This file is indexed.

/usr/share/pyshared/Scientific/Functions/Interpolation.py is in python-scientific 2.8-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# This module provides interpolation for functions defined on a grid.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2008-8-18
#

"""
Interpolation of functions defined on a grid
"""

from Scientific import N
import Polynomial
from Scientific.indexing import index_expression
from Scientific_interpolation import _interpolate
import operator

#
# General interpolating functions.
#
class InterpolatingFunction:

    """X{Function} defined by values on a X{grid} using X{interpolation}

    An interpolating function of M{n} variables with M{m}-dimensional values
    is defined by an M{(n+m)}-dimensional array of values and M{n}
    one-dimensional arrays that define the variables values
    corresponding to the grid points. The grid does not have to be
    equidistant.

    An InterpolatingFunction object has attributes C{real} and C{imag}
    like a complex function (even if its values are real).
    """

    def __init__(self, axes, values, default = None, period = None):
        """
        @param axes: a sequence of one-dimensional arrays, one for each
            variable, specifying the values of the variables at
            the grid points
        @type axes: sequence of N.array

        @param values: the function values on the grid
        @type values: N.array

        @param default: the value of the function outside the grid. A value
            of C{None} means that the function is undefined outside
            the grid and that any attempt to evaluate it there
            raises an exception.
        @type default: number or C{None}

        @param period: the period for each of the variables, or C{None} for
            variables in which the function is not periodic.
        @type period: sequence of numbers or C{None}
        """
        if len(axes) > len(values.shape):
            raise ValueError('Inconsistent arguments')
        self.axes = list(axes)
        self.shape = sum([axis.shape for axis in self.axes], ())
        self.values = values
        self.default = default
        if period is None:
            period = len(self.axes)*[None]
        self.period = period
        if len(self.period) != len(self.axes):
            raise ValueError('Inconsistent arguments')
        for a, p in zip(self.axes, self.period):
            if p is not None and a[0]+p <= a[-1]:
                raise ValueError('Period too short')

    def __call__(self, *points):
        """
        @returns: the function value obtained by linear interpolation
        @rtype: number
        @raise TypeError: if the number of arguments (C{len(points)})
            does not match the number of variables of the function
        @raise ValueError: if the evaluation point is outside of the
            domain of definition and no default value is defined
        """
        if len(points) != len(self.axes):
            raise TypeError('Wrong number of arguments')
        if len(points) == 1:
            # Fast Pyrex implementation for the important special case
            # of a function of one variable with all arrays of type double.
            period = self.period[0]
            if period is None: period = 0.
            try:
                return _interpolate(points[0], self.axes[0],
                                    self.values, period)
            except:
                # Run the Python version if anything goes wrong
                pass
        try:
            neighbours = map(_lookup, points, self.axes, self.period)
        except ValueError, text:
            if self.default is not None:
                return self.default
            else:
                raise ValueError(text)
        slices = sum([item[0] for item in neighbours], ())
        values = self.values[slices]
        for item in neighbours:
            weight = item[1]
            values = (1.-weight)*values[0]+weight*values[1]
        return values

    def __len__(self):
        """
        @returns: number of variables
        @rtype: C{int}
        """
        return len(self.axes[0])

    def __getitem__(self, i):
        """
        @param i: any indexing expression possible for C{N.array}
            that does not use C{N.NewAxis}
        @type i: indexing expression
        @returns: an InterpolatingFunction whose number of variables
            is reduced, or a number if no variable is left
        @rtype: L{InterpolatingFunction} or number
        @raise TypeError: if i is not an allowed index expression
        """
        if isinstance(i, int):
            if len(self.axes) == 1:
                return (self.axes[0][i], self.values[i])
            else:
                return self._constructor(self.axes[1:], self.values[i])
        elif isinstance(i, slice):
            axes = [self.axes[0][i]] + self.axes[1:]
            return self._constructor(axes, self.values[i])
        elif isinstance(i, tuple):
            axes = []
            rest = self.axes[:]
            for item in i:
                if not isinstance(item, int):
                    axes.append(rest[0][item])
                del rest[0]
            axes = axes + rest
            return self._constructor(axes, self.values[i])
        else:
            raise TypeError("illegal index type")

    def __getslice__(self, i, j):
        """
        @param i: lower slice index
        @type i: C{int}
        @param j: upper slice index
        @type j: C{int}
        @returns: an InterpolatingFunction whose number of variables
            is reduced by one, or a number if no variable is left
        @rtype: L{InterpolatingFunction} or number
        """
        axes = [self.axes[0][i:j]] + self.axes[1:]
        return self._constructor(axes, self.values[i:j])

    def __getattr__(self, attr):
        if attr == 'real':
            values = self.values
            try:
                values = values.real
            except ValueError:
                pass
            default = self.default
            try:
                default = default.real
            except:
                pass
            return self._constructor(self.axes, values, default. self.period)
        elif attr == 'imag':
            try:
                values = self.values.imag
            except ValueError:
                values = 0*self.values
            default = self.default
            try:
                default = self.default.imag
            except:
                try:
                    default = 0*self.default
                except:
                    default = None
            return self._constructor(self.axes, values, default, self.period)
        else:
            raise AttributeError(attr)

    def selectInterval(self, first, last, variable=0):
        """
        @param first: lower limit of an axis interval
        @type first: C{float}
        @param last: upper limit of an axis interval
        @type last: C{float}
        @param variable: the index of the variable of the function
            along which the interval restriction is applied
        @type variable: C{int}
        @returns: a new InterpolatingFunction whose grid is restricted
        @rtype: L{InterpolatingFunction}
        """
        x = self.axes[variable]
        c = N.logical_and(N.greater_equal(x, first),
                          N.less_equal(x, last))
        i_axes = self.axes[:variable] + [N.compress(c, x)] + \
                 self.axes[variable+1:]
        i_values = N.compress(c, self.values, variable)
        return self._constructor(i_axes, i_values, None, None)

    def derivative(self, variable = 0):
        """
        @param variable: the index of the variable of the function
            with respect to which the X{derivative} is taken
        @type variable: C{int}
        @returns: a new InterpolatingFunction containing the numerical
            derivative
        @rtype: L{InterpolatingFunction}
        """
        diffaxis = self.axes[variable]
        ai = index_expression[::] + \
             (len(self.values.shape)-variable-1) * index_expression[N.NewAxis]
        period = self.period[variable]
        if period is None:
            ui = variable*index_expression[::] + \
                 index_expression[1::] + index_expression[...]
            li = variable*index_expression[::] + \
                 index_expression[:-1:] + index_expression[...]
            d_values = (self.values[ui]-self.values[li]) / \
                       (diffaxis[1:]-diffaxis[:-1])[ai]
            diffaxis = 0.5*(diffaxis[1:]+diffaxis[:-1])
        else:
            u = N.take(self.values, range(1, len(diffaxis))+[0], axis=variable)
            l = self.values
            ua = N.concatenate((diffaxis[1:], period+diffaxis[0:1]))
            la = diffaxis
            d_values = (u-l)/(ua-la)[ai]
            diffaxis = 0.5*(ua+la)
        d_axes = self.axes[:variable]+[diffaxis]+self.axes[variable+1:]
        d_default = None
        if self.default is not None:
            d_default = 0.
        return self._constructor(d_axes, d_values, d_default, self.period)

    def integral(self, variable = 0):
        """
        @param variable: the index of the variable of the function
            with respect to which the X{integration} is performed
        @type variable: C{int}
        @returns: a new InterpolatingFunction containing the numerical
            X{integral}. The integration constant is defined such that
            the integral at the first grid point is zero.
        @rtype: L{InterpolatingFunction}
        """
        if self.period[variable] is not None:
            raise ValueError('Integration over periodic variables not defined')
        intaxis = self.axes[variable]
        ui = variable*index_expression[::] + \
             index_expression[1::] + index_expression[...]
        li = variable*index_expression[::] + \
             index_expression[:-1:] + index_expression[...]
        uai = index_expression[1::] + (len(self.values.shape)-variable-1) * \
              index_expression[N.NewAxis]
        lai = index_expression[:-1:] + (len(self.values.shape)-variable-1) * \
              index_expression[N.NewAxis]
        i_values = 0.5*N.add.accumulate((self.values[ui]
                                               +self.values[li])* \
                                              (intaxis[uai]-intaxis[lai]),
                                              variable)
        s = list(self.values.shape)
        s[variable] = 1
        z = N.zeros(tuple(s))
        return self._constructor(self.axes,
                                 N.concatenate((z, i_values), variable),
                                 None)

    def definiteIntegral(self, variable = 0):
        """
        @param variable: the index of the variable of the function
            with respect to which the X{integration} is performed
        @type variable: C{int}
        @returns: a new InterpolatingFunction containing the numerical
            X{integral}. The integration constant is defined such that
            the integral at the first grid point is zero. If the original
            function has only one free variable, the definite integral
            is a number
        @rtype: L{InterpolatingFunction} or number
        """
        if self.period[variable] is not None:
            raise ValueError('Integration over periodic variables not defined')
        intaxis = self.axes[variable]
        ui = variable*index_expression[::] + \
             index_expression[1::] + index_expression[...]
        li = variable*index_expression[::] + \
             index_expression[:-1:] + index_expression[...]
        uai = index_expression[1::] + (len(self.values.shape)-variable-1) * \
              index_expression[N.NewAxis]
        lai = index_expression[:-1:] + (len(self.values.shape)-variable-1) * \
              index_expression[N.NewAxis]
        i_values = 0.5*N.add.reduce((self.values[ui]+self.values[li]) * \
                   (intaxis[uai]-intaxis[lai]), variable)
        if len(self.axes) == 1:
            return i_values
        else:
            i_axes = self.axes[:variable] + self.axes[variable+1:]
            return self._constructor(i_axes, i_values, None)

    def fitPolynomial(self, order):
        """
        @param order: the order of the X{polynomial} to be fitted
        @type order: C{int}
        @returns: a polynomial whose coefficients have been obtained
            by a X{least-squares} fit to the grid values
        @rtype: L{Scientific.Functions.Polynomial}
        """
        for p in self.period:
            if p is not None:
                raise ValueError('Polynomial fit not possible ' +
                                 'for periodic function')
        points = _combinations(self.axes)
        return Polynomial._fitPolynomial(order, points,
                                         N.ravel(self.values))

    def __abs__(self):
        values = abs(self.values)
        try:
            default = abs(self.default)
        except:
            default = self.default
        return self._constructor(self.axes, values, default)

    def _mathfunc(self, function):
        if self.default is None:
            default = None
        else:
            default = function(self.default)
        return self._constructor(self.axes, function(self.values), default)

    def exp(self):
        return self._mathfunc(N.exp)

    def log(self):
        return self._mathfunc(N.log)

    def sqrt(self):
        return self._mathfunc(N.sqrt)

    def sin(self):
        return self._mathfunc(N.sin)

    def cos(self):
        return self._mathfunc(N.cos)

    def tan(self):
        return self._mathfunc(N.tan)

    def sinh(self):
        return self._mathfunc(N.sinh)

    def cosh(self):
        return self._mathfunc(N.cosh)

    def tanh(self):
        return self._mathfunc(N.tanh)

    def arcsin(self):
        return self._mathfunc(N.arcsin)

    def arccos(self):
        return self._mathfunc(N.arccos)

    def arctan(self):
        return self._mathfunc(N.arctan)

InterpolatingFunction._constructor = InterpolatingFunction

#
# Interpolating function on data in netCDF file
#
class NetCDFInterpolatingFunction(InterpolatingFunction):

    """Function defined by values on a grid in a X{netCDF} file

    A subclass of L{InterpolatingFunction}.
    """

    def __init__(self, filename, axesnames, variablename, default = None,
                 period = None):
        """
        @param filename: the name of the netCDF file
        @type filename: C{str}

        @param axesnames: the names of the netCDF variables that contain the
            axes information
        @type axesnames: sequence of C{str}

        @param variablename: the name of the netCDF variable that contains
            the data values
        @type variablename: C{str}

        @param default: the value of the function outside the grid. A value
            of C{None} means that the function is undefined outside
            the grid and that any attempt to evaluate it there
            raises an exception.
        @type default: number or C{None}

        @param period: the period for each of the variables, or C{None} for
            variables in which the function is not periodic.
        @type period: sequence of numbers or C{None}
        """
        from Scientific.IO.NetCDF import NetCDFFile
        self.file = NetCDFFile(filename, 'r')
        self.axes = map(lambda n, f=self.file: f.variables[n], axesnames)
        self.values = self.file.variables[variablename]
        self.default = default
        self.shape = ()
        for axis in self.axes:
            self.shape = self.shape + axis.shape
        if period is None:
            period = len(self.axes)*[None]
        self.period = period
        if len(self.period) != len(self.axes):
            raise ValueError('Inconsistent arguments')
        for a, p in zip(self.axes, self.period):
            if p is not None and a[0]+p <= a[-1]:
                raise ValueError('Period too short')

NetCDFInterpolatingFunction._constructor = InterpolatingFunction


# Helper functions

def _lookup(point, axis, period):
    if period is None:
        j = N.int_sum(N.less_equal(axis, point))
        if j == len(axis):
            if N.fabs(point - axis[j-1]) < 1.e-9:
                return index_expression[j-2:j:1], 1.
            else:
                j = 0
        if j == 0:
            raise ValueError('Point outside grid of values')
        i = j-1
        weight = (point-axis[i])/(axis[j]-axis[i])
        return index_expression[i:j+1:1], weight
    else:
        point = axis[0] + (point-axis[0]) % period
        j = N.int_sum(N.less_equal(axis, point))
        i = j-1
        if j == len(axis):
            weight = (point-axis[i])/(axis[0]+period-axis[i])
            return index_expression[0:i+1:i], 1.-weight
        else:
            weight = (point-axis[i])/(axis[j]-axis[i])
            return index_expression[i:j+1:1], weight

def _combinations(axes):
    if len(axes) == 1:
        return map(lambda x: (x,), axes[0])
    else:
        rest = _combinations(axes[1:])
        l = []
        for x in axes[0]:
            for y in rest:
                l.append((x,)+y)
        return l


# Test code

if __name__ == '__main__':

##     axis = N.arange(0,1.1,0.1)
##     values = N.sqrt(axis)
##     s = InterpolatingFunction((axis,), values)
##     print s(0.22), N.sqrt(0.22)
##     sd = s.derivative()
##     print sd(0.35), 0.5/N.sqrt(0.35)
##     si = s.integral()
##     print si(0.42), (0.42**1.5)/1.5
##     print s.definiteIntegral()
##     values = N.sin(axis[:,N.NewAxis])*N.cos(axis)
##     sc = InterpolatingFunction((axis,axis),values)
##     print sc(0.23, 0.77), N.sin(0.23)*N.cos(0.77)

    axis = N.arange(20)*(2.*N.pi)/20.
    values = N.sin(axis)
    s = InterpolatingFunction((axis,), values, period=(2.*N.pi,))
    c = s.derivative()
    for x in N.arange(0., 15., 1.):
        print x
        print N.sin(x), s(x)
        print N.cos(x), c(x)