This file is indexed.

/usr/share/pyshared/Scientific/Functions/Polynomial.py is in python-scientific 2.8-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# This module defines a multivariate polynomial class
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2006-11-24
#

"""
Polynomials in any number of variables
"""

from Scientific import N, LA; Numeric = N; LinearAlgebra = LA
from Scientific.indexing import index_expression

# Class definition

class Polynomial:

    """X{Multivariate} X{polynomial}

    Instances of this class represent polynomials of any order and
    in any number of variables. The coefficients and thus the values
    can be real or complex. Polynomials can be evaluated like functions.
    """

    def __init__(self, coefficients):
        """
        @param coefficients: an M{N}-dimnesional array for a polynomial
            in M{N} variables. C{coeffcients[i, j, ...]} is the coefficient
            of M{x_1^i x_2^j ...}
        @type coefficients: C{Numeric.array} or nested list of numbers
        """
        self.coeff = Numeric.array(coefficients)
        self.dim = len(self.coeff.shape)

    is_polynomial = 1

    def __call__(self, *args):
        """
        @param args: tuple of values, one for each variable of the
            polynomial
        @type args: C{tuple} of numbers
        @returns: the value of the polynomial at the given point
        @rtype: number
        @raise TypeError: if the number of arguments is not equal
            to the number of variable of the polynomial
        """
        if len(args) != self.dim:
            raise TypeError('Wrong number of arguments')
        p = _powers(args, self.coeff.shape)
        return Numeric.add.reduce(Numeric.ravel(p*self.coeff))

    def __repr__(self):
        if self.dim == 1:
            return "Polynomial(%s)" % repr(list(self.coeff))
        else:
            return "Polynomial(%s)" % repr(self.coeff)

    def __coerce__(self, other):
        if hasattr(other, 'is_polynomial'):
            return (self, other)
        elif hasattr(other, 'is_rational_function'):
            return None
        else:
            return (self, Polynomial([other]))

    def __add__(self, other):
        dim = max(self.dim, other.dim)
        shape = Numeric.zeros((dim,), Numeric.Int)
        shape[:self.dim] = self.coeff.shape
        shape[:other.dim] = Numeric.maximum(shape[:other.dim],
                                            other.coeff.shape)
        coeff1 = Numeric.zeros_st(shape, self.coeff)
        index = tuple(map(lambda d: slice(0, d), self.coeff.shape) + \
                      (dim-self.dim)*[0])
        coeff1[index] = self.coeff
        coeff2 = Numeric.zeros_st(shape, other.coeff)
        index = tuple(map(lambda d: slice(0, d), other.coeff.shape) + \
                      (dim-other.dim)*[0])
        coeff2[index] = other.coeff
        return Polynomial(coeff1+coeff2)

    def __mul__(self, other):
        if self.dim != 1 or other.dim != 1:
            raise ValueError("not implemented")
        c = Numeric.multiply.outer(self.coeff, other.coeff)
        temp = Numeric.concatenate((c, Numeric.zeros(2*(c.shape[0],))), 1)
        temp = Numeric.ravel(temp)[:-c.shape[0]]
        temp.shape = (c.shape[0], c.shape[0]+c.shape[1]-1)
        return Polynomial(Numeric.sum(temp))

    def __div__(self, other):
        if self.dim != 1 or other.dim != 1:
            raise ValueError("not implemented")
        if len(other.coeff) == 1:
            return Polynomial(self.coeff/other.coeff[0])
        from Rational import RationalFunction
        return RationalFunction(self, other)

    def __rdiv__(self, other):
        from Rational import RationalFunction
        return RationalFunction(other, self)

    def derivative(self, variable=0):
        """
        @param variable: the index of the variable with respect to which
            the X{derivative} is taken
        @type variable: C{int}
        @returns: a polynomial of reduced order in one variable
        @rtype: L{Polynomial}
        """
        n = self.coeff.shape[variable]
        if n == 1:
            return Polynomial(apply(Numeric.zeros, self.dim*(1,)))
        index = variable*index_expression[::] + \
                index_expression[1::] + index_expression[...]
        factor = Numeric.arange(1.,n)
        factor = factor[index_expression[::] +
                        (self.dim-variable-1) * \
                        index_expression[Numeric.NewAxis]]
        return Polynomial(factor*self.coeff[index])

    def integral(self, variable=0):
        """
        @param variable: the index of the variable with respect to which
            the X{integral} is computed
        @type variable: C{int}
        @returns: a polynomial of higher order in one variable
        @rtype: L{Polynomial}
        """
        n = self.coeff.shape[variable]
        factor = 1./Numeric.arange(1.,n+1)
        factor = factor[index_expression[::] +
                        (self.dim-variable-1) * \
                        index_expression[Numeric.NewAxis]]
        s = map(None, self.coeff.shape)
        s[variable] = 1
        z = apply(Numeric.zeros, tuple(s))
        intcoeff = Numeric.concatenate((z, factor*self.coeff), variable)
        return Polynomial(intcoeff)

    def zeros(self):
        """
        Find the X{zeros} (X{roots}) of the polynomial by diagonalization
        of the associated Frobenius matrix.

        @returns: an array containing the zeros
        @rtype: C{Numeric.array}
        @note: this is defined only for polynomials in one variable
        @raise ValueError: is the polynomial has more than one variable
        """
        if self.dim != 1:
            raise ValueError("not implemented")
        n = len(self.coeff)-1
        if n == 0:
            return Numeric.array([])
        a = Numeric.zeros_st((n, n), self.coeff)
        if n > 1:
            a[1:, :-1] = Numeric.identity(n-1)
        a[:, -1] = -self.coeff[:-1]/self.coeff[-1]
        from Scientific.LA import eigenvalues
        return eigenvalues(a)

# Polynomial fit constructor for use in module Interpolation

def _fitPolynomial(order, points, values):
    if len(points) != len(values):
        raise ValueError('Inconsistent arguments')
    if type(order) != type(()):
        order = (order,)
    order = tuple(map(lambda n: n+1, order))
    if not _isSequence(points[0]):
        points = map(lambda p: (p,), points)
    if len(order) != len(points[0]):
        raise ValueError('Inconsistent arguments')
    if Numeric.multiply.reduce(order) > len(points):
        raise ValueError('Not enough points')
    matrix = []
    for p in points:
        matrix.append(Numeric.ravel(_powers(p, order)))
    matrix = Numeric.array(matrix)
    values = Numeric.array(values)
    inv = LinearAlgebra.generalized_inverse(matrix)
    coeff = Numeric.dot(inv, values)
    #coeff = LinearAlgebra.linear_least_squares(matrix, values)[0]
    coeff = Numeric.reshape(coeff, order)
    return Polynomial(coeff)

# Helper functions

def _powers(x, n):
    p = 1.
    index = index_expression[::] + \
            (len(x)-1)*index_expression[Numeric.NewAxis]
    for i in range(len(x)):
        pi = Numeric.multiply.accumulate(Numeric.array([1.]+(n[i]-1)*[x[i]]))
        p = p*pi[index]
        index = index[-1:] + index[:-1]
    return p

def _isSequence(object):
    n = -1
    try: n = len(object)
    except: pass
    return n >= 0


# Clean up module (mostly for epydoc)

del index_expression

# Test code

if __name__ == '__main__':

    p1 = Polynomial([1.,0.3,1.,-0.4])
    x = -1.9
    print p1(x), ((-0.4*x+1.)*x+0.3)*x+1.
    zeros = p1.zeros()
    for z in zeros:
        print z, p1(z)
    p2 = Polynomial([[1.,0.3],[-0.2,0.5]])
    y = 0.3
    print p2(x,y), 1. + 0.3*y - 0.2*x + 0.5*x*y
    fit = fitPolynomial(2, [1.,2.,3.,4.], [2.,4.,8.,14.])
    print fit.coeff