This file is indexed.

/usr/share/pyshared/Scientific/Visualization/VRML2.py is in python-scientific 2.8-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# This module provides classes that represent VRML objects for use
# in data visualization applications.
#
# Written by: Konrad Hinsen <hinsen@cnrs-orleans.fr>
# With contributions from Frank Horowitz
#                     and Matteo Bertini
# Last revision: 2006-9-12
#

"""
Definitions of simple 3D graphics objects and VRML scenes containing them

The objects are appropriate for data visualization, not for virtual
reality modelling. Scenes can be written to VRML files or visualized
immediately using a VRML browser, whose name is taken from the
environment variable VRML2VIEWER (under Unix).

This module uses the VRML 2.0 definition, also known as VRML97. For
the original VRML 1, use the module VRML, which uses exactly the same
interface.

Example::

  >>> from Scientific.Visualization.VRML import *    
  >>> scene = Scene([])
  >>> scale = ColorScale(10.)
  >>> for x in range(11):
  >>>     color = scale(x)
  >>>     scene.addObject(Cube(Vector(x, 0., 0.), 0.2,
  >>>                          material=Material(diffuse_color = color)))
  >>> scene.view()
"""

from Scientific.IO.TextFile import TextFile
from Scientific.Geometry import Transformation, Vector, ex, ey, ez
from Scientific import N
import os, string, tempfile

from Color import *

#
# VRML file
#
class SceneFile:

    def __init__(self, filename, mode = 'r'):
        if mode == 'r':
            raise TypeError, 'Not implemented.'
        self.file = TextFile(filename, 'w')
        self.file.write('#VRML V2.0 utf8\n')
        self.file.write('Transform { children [\n')
        self.memo = {}
        self.name_counter = 0

    def __del__(self):
        self.close()

    def writeString(self, data):
        self.file.write(data)

    def close(self):
        if self.file is not None:
            self.file.write(']}\n')
            self.file.close()
            self.file = None

    def write(self, object):
        object.writeToFile(self)

    def uniqueName(self):
        self.name_counter = self.name_counter + 1
        return 'i' + `self.name_counter`

VRMLFile = SceneFile

#
# Scene
#
class Scene:

    """
    VRML scene

    A VRML scene is a collection of graphics objects that can be
    written to a VRML file or fed directly to a VRML browser.
    """

    def __init__(self, objects = None, cameras = None, **options):
        """
        @param objects: a list of graphics objects, or C{None} for
                        an empty scene
        @type objects: C{list} or C{NoneType}
        @param cameras: a list of cameras, or C{None} for no cameras
        @param options: options as keyword arguments (none defined)
        """
        if objects is None:
            self.objects = []
        elif type(objects) == type([]):
            self.objects = objects
        else:
            self.objects = [objects]
        if cameras is None:
            self.cameras = []
        else:
            self.cameras = cameras

    def __len__(self):
        """
        @returns: the number of graphics objects in the scene
        @rtype: C{int}
        """
        return len(self.objects)

    def __getitem__(self, item):
        """
        @param item: an index
        @type item: C{int}
        @returns: the graphics object at the index position
        @rtype: L{VRMLObject}
        """
        return self.object[item]

    def addObject(self, object):
        """
        @param object: a graphics object to be added to the scene
        @type object: L{VRMLObject}
        """
        self.objects.append(object)

    def addCamera(self, camera):
        """
        Add a camera to the list of cameras
        @param camera: the camera to be adde
        """
        self.cameras.append(camera)

    def writeToFile(self, filename):
        """
        Write the scene to a VRML file

        @param filename: the name of the script
        @type filename: C{str}
        """
        file = VRMLFile(filename, 'w')
        if self.cameras:
            for camera in self.cameras:
                camera.writeToFile(file)
        for o in self.objects:
            o.writeToFile(file)
        file.close()

    def view(self, *args):
        """
        Start a VRML browser and load the scene

        @param args: not used, for compatibility only
        """
        import sys
        filename = tempfile.mktemp()+'.wrl'
        if sys.platform == 'win32':
            import win32api
            self.writeToFile(filename)
            win32api.ShellExecute(0, "open", filename, None, "", 1)
        elif os.environ.has_key('VRML2VIEWER'):
            self.writeToFile(filename)
            if os.fork() == 0:
                os.system(os.environ['VRML2VIEWER'] + ' ' + filename +
                          ' 1> /dev/null 2>&1')
                os.unlink(filename)
                os._exit(0)
        else:
            print 'No VRML2 viewer defined'

#
# Camera class
#
class Camera:

    """
    Camera/viewpoint for a scene
    """

    def __init__(self, position=None, orientation=None,
                 description=None, field_of_view=None):
        """
        @param position: the location of the camera
        @type position: L{Scientific.Geometry.Vector}
        @param orientation: an (axis, angle) tuple in which the axis is
                            a vector and the angle a number in radians;
                            axis and angle specify a rotation with respect
                            to the standard orientation along the negative
                            z axis
        @param description: a label for the viewpoint
        @type description: C{str}
        @param field_of_view: the field of view
        @type field_of_view: positive number
        """
        self.field_of_view = field_of_view
        self.orientation = orientation
        self.position = position
        self.description = description

    def writeToFile(self, file):
        file.writeString('Viewpoint {\n')
        if self.field_of_view != None:
            file.writeString('fieldOfView %f\n' % self.field_of_view)
        if self.orientation != None:
            axis, angle = self.orientation
            axis = axis.normal()
            file.writeString('orientation %f %f %f %f\n' % \
                             (axis[0], axis[1], axis[2], angle))
        if self.position != None:
            file.writeString('position %f %f %f\n' % \
                             (self.position[0], \
                              self.position[1], \
                              self.position[2]))
        if self.description != None:
            file.writeString('description "%s"' % \
                             self.description)
        file.writeString('}\n')

#
# Navigation Info
#
class NavigationInfo:

    """
    Navigation information
    """

    def __init__(self, speed=100.0, type="EXAMINE"):
        """
        @param speed: walking speed in length units per second
        @type speed: number
        @param type: one of 'WALK', 'EXAMINE', 'FLY', 'NONE', 'ANY'
        """
        self.speed = speed
        self.type = type

    def writeToFile(self, file):
        file.writeString('NavigationInfo {\n')
        file.writeString('speed %f\n' % self.speed )
        file.writeString('type [ ')
        if self.type != "ANY":
            file.writeString('"%s", ' % self.type)
        file.writeString('"ANY" ]\n')
        file.writeString('}\n')

#
# Base class for everything that produces nodes
#
class VRMLObject:

    """
    Graphics object for VRML

    This is an abstract base class. Use one of the subclasses to generate
    graphics.
    """

    def __init__(self, attr):
        """
        @param attr: graphics attributes specified by keywords
        @keyword material: color and surface properties
        @type material: L{Material}
        @keyword comment: a comment that is written to the script file
        @type comment: C{str}
        @keyword reuse: a flag defaulting to C{False}. If set to C{True},
                        the object may share its VRML definition with other
                        objects. This reduces the size of the VRML file, but
                        can yield surprising side effects in some cases.
        @type reuse: C{bool}
        """
        self.attr = {}
        for key, value in attr.items():
            if key in self.attribute_names:
                self.attr[key] = value
            else:
                raise AttributeError, 'illegal attribute: ' + str(key)

    attribute_names = ['comment']

    def __getitem__(self, attr):
        """
        @param attr: the name of a graphics attribute
        @type attr: C{str}
        @returns: the value of the attribute, or C{None} if the attribute
                  is undefined
        """
        try:
            return self.attr[attr]
        except KeyError:
            return None

    def __setitem__(self, attr, value):
        """
        @param attr: the name of a graphics attribute
        @type attr: C{str}
        @param value: a new value for the attribute
        """
        self.attr[attr] = value

    def __copy__(self):
        return copy.deepcopy(self)

    def writeToFile(self, file):
        raise AttributeError, 'Class ' + self.__class__.__name__ + \
              ' does not implement file output.'

#
# Shapes
#
class ShapeObject(VRMLObject):

    """
    Graphics objects representing geometrical shapes

    This is an abstract base class. Use one of the subclasses to generate
    graphics.
    """

    def __init__(self, attr, rotation, translation, reference_point):
        VRMLObject.__init__(self, attr)
        if rotation is None:
            rotation = Transformation.Rotation(ez, 0.)
        else:
            rotation = apply(Transformation.Rotation, rotation)
        if translation is None:
            translation = Transformation.Translation(Vector(0.,0.,0.))
        else:
            translation = Transformation.Translation(translation)
        self.transformation = translation*rotation
        self.reference_point = reference_point

    attribute_names = VRMLObject.attribute_names + ['material', 'reuse']

    def __add__(self, other):
        return Group([self]) + Group([other])

    def writeToFile(self, file):
        comment = self['comment']
        if comment is not None:
            file.writeString('# ' + comment + '\n')
        file.writeString('Transform{\n')
        vector = self.transformation.translation().displacement()
        axis, angle = self.transformation.rotation().axisAndAngle()
        trans_flag = vector.length() > 1.e-4
        rot_flag = abs(angle) > 1.e-4
        if trans_flag:
            file.writeString('translation %f %f %f\n' %
                                (vector[0], vector[1], vector[2]))
        if rot_flag:
            file.writeString('rotation %f %f %f %f\n' %
                                (axis[0], axis[1], axis[2], angle))
        material = self['material']
        reuse = self['reuse']
        file.writeString('children [\n')
        if reuse:
            key = self.memoKey() + (material, self.__class__)
            if file.memo.has_key(key):
                file.writeString('USE ' + file.memo[key] + '\n')
                self.use(file)
                if material is not None:
                    material.use(file)
            else:
                name = file.uniqueName()
                file.memo[key] = name
                file.writeString('DEF ' + name + ' Shape{\n')
                if material is not None:
                    file.writeString('appearance ')
                    material.writeToFile(file)
                file.writeString('geometry ')
                self.writeSpecification(file)
                file.writeString('}\n')
        else:
            file.writeString('Shape{')
            if material is not None:
                file.writeString('appearance ')
                material.writeToFile(file)
            file.writeString('geometry ')
            self.writeSpecification(file)
            file.writeString('}\n')
        file.writeString(']}\n')

    def use(self, file):
        pass

class Sphere(ShapeObject):

    """
    Sphere
    """
    
    def __init__(self, center, radius, **attr):
        """
        @param center: the center of the sphere
        @type center: L{Scientific.Geometry.Vector}
        @param radius: the sphere radius
        @type radius: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.radius = radius
        ShapeObject.__init__(self, attr, None, center, center)

    def writeSpecification(self, file):
        file.writeString('Sphere{radius ' + `self.radius` + '}\n')

    def memoKey(self):
        return (self.radius, )

class Cube(ShapeObject):

    """
    Cube

    The edges of a cube are always parallel to the coordinate axes.
    """
    
    def __init__(self, center, edge, **attr):
        """
        @param center: the center of the sphere
        @type center: L{Scientific.Geometry.Vector}
        @param edge: the length of an edge
        @type edge: positive number
        @param attr: graphics attributes as keyword parameters
        """
        self.edge = edge
        ShapeObject.__init__(self, attr, None, center, center)

    def writeSpecification(self, file):
        file.writeString('Box{size' + 3*(' ' + `self.edge`) + '}\n')

    def memoKey(self):
        return (self.edge, )

class LinearOrientedObject(ShapeObject):

    def __init__(self, attr, point1, point2):
        center = 0.5*(point1+point2)
        axis = point2-point1
        self.height = axis.length()
        if self.height > 0:
            axis = axis/self.height
            rot_axis = ey.cross(axis)
            sine = rot_axis.length()
            cosine = ey*axis
            angle = Transformation.angleFromSineAndCosine(sine, cosine)
            if abs(angle) < 1.e-4 or abs(angle-2.*N.pi) < 1.e-4:
                rotation = None
            else:
                if abs(sine) < 1.e-4:
                    rot_axis = ex
                rotation = (rot_axis, angle)
        else:
            rotation = None
        ShapeObject.__init__(self, attr, rotation, center, center)

class Cylinder(LinearOrientedObject):

    """
    Cylinder
    """

    def __init__(self, point1, point2, radius, faces = (True, True, True),
                 **attr):
        """
        @param point1: first end point of the cylinder axis
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: second end point of the cylinder axis
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the cylinder radius
        @type radius: positive number
        @param faces: a sequence of three boolean flags, corresponding to
                      the cylinder hull and the two circular end pieces,
                      specifying for each of these parts whether it is visible
                      or not
        @param attr: graphics attributes as keyword parameters
        """
        self.faces = faces
        self.radius = radius
        LinearOrientedObject.__init__(self, attr, point1, point2)

    def writeSpecification(self, file):
        file.writeString('Cylinder{')
        if not self.faces[0]:
            file.writeString('side FALSE ')
        if not self.faces[1]:
            file.writeString('bottom FALSE ')
        if not self.faces[2]:
            file.writeString('top FALSE ')
        file.writeString('radius ' + `self.radius` + \
                         ' height ' + `self.height` + '}\n')

    def memoKey(self):
        return (self.radius, self.height, self.faces)


class Cone(LinearOrientedObject):

    """
    Cone
    """

    def __init__(self, point1, point2, radius, face = True, **attr):
        """
        @param point1: the tip of the cone
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: end point of the cone axis
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the radius at the base
        @type radius: positive number
        @param face: a boolean flag, specifying if the circular
                      bottom is visible
        @type face: C{bool}
        @param attr: graphics attributes as keyword parameters
        """
        self.face = face
        self.radius = radius
        LinearOrientedObject.__init__(self, attr, point2, point1)

    def writeSpecification(self, file):
        file.writeString('Cone{')
        if not self.face:
            file.writeString('bottom FALSE ')
        file.writeString('bottomRadius ' + `self.radius` + \
                         ' height ' + `self.height` + '}\n')

    def memoKey(self):
        return (self.radius, self.height, self.face)

class Line(ShapeObject):

    """
    Line
    """
    
    def __init__(self, point1, point2, **attr):
        """
        @param point1: first end point
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: second end point
        @type point2: L{Scientific.Geometry.Vector}
        @param attr: graphics attributes as keyword parameters
        """
        self.points = (point1, point2)
        center = 0.5*(point1+point2)
        ShapeObject.__init__(self, attr, None, None, center)

    def writeSpecification(self, file):
        p0 = "%f %f %f" % tuple(self.points[0])
        p1 = "%f %f %f" % tuple(self.points[1])
        file.writeString('IndexedLineSet{coord Coordinate{point ')
        file.writeString('[%s,\n%s]} coordIndex[0,1,-1]}\n' % (p0, p1))

    def memoKey(self):
        return tuple(self.points[0]) + tuple(self.points[1])

class PolyLines(ShapeObject):

    """
    Multiple connected lines
    """
    
    def __init__(self, points, **attr):
        """
        @param points: a sequence of points to be connected by lines
        @type points: sequence of L{Scientific.Geometry.Vector}
        @param attr: graphics attributes as keyword parameters
        """
        self.points = points
        ShapeObject.__init__(self, attr, None, None, Vector(0., 0., 0.))

    def writeSpecification(self, file):
        s = ['IndexedLineSet{coord Coordinate{point [',]
        for p in self.points:
            s.append('%f %f %f,' % (p[0], p[1], p[2]))
        s[-1] = s[-1][:-1] + ']} coordIndex'
        file.writeString("\n".join(s))
        file.writeString(`range(len(self.points))+[-1]` + '}\n')

    def memoKey(self):
        return tuple(map(tuple, self.points))


class Polygons(ShapeObject):

    """
    Polygons
    """
    
    def __init__(self, points, index_lists, **attr):
        """
        @param points: a sequence of points
        @type points: sequence of L{Scientific.Geometry.Vector}
        @param index_lists: a sequence of index lists, one for each polygon.
                            The index list for a polygon defines which points
                            are vertices of the polygon.
        @type index_lists: sequence of C{list}
        @param attr: graphics attributes as keyword parameters
        """
        self.points = points
        self.index_lists = index_lists
        ShapeObject.__init__(self, attr, None, None, Vector(0.,0.,0.))

    def writeSpecification(self, file):
        s = ['IndexedFaceSet{coord Coordinate{point [',]
        for v in self.points[:-1]:
            s.append('%f %f %f,' % (v[0], v[1], v[2]))
        v = self.points[-1]
        s.append('%f %f %f\n]} coordIndex[' % (v[0], v[1], v[2]))
        for polygon in self.index_lists:
            s.append(",".join(map(str, polygon) + ["-1,"]))
        s.append(']}\n')
        file.writeString("\n".join(s))

    def memoKey(self):
        return (tuple(map(tuple, self.points)),
                tuple(map(tuple, self.index_lists)))

#
# Groups
#
class Group:

    """
    Base class for composite objects
    """

    def __init__(self, objects, **attr):
        self.objects = []
        for o in objects:
            if isGroup(o):
                self.objects = self.objects + o.objects
            else:
                self.objects.append(o)
        for key, value in attr.items():
            for o in self.objects:
                o[key] = value

    is_group = 1

    def __len__(self):
        return len(self.objects)

    def __getitem__(self, item):
        return self.object[item]

    def __coerce__(self, other):
        if not isGroup(other):
            other = Group([other])
        return (self, other)

    def __add__(self, other):
        return Group(self.objects + other.objects)

    def writeToFile(self, file):
        for o in self.objects:
            o.writeToFile(file)

def isGroup(x):
    return hasattr(x, 'is_group')

#
# Composite Objects
#
class Arrow(Group):

    """
    Arrow

    An arrow consists of a cylinder and a cone.
    """

    def __init__(self, point1, point2, radius, **attr):
        """
        @param point1: starting point of the arrow
        @type point1: L{Scientific.Geometry.Vector}
        @param point2: the tip of the arrow
        @type point2: L{Scientific.Geometry.Vector}
        @param radius: the radius of the shaft
        @type radius: positive number
        @param attr: graphics attributes as keyword parameters
        """
        axis = point2-point1
        height = axis.length()
        axis = axis/height
        cone_height = min(height, 4.*radius)
        cylinder_height = height - cone_height
        junction = point2-axis*cone_height
        cone = apply(Cone, (point2, junction, 0.75*cone_height), attr)
        objects = [cone]
        if cylinder_height > 0.005*radius:
            cylinder = apply(Cylinder, (point1, junction, radius), attr)
            objects.append(cylinder)
        Group.__init__(self, objects)

#
# Materials
#
class Material(VRMLObject):

    """
    Material specification for graphics objects

    A material defines the color and surface properties of an object.
    """

    def __init__(self, **attr):
        """
        @param attr: material attributes as keyword arguments
        @keyword diffuse_color: the color of a diffusely reflecting surface
        @type diffuse_color: L{Color}
        @keyword emissive_color: the color of emitted light
        @type emissive_color: L{Color}
        @keyword ambient_color: 
        @type ambient_color: L{Color}
        @keyword specular_color: 
        @type specular_color: L{Color}
        @keyword shininess:
        @type shininess: C{float}
        @keyword transparency: 
        @type transparency: C{float}
        """
        VRMLObject.__init__(self, attr)

    attribute_names = VRMLObject.attribute_names + \
                      ['ambient_color', 'diffuse_color', 'specular_color',
                       'emissive_color', 'shininess', 'transparency']

    attribute_conversion = {'ambient_color': 'ambientColor',
                            'diffuse_color': 'diffuseColor',
                            'specular_color': 'specularColor',
                            'emissive_color': 'emissiveColor',
                            'shininess': 'shininess',
                            'transparency': 'transparency'}

    def writeToFile(self, file):
        if file.memo.has_key(self):
            file.writeString('USE ' + file.memo[self] + '\n')
        else:
            name = file.uniqueName()
            file.memo[self] = name
            file.writeString('DEF '+name+' Appearance{material Material{\n')
            for key, value in self.attr.items():
                file.writeString(self.attribute_conversion[key] + ' ' + \
                                 str(value) + '\n')
            file.writeString('}}\n')

    def use(self, file):
        pass

#
# Predefined materials
#
def DiffuseMaterial(color):
    """
    @param color: a color object or a predefined color name
    @type color: L{Color} or C{str}
    @returns: a material with the 'diffuse color' attribute set to color
    @rtype: L{Material}
    """
    if type(color) is type(''):
        color = ColorByName(color)
    try:
        return _diffuse_material_dict[color]
    except KeyError:
        m = Material(diffuse_color = color)
        _diffuse_material_dict[color] = m
        return m

_diffuse_material_dict = {}

def EmissiveMaterial(color):
    """
    @param color: a color object or a predefined color name
    @type color: L{Color} or C{str}
    @returns: a material with the 'emissive color' attribute set to color
    @rtype: L{Material}
    """
    if type(color) is type(''):
        color = ColorByName(color)
    try:
        return _emissive_material_dict[color]
    except KeyError:
        m = Material(emissive_color = color)
        _emissive_material_dict[color] = m
        return m

_emissive_material_dict = {}


#
# Test code
#
if __name__ == '__main__':

    if 1:
        from Scientific.Geometry import null, ex, ey, ez
        spheres = DiffuseMaterial('green')
        links = DiffuseMaterial('red')
        s1 = Sphere(null, 0.05, material = spheres, reuse = 1)
        s2 = Sphere(ex, 0.05, material = spheres, reuse = 1)
        s3 = Sphere(ey, 0.05, material = spheres, reuse = 1)
        s4 = Sphere(ez, 0.05, material = spheres, reuse = 1)
        a1 = Arrow(null, ex, 0.01, material = links)
        a2 = Arrow(null, ey, 0.01, material = links)
        a3 = Arrow(null, ez, 0.01, material = links)
        scene = Scene([a1, a2, a3, s1, s2, s3, s4])
        scene.view()

    if 0:
        scene = Scene([])
        scale = ColorScale(10.)
        for x in range(11):
            color = scale(x)
            m = Material(diffuse_color = color)
            scene.addObject(Cube(Vector(x,0.,0.), 0.2, material=m))
        scene.view()

    if 0:
        points = [Vector(0., 0., 0.),
                  Vector(0., 1., 0.),
                  Vector(1., 1., 0.),
                  Vector(1., 0., 0.),
                  Vector(1., 0., 1.),
                  Vector(1., 1., 1.)]
        indices = [[0, 1, 2, 3, 0], [3, 4, 5, 2, 3]]
        scene = Scene(Polygons(points, indices,
                               material=DiffuseMaterial('yellow')))
        scene.view()

    if 0:
        points = [Vector(0., 0., 0.),
                  Vector(0., 1., 0.),
                  Vector(1., 1., 0.),
                  Vector(1., 0., 0.),
                  Vector(1., 0., 1.),
                  Vector(1., 1., 1.)]
        scene = Scene(PolyLines(points, material = EmissiveMaterial('yellow')))
        scene.view()