This file is indexed.

/usr/share/pyshared/Scientific/BSP/core.py is in python-scientific 2.8-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
# High-level parallelization classes
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2008-8-18
#

import RemoteObjects
from Scientific import N
import cPickle, operator, sys, types

try:
    virtual_bsp_machine = sys.virtual_bsp_machine
    bsplib = None
    world = None
except AttributeError:
    virtual_bsp_machine = None
    try:
        import Scientific_bsplib
        bsplib = Scientific_bsplib
        world = None
    except ImportError:
        bsplib = None
        from Scientific.MPI import world
        try:
            if world.__class__.__name__ == "DummyCommunicator":
                world = None
        except AttributeError:
            pass
        if world is not None:
            world = world.duplicate()

#
# Number of processors
#
if virtual_bsp_machine is not None:
    numberOfProcessors = virtual_bsp_machine.numberOfProcessors()
    processorID = virtual_bsp_machine.currentPid()
elif bsplib is not None:
    numberOfProcessors = bsplib.numberOfProcessors
    processorID = bsplib.processorID
elif world is not None:
    numberOfProcessors = world.size
    processorID = world.rank
else:
    numberOfProcessors = 1
    processorID = 0

#
# Low-level communication: send and receive arbitrary objects via MPI
#
if world is not None:

    _type_tags = {N.Int8: 3, N.Int16: 4, N.Int32: 5,
                  N.UnsignedInt8: 6,
                  N.Float16: 7, N.Float: 8,
                  N.Complex32: 9, N.Complex64: 10}
    _type_tags_i = {}
    for key, value in _type_tags.items():
        _type_tags_i[value] = key

    _debug_flag = 0
    def _debug(flag):
        global _debug_flag
        _debug_flag = flag

    def _send(obj, destinations):
        requests = []
        if type(obj) is N.arraytype:
            send_data = obj
            try:
                type_code = send_data.typecode() # Numeric, numarray
            except AttributeError:
                type_code = send_data.dtype.char # NumPy
            tag = _type_tags.get(type_code, 2)
            if _debug_flag:
                print world.rank, "sending array (type %s, shape %s) to %s" \
                      % (type_code, str(obj.shape), str(destinations))
                sys.stdout.flush()
            if tag == 2:
                send_data = cPickle.dumps(send_data, 1)
            else:
                shape = N.array(obj.shape)
                for pid in destinations:
                    requests.append(world.nonblockingSend(shape, pid, tag))
                tag = 1
        else:
            if _debug_flag:
                print world.rank, "sending non-array object to", destinations
                sys.stdout.flush()
            send_data = cPickle.dumps(obj, 1)
            tag = 2
        if _debug_flag:
            print world.rank, "sending data (%d) to" % tag, destinations
            sys.stdout.flush()
        for pid in destinations:
            requests.append(world.nonblockingSend(send_data, pid, tag))
        return requests

    def _wait(requests):
        if _debug_flag:
            print world.rank, "waiting for %d requests" % len(requests)
            sys.stdout.flush()
        for r in requests:
            r.wait()
        if _debug_flag:
            print world.rank, "finished waiting"
            sys.stdout.flush()

    def _receive(source, tag):
        if tag == 2:
            if _debug_flag:
                print world.rank, "receiving non-array object from", source
                sys.stdout.flush()
            data = cPickle.loads(world.receiveString(source, tag)[0])
            return data
        else:
            if _debug_flag:
                print world.rank, "receiving array shape from", source
                sys.stdout.flush()
            typecode = _type_tags_i.get(tag, None)
            if typecode is None:
                raise ValueError("Invalid tag " + `tag`)
            shape = world.receive(N.Int, source, tag)[0]
            if _debug_flag:
                print world.rank, "shape: ", shape
                print world.rank, "receiving array data from", source
                sys.stdout.flush()
            data = world.receive(typecode, source, 1)[0]
            data.shape = tuple(shape)
            if _debug_flag:
                print world.rank, "done receiving"
                sys.stdout.flush()
            return data

#
# BSP communication level: exchange messages and synchronize
#
if virtual_bsp_machine is not None:

    put = virtual_bsp_machine.put
    send = virtual_bsp_machine.send
    sync = virtual_bsp_machine.sync

elif bsplib is not None:

    def put(obj, pid_list):
        if type(obj) is not N.arraytype:
            obj = cPickle.dumps(obj, 1)
        for pid in pid_list:
            bsplib.send(obj, pid)
            
    def send(messages):
        for pid, data in messages:
            put(data, [pid])

    def sync():
        bsplib.sync()
        messages = []
        while 1:
            data = bsplib.receive()
            if data is None: break
            if type(data) is N.arraytype:
                messages.append(data)
            else:
                messages.append(cPickle.loads(data))
        return messages

elif world is not None:

    _requests = []

    def put(obj, pid_list):
        global _requests
        if len(pid_list) > 0:
            _requests = _requests + _send(obj, pid_list)

    def send(messages):
        global _requests
        for pid, data in messages:
            _requests = _requests + _send(data, [pid])
        
    def sync():
        global _requests
        for pid in range(numberOfProcessors):
            _requests.append(world.nonblockingSend('', pid, 0))
        messages = []
        pcount = 0
        while pcount < numberOfProcessors:
            test = world.nonblockingProbe()
            if test is None: continue
            source, tag = test
            if tag == 0:
                pcount = pcount + 1
                world.receiveString(source, tag)
            else:
                messages.append(_receive(source, tag))
        _wait(_requests)
        _requests = []
        world.barrier()
        return messages

else:

    _messages = []

    def put(obj, pid_list):
        global _messages
        for pid in pid_list:
            if pid == 0:
                _messages.append(obj)
            else:
                raise ValueError("invalid pid")

    def send(messages):
        for pid, data in messages:
            put(data, [pid])

    def sync():
        global _messages
        messages = _messages
        _messages = []
        return messages

#
# Higher-level communications layer. This code takes care of the handling
# of special objects and of special transfer needs of particular objects.
#

def retrieveMessages():
    messages = sync()
    filtered_messages = []
    for m in messages:
        if isinstance(m, RemoteObjects.TransferToken):
            RemoteObjects.remote_object_manager.handleTransfer(m)
        else:
            filtered_messages.append(m)
    return filtered_messages

#
# The dictionary _wrappers stores the global class corresponding
# to each local class. Whenever a global object is constructed
# from a local one, the appropriate class is looked up here.
# If no wrapper class is found, ParValue is used.
#
_wrappers = {}

def global_object(local_object):
    try:
        klass = local_object.__class__
    except AttributeError:
        return ParValue(local_object)
    wrapper = _wrappers.get(klass, ParValue)
    return wrapper(local_object)

#
# ParValue is the base class for all standard distributed-data classes.
#
class ParValue(object):

    """
    Global data

    ParValue instances are created internally, but are not meant to be
    created directly by application programs. Use the subclasses instead.

    ParValue objects (and those of subclasses) implement the standard
    arithmetic and comparison operations. They also support attribute
    requests which are passed on to the local values; the return
    values are ParValue objects. ParValue objects can also be called
    if their local values are callable.
    """

    def __init__(self, value, valid=True):
        """
        @param value: the local value
        @type value: any
        @param valid: C{True} if the value is valid, C{False} if it is not.
        Invalid values are not treated, any operation on them produces
        an invalid result.
        """
        self.value = value
        self.valid = valid

    is_parvalue = 1

    def __len__(self):
        return len(self.value)

    def __repr__(self):
        if self.valid:
            return "%s[%d](%s)" % (self.__class__.__name__, processorID,
                                   repr(self.value))
        else:
            return "<%s object (no valid data)>" % self.__class__.__name__
    __str__ = __repr__

    def __call__(self, *args, **kwargs):
        params = []
        valid = self.valid
        for a in args:
            p, v = _getValue(a)
            valid = valid and v
            params.append(p)
        kw = {}
        for key, data in kwargs.items():
            p, v = _getValue(data)
            kw[key] = p
            valid = valid and v
        if valid:
            return global_object(apply(self.value, params, kw))
        else:
            return ParValue(None, 0)

    def put(self, pid_list):
        """
        Send the local data to all specified processors.

        @param pid_list: a list of processor IDs to which the data is sent.
        @type pid_list: Global C{list} of C{int}
        @returns: a global object whose local value is a list of
        all the data received from other processors. The order of the
        data in that list is not defined.
        @rtype: L{ParValue}
        """
        if self.valid:
            if not pid_list.valid:
                raise ValueError("Invalid processor ID list")
            put(self.value, pid_list.value)
        return ParValue(retrieveMessages())

    def get(self, pid_list):
        """
        Request the local data from all specified processors.

        @param pid_list: a list of processor IDs to which the data is sent.
        @type pid_list: Global C{list} of C{int}
        @returns: a global object whose local value is a list of
        all the data received from other processors. The order of the
        data in that list is not defined.
        @rtype: L{ParValue}
        """
        if not pid_list.valid:
            raise ValueError("Invalid processor ID list")
        put(processorID, pid_list.value)
        destinations = sync()
        if self.valid:
            put(self.value, destinations)
        return ParValue(retrieveMessages())

    def broadcast(self, from_pid=0):
        """
        Transmit the local data of one processor to all processors.

        @param from_pid: the ID of the processor that sends data
        @type from_pid: C{int}
        @returns: the transmitted data on all processors
        @rtype: L{ParValue}
        """
        if processorID == from_pid:
            if self.valid:
                put(self.value, range(numberOfProcessors))
            else:
                raise ValueError("Broadcast for invalid data")
        return ParValue(retrieveMessages()[0])

    def fullExchange(self):
        """
        Transmit the local data of each processor to all other processors.

        @returns: the transmitted data on all processors
        @rtype: L{ParValue}
        """
        if self.valid:
            put(self.value, range(numberOfProcessors))
        return ParValue(retrieveMessages())

    def reduce(self, operator, zero):
        """
        Perform a reduction over the local values of all processors.

        @param operator: the binary operator used in the reduction
        @type operator: function of two variables
        @param zero: the initial value of the reduction
        @type zero: any
        @returns: the reduction on processor 0, zero elsewhere
        @rtype: L{ParValue}
        """
        if self.valid:
            put(self.value, [0])
        return ParValue(reduce(operator, retrieveMessages(), zero),
                        processorID == 0)

    def accumulate(self, operator, zero):
        """
        Perform an accumulation over the local values of all processors.

        @param operator: the binary operator used in the accumulation
        @type operator: function of two variables
        @param zero: the initial value of the accumulation
        @type zero: any
        @returns: on each processor, the reduction of the values from
        processors with a lower or equal number
        @rtype: L{ParValue}
        """
        if self.valid:
            data = self
        else:
            data = ParValue(zero)
        data = data.get(ParValue(range(processorID+1)))
        return ParValue(reduce(operator, data.value, zero))

    def __nonzero__(self):
        if not self.valid:
            raise ValueError("invalid local value")
        return operator.truth(self.value)

    def alltrue(self):
        """
        @returns: C{True} if the local values on all processors are true.
        @rtype: Local C{bool}
        """
        if self.valid:
            put(operator.truth(self.value), [0])
        all = sync()
        if processorID == 0:
            combined = reduce(operator.and_, all, 1)
            put(combined, range(numberOfProcessors))
        return sync()[0]

    def anytrue(self):
        """
        @returns: C{True} if at least one of the local values on all
        processors is true.
        @rtype: Local C{bool}
        """
        if self.valid:
            put(operator.truth(self.value), [0])
        all = sync()
        if processorID == 0:
            combined = reduce(operator.or_, all, 0)
            put(combined, range(numberOfProcessors))
        return sync()[0]

    def __eq__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value == other.value)
        else:
            return ParValue(None, 0)

    def __ne__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value != other.value)
        else:
            return ParValue(None, 0)

    def __lt__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value < other.value)
        else:
            return ParValue(None, 0)

    def __le__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value <= other.value)
        else:
            return ParValue(None, 0)

    def __gt__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value > other.value)
        else:
            return ParValue(None, 0)

    def __ge__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value >= other.value)
        else:
            return ParValue(None, 0)

    def __neg__(self):
        if self.valid:
            return ParValue(-self.value)
        else:
            return ParValue(None, 0)
            
    def __add__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value + other.value)
        else:
            return ParValue(None, 0)

    def __sub__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value - other.value)
        else:
            return ParValue(None, 0)

    def __mul__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value * other.value)
        else:
            return ParValue(None, 0)

    def __div__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value / other.value)
        else:
            return ParValue(None, 0)

    def __mod__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value % other.value)
        else:
            return ParValue(None, 0)

    def __divmod__(self, other):
        if self.valid and other.valid:
            div, mod = divmod(self.value, other.value)
            return ParValue(div), ParValue(mod)
        else:
            return ParValue(None, 0), ParValue(None, 0)

    def __pow__(self, other):
        if self.valid and other.valid:
            return ParValue(self.value ** other.value)
        else:
            return ParValue(None, 0)

    def __getitem__(self, item):
        if not self.valid:
            return ParValue(None, 0)
        if hasattr(item, 'is_parindex'):
            if not item.valid:
                return ParValue(None, 0)
            if item.skip == 0:
                try:
                    return global_object(self.value[item.start])
                except IndexError:
                    return ParValue(None, 0)
            if item.skip == 1:
                if item.stop is None:
                    return global_object(self.value[item.start:])
                else:
                    return global_object(self.value[item.start:item.stop])
            else:
                return global_object(self.value[item.start:item.stop:item.skip])
        elif hasattr(item, 'is_parvalue'):
            if item.valid:
                return global_object(self.value[item.value])
            else:
                return ParValue(None, 0)
        else:
            return global_object(self.value[item])

    def __getattr__(self, attr):
        if attr == 'valid' or attr == '__coerce__':
            raise AttributeError
        if not self.valid:
            return ParValue(None, 0)
        return global_object(getattr(self.value, attr))

    def getattr(self, attr):
        if not self.valid:
            return ParValue(None, 0)
        return global_object(getattr(self.value, attr.value))

    def map(self, function):
        if not self.valid:
            return ParValue(None, 0)
        if hasattr(function, 'is_parvalue'):
            function = function.value
        return ParValue(map(function, self.value))

#
# Extract local value and validity flag from a ParValue
def _getValue(x):
    if isinstance(x, ParValue):
        return x.value, x.valid
    else:
        return x, 1

#
# ParConstant represents an identical value on each processor.
#
class ParConstant(ParValue):

    """Global constant

    A subclass of ParValue that stores an identical value on each processor.
    It must be called with the same argument on all processors, but this
    is not verified in the current implementation.
    """

    def __init__(self, value):
        """
        @param value: any local or global object
        @type value: any
        """
        if hasattr(value, 'is_parvalue'):
            self.value = value.value
        else:
            self.value = value
        self.valid = 1

#
# ParData generates the local values as a function of processor id
# and number of processors.
#
class ParData(ParValue):

    """
    Global data

    A subclass of ParValue that calculates its local value from the
    processor number.
    """

    def __init__(self, function):
        """
        @param function: a function that is called with two arguments
                         (processor number and number of processors
                         in the system) and whose return value becomes
                         the local value of the global object.
        @type function: function of two arguments
        """
        self.value = function(processorID, numberOfProcessors)
        self.valid = 1

#
# ParSequence objects distribute a sequence over the processors
#
class ParSequence(ParValue):

    """
    Global distributed sequence

    The local value of a ParSequence object is a slice of the input sequence,
    which is constructed such that the concatenation of the local values
    of all processors equals the input sequence while making the number of
    elements on each processor as equal as possible.
    """

    def __init__(self, full_sequence):
        """
        @param full_sequence: the full sequence, equal to the concatenation
        of the local values of all processors
        @type full_sequence: arbitrary sequence object
        """
        if hasattr(full_sequence, 'is_parvalue'):
            if not full_sequence.valid:
                self.valid = 0
                self.value = None
                return
            full_sequence = full_sequence.value
        self.length = len(full_sequence)
        chunk = (self.length+numberOfProcessors-1)/numberOfProcessors
        self.first = min(processorID*chunk, self.length)
        self.last = min(self.first+chunk, self.length)
        self.value = full_sequence[self.first:self.last]
        self.valid = 1

    def totalLength(self):
        """
        @returns: the sum of the lengths of the local values
        @rtype: C{int}
        """
        return ParValue(self.length)

    def __getitem__(self, item):
        """
        @param item: an index into the total sequence
        @type item: C{int} or L{ParIndex}
        @returns: the element referred to by the index, if it is in the local
        subset
        @rtype: any
        @raise IndexError: if the index refers to an item on another processor
        """
        if not self.valid:
            return ParValue(None, 0)
        if hasattr(item, 'is_parindex'):
            if not item.valid:
                return ParValue(None, 0)
            if item.skip == 0:
                try:
                    return global_object(self.value[item.start-self.first])
                except IndexError:
                    return ParValue(None, 0)
            if item.skip == 1:
                if item.stop is None:
                    return global_object(self.value[item.start-self.first:])
                else:
                    return global_object(self.value[item.start-self.first
                                                    :item.stop-self.first])
            else:
                return global_object(self.value[item.start-self.first
                                                :item.stop-self.first
                                                :item.skip])
        else:
            return global_object(self.value[item-self.first])

#
# ParRootSequence objects distribute a sequence stored initially on
# processor 0 over the processors
#
class ParRootSequence(ParSequence):

    """
    Global distributed sequence with data taken from processor 0

    The local value of a ParRootSequence object is a slice of the input
    sequence, which is constructed such that the concatenation of the
    local values of all processors equals the input sequence while making
    the number of elements on each processor as equal as possible.
    """

    def __init__(self, full_sequence):
        """
        @param full_sequence: on processor 0: the full sequence,
                              equal to the concatenation of the local values
                              of all processors. The local values
                              on the other processors are not used.
        @type full_sequence: L{ParValue}
        """
        messages = []
        if processorID == 0:
            full_sequence = full_sequence.value
            length = len(full_sequence)
            for pid in range(numberOfProcessors):
                chunk = (length+numberOfProcessors-1)/numberOfProcessors
                first = min(pid*chunk, length)
                last = min(first+chunk, length)
                value = full_sequence[first:last]
                messages.append((pid, (first, last, length, value)))
        send(messages)
        self.first, self.last, self.length, self.value = retrieveMessages()[0]
        self.valid = 1

#
# ParMessages serves to send exchange arbitray data between processors.
#
class ParMessages(ParValue):

    """
    Global message list
    """

    def __init__(self, messages):
        """
        @param messages: a global object whose local value is a list of
                         (pid, data) pairs.
        @type messages: Global sequence
        """
        if hasattr(messages, 'is_parvalue'):
            messages = messages.value
        self.value = messages
        self.valid = 1

    def processorIds(self):
        """
        @returns: a global object whose local value is a list of
        all processor Ids referenced in a message
        @rtype: L{ParValue}
        """
        return ParValue(map(lambda x: x[0], self.value))

    def data(self):
        """
        @returns:  a global object whose local value is a list of
        all data items in the messages.
        @rtype: L{ParValue}
        """
        return ParValue(map(lambda x: x[1], self.value))

    def exchange(self):
        """
        Transmit all the messages

        @returns: a global object containing the received messages
        @rtype: L{ParValue}
        """
        if self.valid:
            send(self.value)
        return ParMessages(retrieveMessages())

#
# ParTuple combines several ParValues to speed up communication.
#
class ParTuple(ParValue):

    """
    Global data tuple

    ParTuple objects are used to speed up communication when many data
    items need to be sent to the same processors. The construct
    a, b, c = ParTuple(a, b, c).put(pids) is logically equivalent to
    a = a.put(pids); b = b.put(pids); c = c.put(pids) but more efficient.
    """

    def __init__(self, *args):
        """
        @param args: any global objects
        @type args: C{tuple}
        """
        self.value = map(lambda pv: pv.value, args)
        self.valid = reduce(operator.and_, map(lambda pv: pv.valid, args))

    def __getitem__(self, item):
        if self.valid:
            return ParValue(self.value[item])
        else:
            return ParValue(None, 0)

    def __len__(self):
        return len(self.value)

#
# ParAccumulator serves to accumulate data in a parallelized loop.
#
class ParAccumulator(ParValue):

    """
    Global accumulator

    ParAccumulator objects are used to perform iterative reduction
    operations in loops. The initial local value is zero (i.e. the
    passed-in zero object, not the number 0), which is
    modified by subsequent calls to the method addValue.
    """

    def __init__(self, operator, zero):
        """
        @param operator: a local function taking two arguments and returning
                         one argument of the same type
        @type operator: function of two variables
        @param zero: the initial value for reduction
        """
        self.operator = operator
        self.zero = zero
        self.value = zero
        self.valid = 1

    def addValue(self, value):
        """
        Replace the internal value of the accumulator by
        internal_value = operator(internal_value, value).
        """
        if value.valid:
            self.value = self.operator(self.value, value.value)

    def calculateTotal(self):
        """
        @returns: a reduction over the local values on all processors
        @rtype: L{ParValue}
        """
        return self.reduce(self.operator, self.zero)

#
# ParFunction represents a set of identical functions
# on all processors.
#
class ParFunction(ParValue):

    """Global function

    Global functions are called with global object arguments.
    The local values of these arguments are then passed to the local
    function, and the result is returned in a ParValue object.
    """

    def __init__(self, local_function):
        """
        @param local_function: any function
        @type local_function: callable
        """
        self.value = local_function
        self.valid = 1

    def __repr__(self):
        return "ParFunction[%d](%s)" % (processorID, self.value.__name__)

#
# ParRootFunction represents a function with different code for processor
# zero and all the others. By default, the other processors do nothing
# and return None.
#
class ParRootFunction(ParFunction):

    """Asymmetric global function

    Constructor: ParRootFunction(|root_function|, |other_function|=None)

    Arguments:

    Global functions are called with global object arguments.
    The local values of these arguments are then passed to the local
    function, and the result is returned in a ParValue object.

    A ParRootFunction differs from a ParFunction in that it uses a different
    local function for processor 0 than for the other processors.
    ParRootFunction objects are commonly used for I/O operations.
    """

    def __init__(self, local_function, other_function=None):
        """
        @param local_function: the local function for processor 0
        @type local_function: callable
        @param other_function: the local function for all other processors.
                               The default is a function that returns None.
        @type other_function: callable
        """
        if processorID == 0:
            self.value = local_function
        else:
            if other_function is None:
                def other_function(*args, **kwargs):
                    return ParValue(None)
            self.value = other_function
        self.local_instance = None
        self.valid = 1

#
# ParIndex objects are returned by ParIndexIterator.
#
class ParIndex(object):

    """
    Parallel index value

    ParIndex objects are returned by ParIndexIterator. They are not meant
    ot be created in any other way.
    """
    def __init__(self, index, valid=1):
        if hasattr(index, 'is_parvalue'):
            self.valid = index.valid
            if self.valid:
                self.start = index.value
            else:
                self.start = 0
        elif hasattr(index, 'is_parindex'):
            self.valid = index.valid
            self.start = index.start
        else:
            self.start = index
            self.valid = valid
        self.stop = self.start+1
        self.skip = 0

    def __repr__(self):
        return "ParIndex[%d](%d)" % (processorID, self.start)

    is_parindex = 1

class ParSlice(ParIndex):

    """
    Parallel slice value
    """
    def __init__(self, start=0, stop=None, skip=1, valid=1):
        self.start = start
        self.stop = stop
        self.skip = skip
        self.valid = valid

    def __repr__(self):
        return "ParSlice[%d](%d, %d, %d)" % (processorID, self.start,
                                             self.stop, self.skip)


#
# Direct iteration over distributed sequences.
#
class ParIterator(object):

    """
    Parallel iterator

    Constructor: ParIterator(|global_sequence|)

    Arguments:


    A ParIterator is used to loop element by element over a distributed
    sequence. At each iteration, the returned item (a global object)
    contains different elements of the distributed sequence.
    """

    def __init__(self, sequence):
        """
        @param sequence: a global object representing a distributed sequence
        @type sequence: L{ParSequence}
        """
        self.sequence = sequence.value
        self.n = len(sequence.value)
        self.max_n = ParValue(self.n).reduce(max, 0).broadcast().value

    def __getitem__(self, item):
        if item >= self.max_n:
            raise IndexError
        if item >= self.n:
            return ParValue(None, 0)
        return global_object(self.sequence[item])

#
# Index iteration over distributed sequences.
#
class ParIndexIterator(object):

    """
    Parallel index iterator

    A ParIndexIterator is used to loop index by index over one or more
    distributed sequences. At each iteration, the returned item (a
    L{ParIndex} object) contains indices of different elements of the
    distributed sequence(s). The index objects can be used to index
    any ParValue object whose local value is a sequence object.
    """

    def __init__(self, sequence):
        """
        @param sequence: a global object representing a distributed sequence
        @type sequence: L{ParSequence}
        """
        self.n = len(sequence.value)
        self.max_n = ParValue(self.n).reduce(max, 0).broadcast().value

    def __getitem__(self, item):
        if item >= self.max_n:
            raise IndexError
        if item >= self.n:
            return ParIndex(0, 0)
        return ParIndex(item)

#
# Distribution class. This effectively turns all methods
# into ParMethods and all other attributes inte ParValues.
#
class ParClass(object):

    """
    Global class

    Global classes are needed to construct global objects that
    have more functionalities than offered by the ParValue class hierarchy.
    When an instance of a global class is generated, each processor
    generates an instance of the local class that becomes the local value
    of the new global object. Attribute requests and method calls
    are passed through to the local objects and the results are
    assembled into global objects (ParValue or ParFunction). The arguments
    to methods of a global class must be global objects, the local class
    methods are then called with the corresponding local values.

    The local objects are initialized via the special method
    __parinit__ instead of the usual __init__. This method is called
    with two special arguments (processor number and total number of
    processors) followed by the local values of the arguments to the
    global object initialization call.

    The local classes must inherit from the base class ParBase (see below),
    which also provides  communication routines.
    """

    def __init__(self, local_class):
        """
        @param local_class: a standard Python class
        """
        self.local_class = local_class
        self.attributes = {}
        self._collectAttributes(local_class, self.attributes)
        try:
            del self.attributes['__init__']
        except KeyError:
            pass

        class _Wrapper(object):
            def __init__(self, local_instance):
                self.value = local_instance
                self.valid = 1
            is_parvalue = 1
            def __repr__(self):
                if self.attributes.has_key('__repr__'):
                    return "ParClass{%s}[%d](%s)" \
                                  % (self.local_class.__name__, processorID,
                                     repr(self.value))
                else:
                    return "ParClass{%s}[%d] instance: %s" \
                                  % (self.local_class.__name__, processorID,
                                     repr(self.value))
            def __getattr__(self, name):
                try:
                    return global_object(self.value.__dict__[name])
                except KeyError:
                    pass
                try:
                    value = self.attributes[name]
                except KeyError:
                    value = getattr(self.value, name)
                if isinstance(value, types.MethodType):
                    return ParMethod(value, self.value)
                else:
                    return global_object(value)
            def __getitem__(self, item):
                item, valid = _getValue(item)
                if valid:
                    return global_object(self.value[item])
                else:
                    return ParValue(None, 0)
            def __call__(self, *args, **kwargs):
                params = []
                valid = True
                for a in args:
                    p, v = _getValue(a)
                    valid = valid and v
                    params.append(p)
                kw = {}
                for key, data in kwargs.items():
                    p, v = _getValue(data)
                    kw[key] = p
                    valid = valid and v
                if valid:
                    return global_object(self.value(*params, **kw))
                else:
                    return ParValue(None, 0)


        self.wrapper = _Wrapper
        self.wrapper.__module__ = local_class.__module__
        self.wrapper.__name__ = "ParClass(%s)" % local_class.__name__
        self.wrapper.attributes = self.attributes
        self.wrapper.local_class = local_class
        _wrappers[local_class] = self.wrapper

    def _collectAttributes1(self, klass, attrib_dict):
        for key in klass.__dict__.keys():
            if key not in ['__doc__', '__module__', '__name__', '__bases__']:
                if not attrib_dict.has_key(key):
                    attrib_dict[key] = getattr(klass, key)

    def _collectAttributes(self, klass, attrib_dict):
        self._collectAttributes1(klass, attrib_dict)
        for base_class in klass.__bases__:
            self._collectAttributes(base_class, attrib_dict)
            
    def __call__(self, *args, **kwargs):
        args = (processorID, numberOfProcessors) + args
        local_instance = _DummyClass()
        local_instance.__class__ = self.local_class
        local_instance.__parinit__(*args, **kwargs)
        return self.wrapper(local_instance)

# Dummy class
class _DummyClass(object):
    pass

#
# Special 'invalid' object. It is passed to methods in distributed
# object classes and accepted as a return value.
#
class _ParInvalid(object):
    pass

def is_invalid(obj):
    return isinstance(obj, _ParInvalid)

ParInvalid = _ParInvalid()
_wrappers[_ParInvalid] = lambda x: ParValue(None, 0)

#
# ParMethod represents a set of identical methods
# on all processors.
#
class ParMethod(ParFunction):

    """
    Method of a global class

    ParMethod objects are created by ParClass. They are not meant to be used
    directly in application code.
    """

    def __init__(self, local_function, local_instance):
        self.value = local_function
        self.local_instance = local_instance
        self.valid = 1

    def __repr__(self):
        return "ParMethod[%d](%s)" % (processorID, self.value.__name__)

    def __call__(self, *args, **kwargs):
        params = [self.local_instance]
        for a in args:
            if hasattr(a, 'is_parvalue'):
                if a.valid:
                    params.append(a.value)
                else:
                    params.append(ParInvalid)
            else:
                params.append(a)
        kw = {}
        for key, data in kwargs.items():
            if hasattr(data, 'is_parvalue'):
                if data.valid:
                    kw[key] = data.value
                else:
                    kw[key] = ParInvalid
            else:
                kw[key] = data
        ret = apply(self.value, params, kw)
        return global_object(ret)

#
# Abstract base class that provides communication for ParClasses.
#
class ParBase(object):

    """
    Distributed data base class

    Local classes that are to be used in global classes
    must inherit from this class.
    """

    is_parclass = 1

    def put(self, data, pid_list):
        """
        Send data to other processors

        @param data: the data to be sent
        @type data: any
        @param pid_list: the list of processor numbers to which the data is sent
        @type pid_list: C{list}
        @returns: the values received from other processors
        @rtype: C{list}
        """
        put(data, pid_list)
        return retrieveMessages()

    def get(self, data, pid_list):
        """
        Request the local values of other processors.

        @param data: the data to be sent to processors who request it
        @type data: any
        @param pid_list: the list of processor numbers to which data requests
                         are sent
        @type pid_list: C{list}
        @returns: the values received from other processors
        @rtype: C{list}
        """
        put(processorID, pid_list)
        destinations = sync()
        put(data, destinations)
        return retrieveMessages()

    def broadcast(self, data, from_pid=0):
        """
        Send a local value of one processor to all processors.

        @param data: the data to be transmitted. This value is used
                     only on one processor.
        @param from_pid: the processor whose data is broadcast
        @type from_pid: any
        @returns: the received data
        @rtype: any
        """
        if processorID == from_pid:
            put(data, range(numberOfProcessors))
        return retrieveMessages()[0]

    def exchangeMessages(self, message_list):
        """
        @param message_list: a list of (pid, data) pairs to be transmitted
        @type message_list: C{list}
        @returns: the incoming data
        @rtype: C{list}
        """
        send(message_list)
        return retrieveMessages()