <A HREF="#@funs364"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">char-upcase, <A HREF="#@funs362"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">clear-search-list, <A HREF="#@funs65"><B>2.16.6</B></A>
</LI><LI CLASS="li-indexenv">close-socket, <A HREF="#@funs281"><B>10.7</B></A>
</LI><LI CLASS="li-indexenv">cmd-switch-arg, <A HREF="#@funs159"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">cmd-switch-name, <A HREF="#@funs156"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">cmd-switch-value, <A HREF="#@funs157"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">cmd-switch-words, <A HREF="#@funs158"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">code-location-debug-block, <A HREF="#@funs325"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location-debug-function, <A HREF="#@funs324"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location-debug-source, <A HREF="#@funs329"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location-form-number, <A HREF="#@funs327"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location-top-level-form-offset, <A HREF="#@funs326"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location-unknown-p, <A HREF="#@funs330"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-location=, <A HREF="#@funs331"><B>11.7</B></A>
</LI><LI CLASS="li-indexenv">code-to-octets, <A HREF="#@funs405"><B>13.4.1</B></A>
</LI><LI CLASS="li-indexenv">codepoint, <A HREF="#@funs394"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">compile, <A HREF="#@funs121"><B>4.2</B></A>
</LI><LI CLASS="li-indexenv">compile-file, <A HREF="#@funs113">3.5.1</A>, <A HREF="#@funs122"><B>4.2</B></A>, <A HREF="#@funs144">5.7.3</A>, <A HREF="#@funs146">5.9</A>
</LI><LI CLASS="li-indexenv">compile-from-stream, <A HREF="#@funs123"><B>4.2</B></A>
</LI><LI CLASS="li-indexenv">complete-file, <A HREF="#@funs69"><B>2.17.2</B></A>
</LI><LI CLASS="li-indexenv">connect-to-inet-socket, <A HREF="#@funs269"><B>10.5</B></A>
</LI><LI CLASS="li-indexenv">connect-to-remote-server, <A HREF="#@funs236"><B>9.1.1</B></A>
</LI><LI CLASS="li-indexenv">connect-to-unix-socket, <A HREF="#@funs270"><B>10.5</B></A>
</LI><LI CLASS="li-indexenv">constantly, <A HREF="#@funs84"><B>2.24.1</B></A>
</LI><LI CLASS="li-indexenv">copy-state, <A HREF="#@funs407"><B>13.4.1</B></A>
</LI><LI CLASS="li-indexenv">create-inet-listener, <A HREF="#@funs264"><B>10.3</B></A>
</LI><LI CLASS="li-indexenv">create-inet-socket, <A HREF="#@funs277"><B>10.7</B></A>
</LI><LI CLASS="li-indexenv">create-request-server, <A HREF="#@funs234"><B>9.1.1</B></A>
</LI><LI CLASS="li-indexenv">create-unix-listener, <A HREF="#@funs265"><B>10.3</B></A>
</LI><LI CLASS="li-indexenv">create-unix-socket, <A HREF="#@funs276"><B>10.7</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">deactivate-breakpoint, <A HREF="#@funs317"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">debug, <A HREF="#@funs111">3.1</A>
</LI><LI CLASS="li-indexenv">debug-block-elsewhere-p, <A HREF="#@funs314"><B>11.5</B></A>
</LI><LI CLASS="li-indexenv">debug-block-successors, <A HREF="#@funs313"><B>11.5</B></A>
</LI><LI CLASS="li-indexenv">debug-function-function, <A HREF="#@funs310"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-function-kind, <A HREF="#@funs309"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-function-lambda-list, <A HREF="#@funs301"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-function-name, <A HREF="#@funs311"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-function-symbol-variables, <A HREF="#@funs304"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-source-compiled, <A HREF="#@funs335"><B>11.8</B></A>
</LI><LI CLASS="li-indexenv">debug-source-created, <A HREF="#@funs334"><B>11.8</B></A>
</LI><LI CLASS="li-indexenv">debug-source-from, <A HREF="#@funs332"><B>11.8</B></A>
</LI><LI CLASS="li-indexenv">debug-source-name, <A HREF="#@funs333"><B>11.8</B></A>
</LI><LI CLASS="li-indexenv">debug-source-root-number, <A HREF="#@funs336"><B>11.8</B></A>
</LI><LI CLASS="li-indexenv">debug-source-start-positions, <A HREF="#@funs337"><B>11.9</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-id, <A HREF="#@funs288"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-info-available, <A HREF="#@funs303"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-name, <A HREF="#@funs285"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-package, <A HREF="#@funs286"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-symbol, <A HREF="#@funs287"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-valid-value, <A HREF="#@funs291"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-validity, <A HREF="#@funs289"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">debug-variable-value, <A HREF="#@funs290"><B>11.2</B></A>
</LI><LI CLASS="li-indexenv">def-alien-routine, <A HREF="#@funs218">8.4.2</A>, <A HREF="#@funs225"><B>8.7.2</B></A>
</LI><LI CLASS="li-indexenv">def-alien-type, <A HREF="#@funs202"><B>8.2.1</B></A>, <A HREF="#@funs204">8.2.3</A>
</LI><LI CLASS="li-indexenv">def-alien-variable, <A HREF="#@funs219"><B>8.4.2</B></A>
</LI><LI CLASS="li-indexenv">def-callback, <A HREF="#@funs227">8.7.4</A>, <A HREF="#@funs228"><B>8.7.4</B></A>
</LI><LI CLASS="li-indexenv">def-source-context, <A HREF="#@funs125"><B>4.4.7</B></A>
</LI><LI CLASS="li-indexenv">default-directory, <A HREF="#@funs71"><B>2.17.3</B></A>
</LI><LI CLASS="li-indexenv">default-interrupt, <A HREF="#@funs184"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">define-composing-external-format, <A HREF="#@funs408"><B>13.4.2</B></A>
</LI><LI CLASS="li-indexenv">define-function-name-syntax, <A HREF="#@funs77"><B>2.22</B></A>
</LI><LI CLASS="li-indexenv">define-fwrapper, <A HREF="#@funs85"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">define-hash-table-test, <A HREF="#@funs15"><B>2.1.6</B></A>
</LI><LI CLASS="li-indexenv">defmodule, <A HREF="#@funs96"><B>2.28</B></A>
</LI><LI CLASS="li-indexenv">defstruct, <A HREF="#@funs132">5.2.11</A>, <A HREF="#@funs147">5.10.2</A>
</LI><LI CLASS="li-indexenv">defswitch, <A HREF="#@funs161"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">deftype, <A HREF="#@funs131">5.2.11</A>
</LI><LI CLASS="li-indexenv">defun, <A HREF="#@funs143">5.7</A>
</LI><LI CLASS="li-indexenv">delete-breakpoint, <A HREF="#@funs323"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">delete-duplicates, <A HREF="#@funs389"><B>13.3.4</B></A>
</LI><LI CLASS="li-indexenv">delete-fwrapper, <A HREF="#@funs94"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">deref, <A HREF="#@funs207"><B>8.3.1</B></A>
</LI><LI CLASS="li-indexenv">describe, <A HREF="#@funs35"><B>2.8</B></A>, <A HREF="#@funs114">3.6</A>
</LI><LI CLASS="li-indexenv">describe-external-format, <A HREF="#@funs393"><B>13.3.7.2</B></A>, <A HREF="#@funs402"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">destroy-request-server, <A HREF="#@funs235"><B>9.1.1</B></A>
</LI><LI CLASS="li-indexenv">dgettext, <A HREF="#@funs104"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">digit-char-p, <A HREF="#@funs356"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">directory, <A HREF="#@funs67"><B>2.17.1</B></A>
</LI><LI CLASS="li-indexenv">disable-clx-event-handling, <A HREF="#@funs198"><B>7.4.1</B></A>
</LI><LI CLASS="li-indexenv">dngettext, <A HREF="#@funs106"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">do-debug-block-locations, <A HREF="#@funs312"><B>11.5</B></A>
</LI><LI CLASS="li-indexenv">do-debug-function-blocks, <A HREF="#@funs300"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">do-debug-function-variables, <A HREF="#@funs302"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">do-fwrappers, <A HREF="#@funs95"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">dump-pot-files, <A HREF="#@funs107"><B>2.29.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">ed, <A HREF="#@funs0">1.2</A>
</LI><LI CLASS="li-indexenv">enable-clx-event-handling, <A HREF="#@funs197"><B>7.4.1</B></A>
</LI><LI CLASS="li-indexenv">enable-interrupt, <A HREF="#@funs182"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">encapsulate, <A HREF="#@funs118"><B>3.10.1</B></A>
</LI><LI CLASS="li-indexenv">encapsulated-p, <A HREF="#@funs120"><B>3.10.1</B></A>
</LI><LI CLASS="li-indexenv">enumerate-search-list, <A HREF="#@funs66"><B>2.16.6</B></A>
</LI><LI CLASS="li-indexenv">error, <A HREF="#@funs109">3.1</A>
</LI><LI CLASS="li-indexenv">eval-in-frame, <A HREF="#@funs298"><B>11.3</B></A>, <A HREF="#@funs307">11.4</A>
</LI><LI CLASS="li-indexenv">extern-alien, <A HREF="#@funs210">8.3.2</A>, <A HREF="#@funs220"><B>8.4.2</B></A>, <A HREF="#@funs224">8.7.1</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">fd-stream-fd, <A HREF="#@funs177"><B>6.7</B></A>
</LI><LI CLASS="li-indexenv">fd-stream-p, <A HREF="#@funs176"><B>6.7</B></A>
</LI><LI CLASS="li-indexenv">fdefinition, <A HREF="#@funs117">3.10.1</A>
</LI><LI CLASS="li-indexenv">file-writable, <A HREF="#@funs72"><B>2.17.3</B></A>
</LI><LI CLASS="li-indexenv">finalize, <A HREF="#@funs33"><B>2.7.4</B></A>
</LI><LI CLASS="li-indexenv">find-fwrapper, <A HREF="#@funs88"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">flet, <A HREF="#@funs138">5.6</A>
</LI><LI CLASS="li-indexenv">float-denormalized-p, <A HREF="#@funs7"><B>2.1.2.3</B></A>
</LI><LI CLASS="li-indexenv">float-digits, <A HREF="#@funs6">2.1.2.3</A>
</LI><LI CLASS="li-indexenv">float-infinity-p, <A HREF="#@funs1"><B>2.1.2.1</B></A>
</LI><LI CLASS="li-indexenv">float-nan-p, <A HREF="#@funs2"><B>2.1.2.1</B></A>
</LI><LI CLASS="li-indexenv">float-precision, <A HREF="#@funs5">2.1.2.3</A>
</LI><LI CLASS="li-indexenv">float-sign, <A HREF="#@funs4">2.1.2.2</A>
</LI><LI CLASS="li-indexenv">float-trapping-nan-p, <A HREF="#@funs3"><B>2.1.2.1</B></A>
</LI><LI CLASS="li-indexenv">floor, <A HREF="#@funs10">2.1.2.5</A>
</LI><LI CLASS="li-indexenv">flush-display-events, <A HREF="#@funs196"><B>7.4</B></A>
</LI><LI CLASS="li-indexenv">flush-emf-cache, <A HREF="#@funs81"><B>2.23.4</B></A>
</LI><LI CLASS="li-indexenv">flush-state, <A HREF="#@funs406"><B>13.4.1</B></A>
</LI><LI CLASS="li-indexenv">forget-remote-translation, <A HREF="#@funs246"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">form-number-translations, <A HREF="#@funs328">11.7</A>, <A HREF="#@funs338"><B>11.9</B></A>
</LI><LI CLASS="li-indexenv">format-decoded-time, <A HREF="#@funs76"><B>2.18</B></A>
</LI><LI CLASS="li-indexenv">format-universal-time, <A HREF="#@funs75"><B>2.18</B></A>
</LI><LI CLASS="li-indexenv">frame-catches, <A HREF="#@funs297"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">frame-code-location, <A HREF="#@funs296"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">frame-debug-function, <A HREF="#@funs295"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">frame-down, <A HREF="#@funs293"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">frame-up, <A HREF="#@funs294"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">free-alien, <A HREF="#@funs163">6.4</A>, <A HREF="#@funs215"><B>8.3.3</B></A>
</LI><LI CLASS="li-indexenv">function, <A HREF="#@funs129">5.2.6</A>
</LI><LI CLASS="li-indexenv">function-debug-function, <A HREF="#@funs308"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">funwrap, <A HREF="#@funs87"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">fwrap, <A HREF="#@funs86"><B>2.25</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">gc-off, <A HREF="#@funs24"><B>2.7</B></A>
</LI><LI CLASS="li-indexenv">gc-on, <A HREF="#@funs25"><B>2.7</B></A>
</LI><LI CLASS="li-indexenv">gencgc-stats, <A HREF="#@funs27"><B>2.7.2</B></A>
</LI><LI CLASS="li-indexenv">get-bytes-consed, <A HREF="#@funs154"><B>5.14.6</B></A>
</LI><LI CLASS="li-indexenv">get-command-line-switch, <A HREF="#@funs160"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">get-floating-point-modes, <A HREF="#@funs13"><B>2.1.2.6</B></A>
</LI><LI CLASS="li-indexenv">get-internal-run-time, <A HREF="#@funs155">5.14.6</A>
</LI><LI CLASS="li-indexenv">get-socket-option, <A HREF="#@funs279"><B>10.7</B></A>
</LI><LI CLASS="li-indexenv">get-unix-error-msg, <A HREF="#@funs173"><B>6.6</B></A>
</LI><LI CLASS="li-indexenv">gettext, <A HREF="#@funs103"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">graphic-char-p, <A HREF="#@funs357"><B>13.3.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">hash-table-test, <A HREF="#@funs17">2.1.6</A>
</LI><LI CLASS="li-indexenv">htonl, <A HREF="#@funs258"><B>10.1</B></A>
</LI><LI CLASS="li-indexenv">htons, <A HREF="#@funs259"><B>10.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">if, <A HREF="#@funs136">5.3.5</A>, <A HREF="#@funs137">5.4.4</A>
</LI><LI CLASS="li-indexenv">ignore-interrupt, <A HREF="#@funs183"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">inet-recvfrom, <A HREF="#@funs282"><B>10.8</B></A>
</LI><LI CLASS="li-indexenv">inet-sendto, <A HREF="#@funs283"><B>10.8</B></A>
</LI><LI CLASS="li-indexenv">inet-shutdown, <A HREF="#@funs284"><B>10.8</B></A>
</LI><LI CLASS="li-indexenv">init-xref-database, <A HREF="#@funs340"><B>12.1</B></A>
</LI><LI CLASS="li-indexenv">inspect, <A HREF="#@funs36"><B>2.9</B></A>, <A HREF="#@funs38">2.9.1</A>
</LI></UL></TD><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">install, <A HREF="#@funs108"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">int-sap, <A HREF="#@funs165"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">invalidate-descriptor, <A HREF="#@funs194"><B>7.3</B></A>
</LI><LI CLASS="li-indexenv">ip-string, <A HREF="#@funs263"><B>10.2</B></A>
</LI><LI CLASS="li-indexenv">iterate, <A HREF="#@funs141"><B>5.6.4</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">labels, <A HREF="#@funs139">5.6</A>, <A HREF="#@funs142">5.6.4</A>
</LI><LI CLASS="li-indexenv">let, <A HREF="#@funs134">5.2.11</A>
</LI><LI CLASS="li-indexenv">lisp-control-panel, <A HREF="#@funs37"><B>2.9.1</B></A>
</LI><LI CLASS="li-indexenv">list-all-external-formats, <A HREF="#@funs392"><B>13.3.7.2</B></A>, <A HREF="#@funs401"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">list-fwrappers, <A HREF="#@funs92"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">load, <A HREF="#@funs39"><B>2.10</B></A>
</LI><LI CLASS="li-indexenv">load-foreign, <A HREF="#@funs222"><B>8.6</B></A>
</LI><LI CLASS="li-indexenv">load-logical-pathname-translations, <A HREF="#@funs62">2.16.3</A>
</LI><LI CLASS="li-indexenv">lookup-host-entry, <A HREF="#@funs262"><B>10.2</B></A>
</LI><LI CLASS="li-indexenv">lower-case-p, <A HREF="#@funs359"><B>13.3.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">make-alien, <A HREF="#@funs162">6.4</A>, <A HREF="#@funs203">8.2.3</A>, <A HREF="#@funs214"><B>8.3.3</B></A>, <A HREF="#@funs232">8.7.6</A>
</LI><LI CLASS="li-indexenv">make-breakpoint, <A HREF="#@funs315"><B>11.6</B></A>
</LI><LI CLASS="li-indexenv">make-fd-stream, <A HREF="#@funs41">2.12</A>, <A HREF="#@funs175"><B>6.7</B></A>
</LI><LI CLASS="li-indexenv">make-hash-table, <A HREF="#@funs16">2.1.6</A>, <A HREF="#@funs18"><B>2.1.6</B></A>
</LI><LI CLASS="li-indexenv">make-object-set, <A HREF="#@funs185"><B>7.1</B></A>
</LI><LI CLASS="li-indexenv">make-remote-object, <A HREF="#@funs241"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">make-weak-pointer, <A HREF="#@funs31"><B>2.7.3</B></A>
</LI><LI CLASS="li-indexenv">make-wire, <A HREF="#@funs255"><B>9.2.3</B></A>
</LI><LI CLASS="li-indexenv">module-provide-cmucl-defmodule, <A HREF="#@funs97"><B>2.28</B></A>
</LI><LI CLASS="li-indexenv">module-provide-cmucl-library, <A HREF="#@funs98"><B>2.28</B></A>
</LI><LI CLASS="li-indexenv">multiple-value-bind, <A HREF="#@funs135">5.3.1</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">name-char, <A HREF="#@funs366"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">ngettext, <A HREF="#@funs105"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">no-primary-method, <A HREF="#@funs79"><B>2.23.1</B></A>, <A HREF="#@funs80"><B>2.23.1</B></A>
</LI><LI CLASS="li-indexenv">nstring-capitalize, <A HREF="#@funs372"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">nstring-downcase, <A HREF="#@funs371"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">nstring-upcase, <A HREF="#@funs370"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">ntohl, <A HREF="#@funs261"><B>10.1</B></A>
</LI><LI CLASS="li-indexenv">ntohs, <A HREF="#@funs260"><B>10.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">object-set-event-handler, <A HREF="#@funs200"><B>7.4.2</B></A>
</LI><LI CLASS="li-indexenv">object-set-operation, <A HREF="#@funs186"><B>7.1</B></A>
</LI><LI CLASS="li-indexenv">octets-to-code, <A HREF="#@funs404"><B>13.4.1</B></A>
</LI><LI CLASS="li-indexenv">octets-to-string, <A HREF="#@funs400"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">open, <A HREF="#@funs390"><B>13.3.7.1</B></A>
</LI><LI CLASS="li-indexenv">open-clx-display, <A HREF="#@funs195"><B>7.4</B></A>
</LI><LI CLASS="li-indexenv">open-network-stream, <A HREF="#@funs271"><B>10.5</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">package-definition-lock, <A HREF="#@funs20"><B>2.5.2</B></A>
</LI><LI CLASS="li-indexenv">package-lock, <A HREF="#@funs19"><B>2.5.2</B></A>
</LI><LI CLASS="li-indexenv">parse-time, <A HREF="#@funs74"><B>2.18</B></A>
</LI><LI CLASS="li-indexenv">preprocess-for-eval, <A HREF="#@funs299">11.3</A>, <A HREF="#@funs306"><B>11.4</B></A>
</LI><LI CLASS="li-indexenv">print-directory, <A HREF="#@funs68"><B>2.17.1</B></A>
</LI><LI CLASS="li-indexenv">process-alive-p, <A HREF="#@funs56"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-close, <A HREF="#@funs57"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-core-dumped, <A HREF="#@funs47"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-error, <A HREF="#@funs51"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-exit-code, <A HREF="#@funs46"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-input, <A HREF="#@funs49"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-kill, <A HREF="#@funs55"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-output, <A HREF="#@funs50"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-p, <A HREF="#@funs43"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-pid, <A HREF="#@funs44"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-plist, <A HREF="#@funs53"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-pty, <A HREF="#@funs48"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-status, <A HREF="#@funs45"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-status-hook, <A HREF="#@funs52"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">process-wait, <A HREF="#@funs54"><B>2.14.1</B></A>
</LI><LI CLASS="li-indexenv">profile, <A HREF="#@funs148"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">profile-all, <A HREF="#@funs150"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">purify, <A HREF="#@funs59">2.15</A>, <A HREF="#@funs60">2.15</A>, <A HREF="#@funs61"><B>2.15</B></A>
</LI><LI CLASS="li-indexenv">push-fwrapper, <A HREF="#@funs93"><B>2.25</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">read-n-bytes, <A HREF="#@funs40"><B>2.12</B></A>, <A HREF="#@funs174">6.7</A>
</LI><LI CLASS="li-indexenv">remote, <A HREF="#@funs237"><B>9.1.2</B></A>
</LI><LI CLASS="li-indexenv">remote-object-eq, <A HREF="#@funs244"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">remote-object-local-p, <A HREF="#@funs243"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">remote-object-p, <A HREF="#@funs242"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">remote-object-value, <A HREF="#@funs245"><B>9.1.3</B></A>
</LI><LI CLASS="li-indexenv">remote-value, <A HREF="#@funs239"><B>9.1.2</B></A>
</LI><LI CLASS="li-indexenv">remote-value-bind, <A HREF="#@funs240"><B>9.1.2</B></A>
</LI><LI CLASS="li-indexenv">remove-all-oob-handlers, <A HREF="#@funs274"><B>10.6</B></A>
</LI><LI CLASS="li-indexenv">remove-duplicates, <A HREF="#@funs388"><B>13.3.4</B></A>
</LI><LI CLASS="li-indexenv">remove-fd-handler, <A HREF="#@funs191"><B>7.3</B></A>
</LI><LI CLASS="li-indexenv">remove-oob-handler, <A HREF="#@funs273"><B>10.6</B></A>
</LI><LI CLASS="li-indexenv">report-time, <A HREF="#@funs151"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">required-argument, <A HREF="#@funs126"><B>4.5.1</B></A>, <A HREF="#@funs128">5.2.5</A>
</LI><LI CLASS="li-indexenv">reset-time, <A HREF="#@funs152"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">round, <A HREF="#@funs8">2.1.2.5</A>
</LI><LI CLASS="li-indexenv">run-program, <A HREF="#@funs42"><B>2.14</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">sap+, <A HREF="#@funs166"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">sap-alien, <A HREF="#@funs212"><B>8.3.2</B></A>
</LI><LI CLASS="li-indexenv">sap-int, <A HREF="#@funs164"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">sap-ref-16, <A HREF="#@funs168"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">sap-ref-32, <A HREF="#@funs169"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">sap-ref-8, <A HREF="#@funs167"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">save-lisp, <A HREF="#@funs58"><B>2.15</B></A>, <A HREF="#@funs221">8.6</A>
</LI><LI CLASS="li-indexenv">seal, <A HREF="#@funs82"><B>2.23.6</B></A>
</LI><LI CLASS="li-indexenv">search-list, <A HREF="#@funs63"><B>2.16.6</B></A>
</LI><LI CLASS="li-indexenv">search-list-defined-p, <A HREF="#@funs64"><B>2.16.6</B></A>
</LI><LI CLASS="li-indexenv">send-character-out-of-band, <A HREF="#@funs275"><B>10.6</B></A>
</LI><LI CLASS="li-indexenv">serve-all-events, <A HREF="#@funs189"><B>7.2</B></A>
</LI><LI CLASS="li-indexenv">serve-event, <A HREF="#@funs188"><B>7.2</B></A>
</LI><LI CLASS="li-indexenv">set-floating-point-modes, <A HREF="#@funs12"><B>2.1.2.6</B></A>
</LI><LI CLASS="li-indexenv">set-fwrappers, <A HREF="#@funs91"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">set-gc-trigger, <A HREF="#@funs28"><B>2.7.2</B></A>
</LI><LI CLASS="li-indexenv">set-min-mem-age, <A HREF="#@funs30"><B>2.7.2</B></A>
</LI><LI CLASS="li-indexenv">set-socket-option, <A HREF="#@funs280"><B>10.7</B></A>
</LI><LI CLASS="li-indexenv">set-system-external-format, <A HREF="#@funs391"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">set-trigger-age, <A HREF="#@funs29"><B>2.7.2</B></A>
</LI><LI CLASS="li-indexenv">setlocale, <A HREF="#@funs101"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">signed-sap-ref-16, <A HREF="#@funs171"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">signed-sap-ref-32, <A HREF="#@funs172"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">signed-sap-ref-8, <A HREF="#@funs170"><B>6.5</B></A>
</LI><LI CLASS="li-indexenv">slot, <A HREF="#@funs208"><B>8.3.1</B></A>
</LI><LI CLASS="li-indexenv">source-path-context, <A HREF="#@funs339"><B>11.9</B></A>
</LI><LI CLASS="li-indexenv">string<, <A HREF="#@funs375"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string<=, <A HREF="#@funs377"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string>, <A HREF="#@funs376"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string>=, <A HREF="#@funs378"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-capitalize, <A HREF="#@funs369"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-decode, <A HREF="#@funs398"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">string-downcase, <A HREF="#@funs368"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-encode, <A HREF="#@funs397"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">string-equal, <A HREF="#@funs379"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-greaterp, <A HREF="#@funs382"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-left-trim, <A HREF="#@funs385"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-lessp, <A HREF="#@funs381"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-not-equal, <A HREF="#@funs380"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-not-greaterp, <A HREF="#@funs383"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-not-lessp, <A HREF="#@funs384"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-right-trim, <A HREF="#@funs386"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-to-octets, <A HREF="#@funs399"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">string-trim, <A HREF="#@funs387"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string-upcase, <A HREF="#@funs367"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string/=, <A HREF="#@funs374"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">string=, <A HREF="#@funs373"><B>13.3.3</B></A>
</LI><LI CLASS="li-indexenv">surrogates, <A HREF="#@funs396"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">surrogates-to-codepoint, <A HREF="#@funs395"><B>13.3.7.2</B></A>
</LI><LI CLASS="li-indexenv">system:vector-sap, <A HREF="#@funs233">8.7.6</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">textdomain, <A HREF="#@funs102"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">the, <A HREF="#@funs130">5.2.7</A>, <A HREF="#@funs133">5.2.11</A>
</LI><LI CLASS="li-indexenv">time, <A HREF="#@funs153"><B>5.14.6</B></A>
</LI><LI CLASS="li-indexenv">title-case-p, <A HREF="#@funs360"><B>13.3.2</B></A>
</LI><LI CLASS="li-indexenv">top-frame, <A HREF="#@funs292"><B>11.3</B></A>
</LI><LI CLASS="li-indexenv">trace, <A HREF="#@funs115"><B>3.10</B></A>, <A HREF="#@funs140">5.6.1</A>
</LI><LI CLASS="li-indexenv">translation-disable, <A HREF="#@funs100"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">translation-enable, <A HREF="#@funs99"><B>2.29.1</B></A>
</LI><LI CLASS="li-indexenv">truncate, <A HREF="#@funs11">2.1.2.5</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">unencapsulate, <A HREF="#@funs119"><B>3.10.1</B></A>
</LI><LI CLASS="li-indexenv">unix-namestring, <A HREF="#@funs73"><B>2.17.3</B></A>
</LI><LI CLASS="li-indexenv">unlock-all-packages, <A HREF="#@funs22"><B>2.5.2</B></A>
</LI><LI CLASS="li-indexenv">unprofile, <A HREF="#@funs149"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">unseal, <A HREF="#@funs83"><B>2.23.6</B></A>
</LI><LI CLASS="li-indexenv">untrace, <A HREF="#@funs116"><B>3.10</B></A>
</LI><LI CLASS="li-indexenv">update-fwrapper, <A HREF="#@funs89"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">update-fwrappers, <A HREF="#@funs90"><B>2.25</B></A>
</LI><LI CLASS="li-indexenv">upper-case-p, <A HREF="#@funs358"><B>13.3.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">valid-function-name-p, <A HREF="#@funs78"><B>2.22</B></A>
</LI><LI CLASS="li-indexenv">var, <A HREF="#@funs112"><B>3.4</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">wait-until-fd-usable, <A HREF="#@funs193"><B>7.3</B></A>
</LI><LI CLASS="li-indexenv">weak-pointer-value, <A HREF="#@funs32"><B>2.7.3</B></A>
</LI><LI CLASS="li-indexenv">who-binds, <A HREF="#@funs343"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">who-calls, <A HREF="#@funs341"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">who-references, <A HREF="#@funs342"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">who-sets, <A HREF="#@funs344"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">wire-fd, <A HREF="#@funs257"><B>9.2.3</B></A>
</LI><LI CLASS="li-indexenv">wire-force-output, <A HREF="#@funs238"><B>9.1.2</B></A>
</LI><LI CLASS="li-indexenv">wire-get-byte, <A HREF="#@funs248"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-get-number, <A HREF="#@funs250"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-get-object, <A HREF="#@funs254"><B>9.2.2</B></A>
</LI><LI CLASS="li-indexenv">wire-get-string, <A HREF="#@funs252"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-output-byte, <A HREF="#@funs247"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-output-number, <A HREF="#@funs249"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-output-object, <A HREF="#@funs253"><B>9.2.2</B></A>
</LI><LI CLASS="li-indexenv">wire-output-string, <A HREF="#@funs251"><B>9.2.1</B></A>
</LI><LI CLASS="li-indexenv">wire-p, <A HREF="#@funs256"><B>9.2.3</B></A>
</LI><LI CLASS="li-indexenv">with-alien, <A HREF="#@funs201">8.2.1</A>, <A HREF="#@funs205">8.2.3</A>, <A HREF="#@funs216">8.3.3</A>, <A HREF="#@funs217"><B>8.4.1</B></A>
</LI><LI CLASS="li-indexenv">with-clx-event-handling, <A HREF="#@funs199"><B>7.4.1</B></A>
</LI><LI CLASS="li-indexenv">with-compilation-unit, <A HREF="#@funs124"><B>4.3</B></A>, <A HREF="#@funs127">4.7.2</A>, <A HREF="#@funs145">5.7.5</A>
</LI><LI CLASS="li-indexenv">with-enabled-interrupts, <A HREF="#@funs178"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">with-fd-handler, <A HREF="#@funs192"><B>7.3</B></A>
</LI><LI CLASS="li-indexenv">with-float-traps-masked, <A HREF="#@funs14"><B>2.1.2.6</B></A>
</LI><LI CLASS="li-indexenv">with-interrupts, <A HREF="#@funs180"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">without-hemlock, <A HREF="#@funs181"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">without-interrupts, <A HREF="#@funs179"><B>6.8.1</B></A>
</LI><LI CLASS="li-indexenv">without-package-locks, <A HREF="#@funs21"><B>2.5.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">xref-context-file, <A HREF="#@funs346"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">xref-context-name, <A HREF="#@funs345"><B>12.2</B></A>
</LI><LI CLASS="li-indexenv">xref-context-source-path, <A HREF="#@funs347"><B>12.2</B></A>
</LI></UL></TD></TR>
</TABLE><!--NAME cmu-user.hfnd.html-->
<P><A NAME="@concept300"></A>
</P><!--TOC chapter Variable Index-->
<H1 CLASS="chapter"><!--SEC ANCHOR -->Variable Index</H1><!--SEC END --><P></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">
*max-emf-precomputation-methods*, <A HREF="#@vars21"><B>2.23.5</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">after-gc-hooks, <A HREF="#@vars8"><B>2.7.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">before-gc-hooks, <A HREF="#@vars7"><B>2.7.1</B></A>
</LI><LI CLASS="li-indexenv">block-compile-default, <A HREF="#@vars49">5.7.3</A>, <A HREF="#@vars50"><B>5.7.3</B></A>, <A HREF="#@vars51">5.7.4</A>
</LI><LI CLASS="li-indexenv">byte-compile-default, <A HREF="#@vars38">4.2</A>, <A HREF="#@vars53"><B>5.9</B></A>
</LI><LI CLASS="li-indexenv">byte-compile-top-level, <A HREF="#@vars52"><B>5.9</B></A>
</LI><LI CLASS="li-indexenv">bytes-consed-between-gcs, <A HREF="#@vars2"><B>2.7.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">command-line-strings, <A HREF="#@vars59"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">command-line-switches, <A HREF="#@vars62"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">command-line-utility-name, <A HREF="#@vars60"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">command-line-words, <A HREF="#@vars61"><B>6.1</B></A>
</LI><LI CLASS="li-indexenv">compile-file-truename, <A HREF="#@vars69">12.2</A>
</LI><LI CLASS="li-indexenv">compile-interpreted-methods-p, <A HREF="#@vars22"><B>2.23.8</B></A>
</LI><LI CLASS="li-indexenv">compile-print, <A HREF="#@vars36">4.2</A>, <A HREF="#@vars40"><B>4.2</B></A>
</LI><LI CLASS="li-indexenv">compile-progress, <A HREF="#@vars37">4.2</A>, <A HREF="#@vars41"><B>4.2</B></A>
</LI><LI CLASS="li-indexenv">compile-verbose, <A HREF="#@vars35">4.2</A>, <A HREF="#@vars39"><B>4.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">debug-print-length, <A HREF="#@vars26">3.3.2</A>, <A HREF="#@vars29">3.10</A>, <A HREF="#@vars34"><B>3.11</B></A>
</LI><LI CLASS="li-indexenv">debug-print-level, <A HREF="#@vars28">3.10</A>, <A HREF="#@vars33"><B>3.11</B></A>
</LI><LI CLASS="li-indexenv">default-external-format, <A HREF="#@vars70"><B>13.3.1</B></A>
</LI><LI CLASS="li-indexenv">derive-function-types, <A HREF="#@vars48"><B>5.3.3</B></A>
</LI><LI CLASS="li-indexenv">describe-indentation, <A HREF="#@vars10"><B>2.8</B></A>
</LI><LI CLASS="li-indexenv">describe-level, <A HREF="#@vars9"><B>2.8</B></A>
</LI><LI CLASS="li-indexenv">describe-print-length, <A HREF="#@vars12"><B>2.8</B></A>
</LI><LI CLASS="li-indexenv">describe-print-level, <A HREF="#@vars11"><B>2.8</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">efficiency-note-cost-threshold, <A HREF="#@vars44">4.4.7</A>, <A HREF="#@vars54">5.13.3</A>, <A HREF="#@vars55"><B>5.13.4</B></A>
</LI><LI CLASS="li-indexenv">efficiency-note-limit, <A HREF="#@vars56"><B>5.13.4</B></A>
</LI><LI CLASS="li-indexenv">enclosing-source-cutoff, <A HREF="#@vars45"><B>4.4.7</B></A>
</LI><LI CLASS="li-indexenv">environment-list, <A HREF="#@vars67"><B>6.2</B></A>
</LI><LI CLASS="li-indexenv">error-print-length, <A HREF="#@vars46"><B>4.4.7</B></A>
</LI><LI CLASS="li-indexenv">error-print-level, <A HREF="#@vars47"><B>4.4.7</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">gc-inhibit-hook, <A HREF="#@vars6"><B>2.7.1</B></A>
</LI></UL></TD><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">gc-notify-after, <A HREF="#@vars5"><B>2.7.1</B></A>
</LI><LI CLASS="li-indexenv">gc-notify-before, <A HREF="#@vars4"><B>2.7.1</B></A>
</LI><LI CLASS="li-indexenv">gc-run-time, <A HREF="#@vars58"><B>5.14.6</B></A>
</LI><LI CLASS="li-indexenv">gc-verbose, <A HREF="#@vars3"><B>2.7.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">hash-table-tests, <A HREF="#@vars1">2.1.6</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">ignore-extra-close-parentheses, <A HREF="#@vars17"><B>2.11.2</B></A>
</LI><LI CLASS="li-indexenv">inline-methods-in-emfs, <A HREF="#@vars20"><B>2.23.4</B></A>
</LI><LI CLASS="li-indexenv">interface-style, <A HREF="#@vars13"><B>2.9.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">load-if-source-newer, <A HREF="#@vars16"><B>2.10</B></A>
</LI><LI CLASS="li-indexenv">load-object-types, <A HREF="#@vars15"><B>2.10</B></A>
</LI><LI CLASS="li-indexenv">load-source-types, <A HREF="#@vars14"><B>2.10</B></A>
</LI><LI CLASS="li-indexenv">locale-directories, <A HREF="#@vars25"><B>2.29.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">max-trace-indentation, <A HREF="#@vars31"><B>3.10</B></A>
</LI><LI CLASS="li-indexenv">module-provider-functions, <A HREF="#@vars24"><B>2.28</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">optimize-inline-slot-access-p, <A HREF="#@vars19"><B>2.23.3.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">read-default-float-format, <A HREF="#@vars0">2.1.2</A>
</LI><LI CLASS="li-indexenv">record-xref-info, <A HREF="#@vars68"><B>12.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">stderr, <A HREF="#@vars65"><B>6.2</B></A>
</LI><LI CLASS="li-indexenv">stdin, <A HREF="#@vars63"><B>6.2</B></A>
</LI><LI CLASS="li-indexenv">stdout, <A HREF="#@vars64"><B>6.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">timed-functions, <A HREF="#@vars57"><B>5.14.1</B></A>
</LI><LI CLASS="li-indexenv">trace-encapsulate-package-names, <A HREF="#@vars32"><B>3.10</B></A>
</LI><LI CLASS="li-indexenv">trace-output, <A HREF="#@vars27">3.10</A>
</LI><LI CLASS="li-indexenv">traced-function-list, <A HREF="#@vars30"><B>3.10</B></A>
</LI><LI CLASS="li-indexenv">trust-dynamic-extent-declarations, <A HREF="#@vars23"><B>2.26</B></A>
</LI><LI CLASS="li-indexenv">tty, <A HREF="#@vars66"><B>6.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">undefined-warning-limit, <A HREF="#@vars42"><B>4.3.1</B></A>, <A HREF="#@vars43">4.4.7</A>
</LI><LI CLASS="li-indexenv">use-slot-types-p, <A HREF="#@vars18"><B>2.23.2</B></A>
</LI></UL></TD></TR>
</TABLE><!--NAME cmu-user.hvnd.html-->
<P><A NAME="@concept301"></A>
</P><!--TOC chapter Type Index-->
<H1 CLASS="chapter"><!--SEC ANCHOR -->Type Index</H1><!--SEC END --><P></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">
*, <A HREF="#@types31"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">ambiguous-variable-name, <A HREF="#@types54"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">and, <A HREF="#@types29">5.3.1</A>
</LI><LI CLASS="li-indexenv">array, <A HREF="#@types32"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">base-character, <A HREF="#@types9">2.1.4</A>
</LI><LI CLASS="li-indexenv">bignum, <A HREF="#@types1">2.1.1</A>
</LI><LI CLASS="li-indexenv">boolean, <A HREF="#@types39"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">c-string, <A HREF="#@types45"><B>8.2.4</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">debug-condition, <A HREF="#@types47"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">debug-error, <A HREF="#@types55"><B>11.1.2</B></A>
</LI><LI CLASS="li-indexenv">divide-by-zero, <A HREF="#@types7">2.1.2.4</A>
</LI><LI CLASS="li-indexenv">double-double-float, <A HREF="#@types4">2.1.2</A>
</LI><LI CLASS="li-indexenv">double-float, <A HREF="#@types3">2.1.2</A>, <A HREF="#@types41"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">end-of-file, <A HREF="#@types16">2.12</A>
</LI><LI CLASS="li-indexenv">enum, <A HREF="#@types35"><B>8.2.3</B></A>
</LI><LI CLASS="li-indexenv">error, <A HREF="#@types19">4.2</A>
</LI><LI CLASS="li-indexenv">extensions:double-double-float, <A HREF="#@types8"><B>2.1.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">fixnum, <A HREF="#@types0">2.1.1</A>, <A HREF="#@types14">2.8</A>, <A HREF="#@types24">5.2.2</A>
</LI><LI CLASS="li-indexenv">floating-point-overflow, <A HREF="#@types6">2.1.2.4</A>
</LI><LI CLASS="li-indexenv">floating-point-underflow, <A HREF="#@types5">2.1.2.4</A>
</LI><LI CLASS="li-indexenv">frame-function-mismatch, <A HREF="#@types59"><B>11.1.2</B></A>
</LI><LI CLASS="li-indexenv">ftype, <A HREF="#@types30">5.3.3</A>
</LI><LI CLASS="li-indexenv">function, <A HREF="#@types13">2.8</A>, <A HREF="#@types42"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">hash-table, <A HREF="#@types12">2.8</A>
</LI><LI CLASS="li-indexenv">hash-tables, <A HREF="#@types11">2.1.6</A>
</LI><LI CLASS="li-indexenv">host-entry, <A HREF="#@types46"><B>10.2</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">integer, <A HREF="#@types37"><B>8.2.3</B></A>
</LI></UL></TD><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">invalid-value, <A HREF="#@types53"><B>11.1.1</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">lambda-list-unavailable, <A HREF="#@types52"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">list, <A HREF="#@types23">5.2.2</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">member, <A HREF="#@types25">5.2.3</A>, <A HREF="#@types27">5.2.11</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">no-debug-blocks, <A HREF="#@types50"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">no-debug-function-returns, <A HREF="#@types49"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">no-debug-info, <A HREF="#@types48"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">no-debug-variables, <A HREF="#@types51"><B>11.1.1</B></A>
</LI><LI CLASS="li-indexenv">null, <A HREF="#@types22">5.2.2</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">or, <A HREF="#@types26">5.2.4</A>, <A HREF="#@types28">5.2.11</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">pathname, <A HREF="#@types17">2.16</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">serious-condition, <A HREF="#@types18">3.1</A>
</LI><LI CLASS="li-indexenv">signed, <A HREF="#@types36"><B>8.2.3</B></A>
</LI><LI CLASS="li-indexenv">single-float, <A HREF="#@types2">2.1.2</A>, <A HREF="#@types40"><B>8.2.3</B></A>
</LI><LI CLASS="li-indexenv">string-char, <A HREF="#@types10">2.1.4</A>
</LI><LI CLASS="li-indexenv">struct, <A HREF="#@types33"><B>8.2.3</B></A>
</LI><LI CLASS="li-indexenv">style-warning, <A HREF="#@types21">4.2</A>
</LI><LI CLASS="li-indexenv">symbol, <A HREF="#@types15">2.8</A>
</LI><LI CLASS="li-indexenv">system-area-pointer, <A HREF="#@types43"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">unhandled-condition, <A HREF="#@types56"><B>11.1.2</B></A>
</LI><LI CLASS="li-indexenv">union, <A HREF="#@types34"><B>8.2.3</B></A>
</LI><LI CLASS="li-indexenv">unknown-code-location, <A HREF="#@types57"><B>11.1.2</B></A>
</LI><LI CLASS="li-indexenv">unknown-debug-variable, <A HREF="#@types58"><B>11.1.2</B></A>
</LI><LI CLASS="li-indexenv">unsigned, <A HREF="#@types38"><B>8.2.3</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">void, <A HREF="#@types44"><B>8.2.4</B></A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">warning, <A HREF="#@types20">4.2</A>
</LI></UL></TD></TR>
</TABLE><!--NAME cmu-user.htnd.html-->
<P><A NAME="@concept302"></A>
</P><!--TOC chapter Concept Index-->
<H1 CLASS="chapter"><!--SEC ANCHOR -->Concept Index</H1><!--SEC END --><P></P><TABLE CELLSPACING=6 CELLPADDING=0><TR><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">
actual source, <A HREF="#@concept97">4.4.2</A>
</LI><LI CLASS="li-indexenv">advising, <A HREF="#@concept90">3.10.1</A>
</LI><LI CLASS="li-indexenv">aliens, <A HREF="#@concept288">6.4</A>
</LI><LI CLASS="li-indexenv">argument syntax<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency, <A HREF="#@concept253">5.12.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">arithmetic<UL CLASS="indexenv"><LI CLASS="li-indexenv">
generic, <A HREF="#@concept231">5.11.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">arithmetic type inference, <A HREF="#@concept157">5.3.4</A>
</LI><LI CLASS="li-indexenv">array types<UL CLASS="indexenv"><LI CLASS="li-indexenv">
specialized, <A HREF="#@concept238">5.11.8</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">arrays<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept215">5.10.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">assembly listing, <A HREF="#@concept259">5.12.5</A>
</LI><LI CLASS="li-indexenv">availability of debug variables, <A HREF="#@concept68">3.4.1</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">benchmarking techniques, <A HREF="#@concept287">5.14.8</A>
</LI><LI CLASS="li-indexenv">bignums, <A HREF="#@concept234">5.11.5</A>
</LI><LI CLASS="li-indexenv">bit-vectors<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept217">5.10.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">block<UL CLASS="indexenv"><LI CLASS="li-indexenv">
basic, <A HREF="#@concept74">3.5.2</A>
</LI><LI CLASS="li-indexenv">start location, <A HREF="#@concept75">3.5.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">block compilation, <A HREF="#@concept193">5.7</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
debugger implications, <A HREF="#@concept56">3.3.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">breakpoints, <A HREF="#@concept81">3.9</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
errors, <A HREF="#@concept85">3.10</A>
</LI><LI CLASS="li-indexenv">function-end, <A HREF="#@concept88">3.10</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">byte coded compilation, <A HREF="#@concept208">5.9</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">Concept Index, <A HREF="#@concept302">13.4.2</A>
</LI><LI CLASS="li-indexenv">CPU time<UL CLASS="indexenv"><LI CLASS="li-indexenv">
interpretation of, <A HREF="#@concept284">5.14.7</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">call<UL CLASS="indexenv"><LI CLASS="li-indexenv">
inline, <A HREF="#@concept203">5.8</A>
</LI><LI CLASS="li-indexenv">local, <A HREF="#@concept185">5.6</A>
</LI><LI CLASS="li-indexenv">numeric operands, <A HREF="#@concept243">5.11.10</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">canonicalization of types, <A HREF="#@concept134">5.2.2</A>
</LI><LI CLASS="li-indexenv">characters, <A HREF="#@concept245">5.11.11</A>
</LI><LI CLASS="li-indexenv">cleanup<UL CLASS="indexenv"><LI CLASS="li-indexenv">
stack frame kind, <A HREF="#@concept59">3.3.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">closures, <A HREF="#@concept188">5.6.3</A>
</LI><LI CLASS="li-indexenv">command line options, <A HREF="#@concept0">1.2</A>
</LI><LI CLASS="li-indexenv">compatibility with other Lisps, <A HREF="#@concept116">4.6</A>
</LI><LI CLASS="li-indexenv">compilation<UL CLASS="indexenv"><LI CLASS="li-indexenv">
block, <A HREF="#@concept194">5.7</A>
</LI><LI CLASS="li-indexenv">units, <A HREF="#@concept92">4.3</A>
</LI><LI CLASS="li-indexenv">why to, <A HREF="#@concept248">5.12.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">compilation-speed optimization
quality, <A HREF="#@concept122">4.7.1</A>
</LI><LI CLASS="li-indexenv">compile time type errors, <A HREF="#@concept108">4.5.1</A>
</LI><LI CLASS="li-indexenv">compile-file<UL CLASS="indexenv"><LI CLASS="li-indexenv">
block compilation arguments, <A HREF="#@concept198">5.7.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">compiler error messages, <A HREF="#@concept95">4.4</A>
</LI><LI CLASS="li-indexenv">compiler error severity, <A HREF="#@concept102">4.4.4</A>
</LI><LI CLASS="li-indexenv">compiler policy, <A HREF="#@concept118">4.7</A>
</LI><LI CLASS="li-indexenv">compiling, <A HREF="#@concept91">4.2</A>
</LI><LI CLASS="li-indexenv">complemented type checks, <A HREF="#@concept164">5.3.6</A>
</LI><LI CLASS="li-indexenv">conditional type inference, <A HREF="#@concept160">5.3.5</A>
</LI><LI CLASS="li-indexenv">consing, <A HREF="#@concept249">5.12.2</A>, <A HREF="#@concept282">5.14</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
overhead of, <A HREF="#@concept224">5.11.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">constant folding, <A HREF="#@concept168">5.4.2</A>
</LI><LI CLASS="li-indexenv">constant-function declaration, <A HREF="#@concept170">5.4.2</A>
</LI><LI CLASS="li-indexenv">context sensitive declarations, <A HREF="#@concept199">5.7.5</A>
</LI><LI CLASS="li-indexenv">continuations<UL CLASS="indexenv"><LI CLASS="li-indexenv">
implicit representation, <A HREF="#@concept263">5.12.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">control optimization, <A HREF="#@concept173">5.4.4</A>
</LI><LI CLASS="li-indexenv">cross-referencing, <A HREF="#@concept297">12</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">dead code elimination, <A HREF="#@concept172">5.4.3</A>, <A HREF="#@concept176">5.4.5</A>
</LI><LI CLASS="li-indexenv">debug optimization quality, <A HREF="#@concept70">3.4.1</A>, <A HREF="#@concept73">3.5.2</A>, <A HREF="#@concept77">3.6</A>, <A HREF="#@concept124">4.7.1</A>
</LI><LI CLASS="li-indexenv">debug variables, <A HREF="#@concept67">3.4</A>
</LI><LI CLASS="li-indexenv">debugger, <A HREF="#@concept48">3</A>
</LI><LI CLASS="li-indexenv">declarations<UL CLASS="indexenv"><LI CLASS="li-indexenv">
<TT class=code>optimize-interface</TT>, <A HREF="#@concept128">4.7.2</A>
</LI><LI CLASS="li-indexenv"><TT class=code>optimize</TT>, <A HREF="#@concept120">4.7.1</A>
</LI><LI CLASS="li-indexenv">block compilation, <A HREF="#@concept195">5.7.2</A>
</LI><LI CLASS="li-indexenv">context-sensitive, <A HREF="#@concept200">5.7.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">defstruct types, <A HREF="#@concept146">5.2.8</A>
</LI><LI CLASS="li-indexenv">derivation of types, <A HREF="#@concept153">5.3</A>
</LI><LI CLASS="li-indexenv">descriptor representations<UL CLASS="indexenv"><LI CLASS="li-indexenv">
forcing of, <A HREF="#@concept277">5.13.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">descriptors<UL CLASS="indexenv"><LI CLASS="li-indexenv">
object, <A HREF="#@concept221">5.11.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">dynamic type inference, <A HREF="#@concept159">5.3.5</A>
</LI><LI CLASS="li-indexenv">dynamic-extent, <A HREF="#@concept41">2.26</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
closures, <A HREF="#@concept43">2.26.2</A>
</LI><LI CLASS="li-indexenv">known CL functions, <A HREF="#@concept44">2.26.2</A>
</LI><LI CLASS="li-indexenv">list, list*, cons, <A HREF="#@concept45">2.26.3</A>
</LI><LI CLASS="li-indexenv">rest lists, <A HREF="#@concept42">2.26.1</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">effective method, <A HREF="#@concept21">2.23.4</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
inlining of methods, <A HREF="#@concept23">2.23.4</A>
</LI><LI CLASS="li-indexenv">precomputation, <A HREF="#@concept25">2.23.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">efficiency<UL CLASS="indexenv"><LI CLASS="li-indexenv">
general hints, <A HREF="#@concept247">5.12</A>
</LI><LI CLASS="li-indexenv">of argument syntax, <A HREF="#@concept254">5.12.3</A>
</LI><LI CLASS="li-indexenv">of memory use, <A HREF="#@concept252">5.12.2</A>
</LI><LI CLASS="li-indexenv">of numeric variables, <A HREF="#@concept229">5.11.3</A>
</LI><LI CLASS="li-indexenv">of objects, <A HREF="#@concept212">5.10</A>
</LI><LI CLASS="li-indexenv">of type checking, <A HREF="#@concept270">5.13.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">efficiency notes, <A HREF="#@concept264">5.13</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
for representation, <A HREF="#@concept273">5.13.3</A>
</LI><LI CLASS="li-indexenv">verbosity, <A HREF="#@concept279">5.13.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">empty type<UL CLASS="indexenv"><LI CLASS="li-indexenv">
the, <A HREF="#@concept140">5.2.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">encapsulation, <A HREF="#@concept89">3.10.1</A>
</LI><LI CLASS="li-indexenv">end-block declaration, <A HREF="#@concept197">5.7.2</A>
</LI><LI CLASS="li-indexenv">entry points<UL CLASS="indexenv"><LI CLASS="li-indexenv">
external, <A HREF="#@concept55">3.3.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">equivalence of types, <A HREF="#@concept135">5.2.2</A>
</LI><LI CLASS="li-indexenv">error messages<UL CLASS="indexenv"><LI CLASS="li-indexenv">
compiler, <A HREF="#@concept94">4.4</A>
</LI><LI CLASS="li-indexenv">verbosity, <A HREF="#@concept105">4.4.7</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">errors<UL CLASS="indexenv"><LI CLASS="li-indexenv">
breakpoints, <A HREF="#@concept86">3.10</A>
</LI><LI CLASS="li-indexenv">result type of, <A HREF="#@concept141">5.2.5</A>
</LI><LI CLASS="li-indexenv">run-time, <A HREF="#@concept65">3.3.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">evaluation<UL CLASS="indexenv"><LI CLASS="li-indexenv">
debugger, <A HREF="#@concept49">3.2</A>, <A HREF="#@concept71">3.4.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">existing programs<UL CLASS="indexenv"><LI CLASS="li-indexenv">
to run, <A HREF="#@concept114">4.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">expansion<UL CLASS="indexenv"><LI CLASS="li-indexenv">
inline, <A HREF="#@concept202">5.8</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">external<UL CLASS="indexenv"><LI CLASS="li-indexenv">
stack frame kind, <A HREF="#@concept57">3.3.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">external entry points, <A HREF="#@concept54">3.3.4</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">Function Index, <A HREF="#@concept299">13.4.2</A>
</LI><LI CLASS="li-indexenv">fixnums, <A HREF="#@concept233">5.11.5</A>
</LI><LI CLASS="li-indexenv">floating point efficiency, <A HREF="#@concept236">5.11.7</A>
</LI><LI CLASS="li-indexenv">folding<UL CLASS="indexenv"><LI CLASS="li-indexenv">
constant, <A HREF="#@concept169">5.4.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">frames<UL CLASS="indexenv"><LI CLASS="li-indexenv">
stack, <A HREF="#@concept51">3.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">free<UL CLASS="indexenv"><LI CLASS="li-indexenv">
C function, <A HREF="#@concept293">6.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">freeze-type declaration, <A HREF="#@concept148">5.2.9</A>
</LI><LI CLASS="li-indexenv">function<UL CLASS="indexenv"><LI CLASS="li-indexenv">
names, <A HREF="#@concept52">3.3.3</A>
</LI><LI CLASS="li-indexenv">tracing, <A HREF="#@concept83">3.10</A>
</LI><LI CLASS="li-indexenv">type inference, <A HREF="#@concept155">5.3.3</A>
</LI><LI CLASS="li-indexenv">types, <A HREF="#@concept142">5.2.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">function call<UL CLASS="indexenv"><LI CLASS="li-indexenv">
inline, <A HREF="#@concept204">5.8</A>
</LI><LI CLASS="li-indexenv">local, <A HREF="#@concept186">5.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">function wrappers, <A HREF="#@concept39">2.25</A>
</LI><LI CLASS="li-indexenv">function-end breakpoints, <A HREF="#@concept87">3.10</A>
</LI><LI CLASS="li-indexenv">fwrappers, <A HREF="#@concept40">2.25</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">garbage collection, <A HREF="#@concept250">5.12.2</A>
</LI><LI CLASS="li-indexenv">generic arithmetic, <A HREF="#@concept230">5.11.4</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">hash-tables<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept218">5.10.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">hierarchical packages, <A HREF="#@concept1">2.4</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">Internationalization, <A HREF="#@concept298">13</A>
</LI><LI CLASS="li-indexenv">implicit continuation representation (IR1), <A HREF="#@concept262">5.12.5</A>
</LI><LI CLASS="li-indexenv">inference of types, <A HREF="#@concept152">5.3</A>
</LI><LI CLASS="li-indexenv">inhibit-warnings
optimization quality, <A HREF="#@concept126">4.7.1</A>
</LI><LI CLASS="li-indexenv">inline, <A HREF="#@concept24">2.23.4</A>
</LI><LI CLASS="li-indexenv">inline expansion, <A HREF="#@concept79">3.6</A>, <A HREF="#@concept130">4.8</A>, <A HREF="#@concept201">5.8</A>
</LI><LI CLASS="li-indexenv">interpretation of run time, <A HREF="#@concept286">5.14.7</A>
</LI><LI CLASS="li-indexenv">interrupts, <A HREF="#@concept64">3.3.6</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">keyword argument efficiency, <A HREF="#@concept255">5.12.3</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">let optimization, <A HREF="#@concept166">5.4.1</A>
</LI><LI CLASS="li-indexenv">lisp threads, <A HREF="#@concept11">2.20</A>
</LI><LI CLASS="li-indexenv">listing files<UL CLASS="indexenv"><LI CLASS="li-indexenv">
trace, <A HREF="#@concept260">5.12.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">lists<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept213">5.10.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">local call, <A HREF="#@concept184">5.6</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
numeric operands, <A HREF="#@concept242">5.11.10</A>
</LI><LI CLASS="li-indexenv">return values, <A HREF="#@concept192">5.6.5</A>
</LI><LI CLASS="li-indexenv">type inference, <A HREF="#@concept154">5.3.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">locations<UL CLASS="indexenv"><LI CLASS="li-indexenv">
unknown, <A HREF="#@concept63">3.3.6</A>
</LI></UL>
</LI></UL></TD><TD VALIGN=top ALIGN=left><UL CLASS="indexenv"><LI CLASS="li-indexenv">logical pathnames, <A HREF="#@concept5">2.16.3</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">macroexpansion, <A HREF="#@concept99">4.4.3</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
errors during, <A HREF="#@concept103">4.4.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">malloc<UL CLASS="indexenv"><LI CLASS="li-indexenv">
C function, <A HREF="#@concept292">6.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">mapping<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept257">5.12.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">maybe-inline declaration, <A HREF="#@concept207">5.8.3</A>
</LI><LI CLASS="li-indexenv">member types, <A HREF="#@concept136">5.2.3</A>
</LI><LI CLASS="li-indexenv">memory allocation, <A HREF="#@concept251">5.12.2</A>
</LI><LI CLASS="li-indexenv">methods, <A HREF="#@concept18">2.23.3.3</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
auto-compilation, <A HREF="#@concept19">2.23.3.3</A>
</LI><LI CLASS="li-indexenv">emf precomputation, <A HREF="#@concept27">2.23.5</A>
</LI><LI CLASS="li-indexenv">inlining in effective methods, <A HREF="#@concept22">2.23.4</A>
</LI><LI CLASS="li-indexenv">interpreted, <A HREF="#@concept38">2.23.8</A>
</LI><LI CLASS="li-indexenv">load time, <A HREF="#@concept26">2.23.5</A>
</LI><LI CLASS="li-indexenv">profiling, <A HREF="#@concept37">2.23.7</A>
</LI><LI CLASS="li-indexenv">sealing, <A HREF="#@concept31">2.23.6</A>
</LI><LI CLASS="li-indexenv">tracing, <A HREF="#@concept36">2.23.7</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">modular-arith, <A HREF="#@concept46">2.27</A>
</LI><LI CLASS="li-indexenv">multiple value optimization, <A HREF="#@concept177">5.4.6</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">NIL type, <A HREF="#@concept139">5.2.5</A>
</LI><LI CLASS="li-indexenv">names<UL CLASS="indexenv"><LI CLASS="li-indexenv">
function, <A HREF="#@concept53">3.3.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">non-descriptor representations, <A HREF="#@concept225">5.11.2</A>, <A HREF="#@concept276">5.13.3</A>
</LI><LI CLASS="li-indexenv">notes<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency, <A HREF="#@concept265">5.13</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">numbers in local call, <A HREF="#@concept244">5.11.10</A>
</LI><LI CLASS="li-indexenv">numeric<UL CLASS="indexenv"><LI CLASS="li-indexenv">
operation efficiency, <A HREF="#@concept232">5.11.4</A>
</LI><LI CLASS="li-indexenv">type inference, <A HREF="#@concept158">5.3.4</A>
</LI><LI CLASS="li-indexenv">types, <A HREF="#@concept219">5.11</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">object representation, <A HREF="#@concept210">5.10</A>, <A HREF="#@concept222">5.11.1</A>
</LI><LI CLASS="li-indexenv">object representation efficiency notes, <A HREF="#@concept274">5.13.3</A>
</LI><LI CLASS="li-indexenv">object sets, <A HREF="#@concept296">7.1</A>
</LI><LI CLASS="li-indexenv">open-coding, <A HREF="#@concept129">4.8</A>
</LI><LI CLASS="li-indexenv">operation specific type inference, <A HREF="#@concept156">5.3.4</A>
</LI><LI CLASS="li-indexenv">optimization, <A HREF="#@concept165">5.4</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
control, <A HREF="#@concept174">5.4.4</A>
</LI><LI CLASS="li-indexenv">function call, <A HREF="#@concept205">5.8</A>
</LI><LI CLASS="li-indexenv">let, <A HREF="#@concept167">5.4.1</A>
</LI><LI CLASS="li-indexenv">multiple value, <A HREF="#@concept178">5.4.6</A>
</LI><LI CLASS="li-indexenv">type check, <A HREF="#@concept163">5.3.6</A>, <A HREF="#@concept271">5.13.2</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">optimize declaration, <A HREF="#@concept78">3.6</A>, <A HREF="#@concept119">4.7.1</A>
</LI><LI CLASS="li-indexenv">optimize-interface declaration, <A HREF="#@concept127">4.7.2</A>
</LI><LI CLASS="li-indexenv">optional<UL CLASS="indexenv"><LI CLASS="li-indexenv">
stack frame kind, <A HREF="#@concept58">3.3.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">or (union) types, <A HREF="#@concept138">5.2.4</A>
</LI><LI CLASS="li-indexenv">original source, <A HREF="#@concept96">4.4.2</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">package locks, <A HREF="#@concept2">2.5</A>
</LI><LI CLASS="li-indexenv">pointers, <A HREF="#@concept291">6.5</A>
</LI><LI CLASS="li-indexenv">policy<UL CLASS="indexenv"><LI CLASS="li-indexenv">
compiler, <A HREF="#@concept117">4.7</A>
</LI><LI CLASS="li-indexenv">debugger, <A HREF="#@concept76">3.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">precise type checking, <A HREF="#@concept110">4.5.2</A>
</LI><LI CLASS="li-indexenv">primary method, <A HREF="#@concept12">2.23.1</A>
</LI><LI CLASS="li-indexenv">processing path, <A HREF="#@concept98">4.4.3</A>
</LI><LI CLASS="li-indexenv">profiling, <A HREF="#@concept34">2.23.7</A>, <A HREF="#@concept280">5.14</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
methods, <A HREF="#@concept35">2.23.7</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">random number generation, <A HREF="#@concept9">2.19</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
MT-19937 generator, <A HREF="#@concept10">2.19.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">read errors<UL CLASS="indexenv"><LI CLASS="li-indexenv">
compiler, <A HREF="#@concept104">4.4.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">recording of inline expansions, <A HREF="#@concept206">5.8.1</A>
</LI><LI CLASS="li-indexenv">recursion, <A HREF="#@concept183">5.5</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
self, <A HREF="#@concept187">5.6.1</A>
</LI><LI CLASS="li-indexenv">tail, <A HREF="#@concept61">3.3.5</A>, <A HREF="#@concept190">5.6.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">representation<UL CLASS="indexenv"><LI CLASS="li-indexenv">
object, <A HREF="#@concept211">5.10</A>, <A HREF="#@concept223">5.11.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">representation efficiency notes, <A HREF="#@concept272">5.13.3</A>
</LI><LI CLASS="li-indexenv">require, <A HREF="#@concept47">2.28</A>
</LI><LI CLASS="li-indexenv">rest argument efficiency, <A HREF="#@concept256">5.12.3</A>
</LI><LI CLASS="li-indexenv">return values<UL CLASS="indexenv"><LI CLASS="li-indexenv">
local call, <A HREF="#@concept191">5.6.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">run time<UL CLASS="indexenv"><LI CLASS="li-indexenv">
interpretation of, <A HREF="#@concept285">5.14.7</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">safety optimization quality, <A HREF="#@concept125">4.7.1</A>
</LI><LI CLASS="li-indexenv">sealing, <A HREF="#@concept28">2.23.6</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
methods, <A HREF="#@concept30">2.23.6</A>
</LI><LI CLASS="li-indexenv">subclasses, <A HREF="#@concept29">2.23.6</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">search lists, <A HREF="#@concept6">2.16.4</A>
</LI><LI CLASS="li-indexenv">semi-inline expansion, <A HREF="#@concept80">3.6</A>
</LI><LI CLASS="li-indexenv">severity of compiler errors, <A HREF="#@concept101">4.4.4</A>
</LI><LI CLASS="li-indexenv">signals, <A HREF="#@concept295">6.8</A>
</LI><LI CLASS="li-indexenv">simple-streams, <A HREF="#@concept3">2.13</A>
</LI><LI CLASS="li-indexenv">slot access optimization, <A HREF="#@concept14">2.23.3</A>
</LI><LI CLASS="li-indexenv">slot declaration<UL CLASS="indexenv"><LI CLASS="li-indexenv">
inline, <A HREF="#@concept17">2.23.3.2</A>
</LI><LI CLASS="li-indexenv">method recompilation, <A HREF="#@concept20">2.23.3.3</A>
</LI><LI CLASS="li-indexenv">slot-boundp, <A HREF="#@concept16">2.23.3.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">slot declarations, <A HREF="#@concept15">2.23.3</A>
</LI><LI CLASS="li-indexenv">slot type checking, <A HREF="#@concept13">2.23.2</A>
</LI><LI CLASS="li-indexenv">source location printing<UL CLASS="indexenv"><LI CLASS="li-indexenv">
debugger, <A HREF="#@concept72">3.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">source-to-source transformation, <A HREF="#@concept100">4.4.3</A>, <A HREF="#@concept179">5.4.7</A>
</LI><LI CLASS="li-indexenv">space optimization, <A HREF="#@concept209">5.9</A>
</LI><LI CLASS="li-indexenv">space optimization quality, <A HREF="#@concept123">4.7.1</A>
</LI><LI CLASS="li-indexenv">specialized array types, <A HREF="#@concept237">5.11.8</A>
</LI><LI CLASS="li-indexenv">specialized structure slots, <A HREF="#@concept241">5.11.9</A>
</LI><LI CLASS="li-indexenv">speed optimization quality, <A HREF="#@concept121">4.7.1</A>
</LI><LI CLASS="li-indexenv">stack frames, <A HREF="#@concept50">3.3</A>
</LI><LI CLASS="li-indexenv">stack numbers, <A HREF="#@concept226">5.11.2</A>, <A HREF="#@concept275">5.13.3</A>
</LI><LI CLASS="li-indexenv">start-block declaration, <A HREF="#@concept196">5.7.2</A>
</LI><LI CLASS="li-indexenv">static functions, <A HREF="#@concept131">4.8</A>
</LI><LI CLASS="li-indexenv">strings, <A HREF="#@concept246">5.11.11</A>
</LI><LI CLASS="li-indexenv">structure types, <A HREF="#@concept145">5.2.8</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept214">5.10.2</A>
</LI><LI CLASS="li-indexenv">numeric slots, <A HREF="#@concept240">5.11.9</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">style recommendations, <A HREF="#@concept150">5.2.11</A>, <A HREF="#@concept181">5.4.8</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">Type Index, <A HREF="#@concept301">13.4.2</A>
</LI><LI CLASS="li-indexenv">tail recursion, <A HREF="#@concept60">3.3.5</A>, <A HREF="#@concept182">5.5</A>, <A HREF="#@concept189">5.6.4</A>
</LI><LI CLASS="li-indexenv">time formatting, <A HREF="#@concept8">2.18</A>
</LI><LI CLASS="li-indexenv">time parsing, <A HREF="#@concept7">2.18</A>
</LI><LI CLASS="li-indexenv">timing, <A HREF="#@concept281">5.14</A>
</LI><LI CLASS="li-indexenv">trace files, <A HREF="#@concept258">5.12.5</A>
</LI><LI CLASS="li-indexenv">tracing, <A HREF="#@concept32">2.23.7</A>, <A HREF="#@concept82">3.10</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
errors, <A HREF="#@concept84">3.10</A>
</LI><LI CLASS="li-indexenv">methods, <A HREF="#@concept33">2.23.7</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">transformation<UL CLASS="indexenv"><LI CLASS="li-indexenv">
source-to-source, <A HREF="#@concept180">5.4.7</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">tuning, <A HREF="#@concept266">5.13</A>, <A HREF="#@concept283">5.14</A>
</LI><LI CLASS="li-indexenv">type checking<UL CLASS="indexenv"><LI CLASS="li-indexenv">
at compile time, <A HREF="#@concept109">4.5.1</A>
</LI><LI CLASS="li-indexenv">efficiency of, <A HREF="#@concept269">5.13.2</A>
</LI><LI CLASS="li-indexenv">optimization, <A HREF="#@concept162">5.3.6</A>
</LI><LI CLASS="li-indexenv">precise, <A HREF="#@concept111">4.5.2</A>
</LI><LI CLASS="li-indexenv">weakened, <A HREF="#@concept113">4.5.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">type declarations<UL CLASS="indexenv"><LI CLASS="li-indexenv">
variable, <A HREF="#@concept228">5.11.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">type inference, <A HREF="#@concept151">5.3</A>
<UL CLASS="indexenv"><LI CLASS="li-indexenv">
dynamic, <A HREF="#@concept161">5.3.5</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">types<UL CLASS="indexenv"><LI CLASS="li-indexenv">
alien, <A HREF="#@concept289">6.4</A>
</LI><LI CLASS="li-indexenv">equivalence, <A HREF="#@concept133">5.2.2</A>
</LI><LI CLASS="li-indexenv">foreign language, <A HREF="#@concept290">6.4</A>
</LI><LI CLASS="li-indexenv">function, <A HREF="#@concept143">5.2.6</A>
</LI><LI CLASS="li-indexenv">in python, <A HREF="#@concept107">4.5</A>, <A HREF="#@concept132">5.2</A>
</LI><LI CLASS="li-indexenv">numeric, <A HREF="#@concept220">5.11</A>
</LI><LI CLASS="li-indexenv">portability, <A HREF="#@concept115">4.6</A>
</LI><LI CLASS="li-indexenv">restrictions on, <A HREF="#@concept149">5.2.10</A>
</LI><LI CLASS="li-indexenv">specialized array, <A HREF="#@concept239">5.11.8</A>
</LI><LI CLASS="li-indexenv">structure, <A HREF="#@concept147">5.2.8</A>
</LI><LI CLASS="li-indexenv">uncertainty, <A HREF="#@concept267">5.13.1</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">uncertainty of types, <A HREF="#@concept268">5.13.1</A>
</LI><LI CLASS="li-indexenv">undefined warnings, <A HREF="#@concept93">4.3.1</A>
</LI><LI CLASS="li-indexenv">union (<TT class=code>or</TT>) types, <A HREF="#@concept137">5.2.4</A>
</LI><LI CLASS="li-indexenv">unix<UL CLASS="indexenv"><LI CLASS="li-indexenv">
pathnames, <A HREF="#@concept4">2.16.1</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">unix signals, <A HREF="#@concept294">6.8</A>
</LI><LI CLASS="li-indexenv">unknown code locations, <A HREF="#@concept62">3.3.6</A>
</LI><LI CLASS="li-indexenv">unreachable code deletion, <A HREF="#@concept175">5.4.5</A>
</LI><LI CLASS="li-indexenv">unused expression elimination, <A HREF="#@concept171">5.4.3</A>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">Variable Index, <A HREF="#@concept300">13.4.2</A>
</LI><LI CLASS="li-indexenv">Virtual Machine (VM, or IR2) representation, <A HREF="#@concept261">5.12.5</A>
</LI><LI CLASS="li-indexenv">validity of debug variables, <A HREF="#@concept69">3.4.1</A>
</LI><LI CLASS="li-indexenv">values declaration, <A HREF="#@concept144">5.2.7</A>
</LI><LI CLASS="li-indexenv">variables<UL CLASS="indexenv"><LI CLASS="li-indexenv">
debugger access, <A HREF="#@concept66">3.4</A>
</LI><LI CLASS="li-indexenv">non-descriptor, <A HREF="#@concept227">5.11.3</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">vectors<UL CLASS="indexenv"><LI CLASS="li-indexenv">
efficiency of, <A HREF="#@concept216">5.10.4</A>
</LI></UL>
</LI><LI CLASS="li-indexenv">verbosity<UL CLASS="indexenv"><LI CLASS="li-indexenv">
of efficiency notes, <A HREF="#@concept278">5.13.4</A>
</LI><LI CLASS="li-indexenv">of error messages, <A HREF="#@concept106">4.4.7</A>
</LI></UL>
<BR>
<BR>
</LI><LI CLASS="li-indexenv">weakened type checking, <A HREF="#@concept112">4.5.3</A>
</LI><LI CLASS="li-indexenv">word integers, <A HREF="#@concept235">5.11.6</A>
</LI></UL></TD></TR>
</TABLE><!--NAME cmu-user.hcnd.html-->
<!--CUT END -->
<!--HTMLFOOT-->
<!--ENDHTML-->
<!--FOOTER-->
<HR SIZE=2><BLOCKQUOTE CLASS="quote"><EM>This document was translated from L<sup>A</sup>T<sub>E</sub>X by
</EM><A HREF="http://hevea.inria.fr/index.html"><EM>H</EM><EM><FONT SIZE=2><sup>E</sup></FONT></EM><EM>V</EM><EM><FONT SIZE=2><sup>E</sup></FONT></EM><EM>A</EM></A><EM>.</EM></BLOCKQUOTE></BODY>
</HTML>
|