This file is indexed.

/usr/share/pyshared/scitools/easyviz/matlab_.py is in python-scitools 0.9.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
"""
This backend uses the Matlab package for plotting and mlabwrap (available at
http://sourceforge.net/projects/mlabwrap) for the connection between Python
and Matlab. To use this backend, one can run a script somefile.py like

  python somefile.py --SCITOOLS_easyviz_backend matlab

or one can specify the backend in the SciTools configuration file
scitools.cfg under the [easyviz] section

  [easyviz]
  backend = matlab

and then

  from scitools.std import *

or if just easyviz is needed

  from scitools.easyviz import *

REQUIREMENTS:

Matlab
mlabwrap (http://www.scipy.org/MlabWrap)

Tip:

- To run this backend in batch mode, set the -nodisplay option in the
environment variable MLABRAW_CMD_STR. This might give unexpected results
when using the hardcopy command (or the print command directly in Matlab).
However, this seems to be fixed by closing the figure window between each
call to hardcopy. A short example follows next (see also
http://www.mathworks.com/support/solutions/data/1-1A62W.html).

  from scitools.std import *
  x = linspace(0,5,31)
  for i in range(10):
      plot(x,cos(-0.1*i+x),ymin=-1.1,ymax=1.1)
      hardcopy('/tmp/img_%02d.eps' % i)
      close()
  movie('/tmp/img_%02d.eps')

"""

from __future__ import division

from common import *
from scitools.globaldata import DEBUG, VERBOSE
from scitools.misc import test_if_module_exists 

try:
    from scikits.mlabwrap import mlab
except ImportError:
    try:
        from mlabwrap import mlab
    except ImportError:
        # mlabwrap is not available
        test_if_module_exists('mlabwrap', msg='You need to install the mlabwrap package.', abort=False)


class MatlabBackend(BaseClass):
    def __init__(self):
        BaseClass.__init__(self)
        self._init()
        
    def _init(self, *args, **kwargs):
        """Perform initialization that is special for this backend."""
        
        #self.figure(self.getp('curfig'))
        pass

    def _set_scale(self, ax):
        """Set linear or logarithmic (base 10) axis scale."""
        if DEBUG:
            print "Setting scales"
        scale = ax.getp('scale')
        if scale == 'loglog':
            # use logarithmic scale on both x- and y-axis
            xscale = 'log'
            yscale = 'log'
        elif scale == 'logx':
            # use logarithmic scale on x-axis and linear scale on y-axis
            xscale = 'log'
            yscale = 'lin'
        elif scale == 'logy':
            # use linear scale on x-axis and logarithmic scale on y-axis
            xscale = 'lin'
            yscale = 'log'
        else: 
            # use linear scale on both x- and y-axis
            xscale = 'lin'
            yscale = 'lin'
        self._axargs.extend(['XScale', xscale, 'YScale', yscale])

    def _set_labels(self, ax):
        """Add text labels for x-, y-, and z-axis."""
        if DEBUG:
            print "Setting labels"
        xlabel = ax.getp('xlabel')
        ylabel = ax.getp('ylabel')
        zlabel = ax.getp('zlabel')
        if xlabel:
            self._g.xlabel(xlabel)
        if ylabel:
            self._g.ylabel(ylabel)
        if zlabel:
            self._g.zlabel(zlabel)

    def _set_title(self, ax):
        """Add a title at the top of the axis."""
        if DEBUG:
            print "Setting title"
        title = self._fix_latex(ax.getp('title'))
        if title:
            self._g.title(title)
    
    def _set_limits(self, ax):
        """Set axis limits in x, y, and z direction."""
        if DEBUG:
            print "Setting axis limits"
        mode = ax.getp('mode')
        h = self._g.gca()
        if mode == 'auto':
            # let plotting package set 'nice' axis limits in the x, y,
            # and z direction. If this is not automated in the plotting
            # package, one can use the following limits:
            #xmin, xmax, ymin, ymax, zmin, zmax = ax.get_limits()
            pass  #self._g.axis('auto', nout=0)
        elif mode == 'manual':
            # (some) axis limits are frozen
            xmin = ax.getp('xmin')
            xmax = ax.getp('xmax')
            if xmin is not None and xmax is not None:
                # set x-axis limits
                #self._g.set_(h, 'XLim', [xmin,xmax], nout=0)
                self._axargs.extend(['XLim', [xmin,xmax]])
            else:
                # let plotting package set x-axis limits or use
                #xmin, xmax = ax.getp('xlim')
                pass

            ymin = ax.getp('ymin')
            ymax = ax.getp('ymax')
            if ymin is not None and ymax is not None:
                # set y-axis limits
                #self._g.set_(h, 'YLim', [ymin,ymax], nout=0)
                self._axargs.extend(['YLim', [ymin,ymax]])
            else:
                # let plotting package set y-axis limits or use
                #ymin, ymax = ax.getp('ylim')
                pass

            zmin = ax.getp('zmin')
            zmax = ax.getp('zmax')
            if zmin is not None and zmax is not None:
                # set z-axis limits
                #self._g.set_(h, 'ZLim', [zmin,zmax], nout=0)
                self._axargs.extend(['ZLim', [zmin,zmax]])
            else:
                # let plotting package set z-axis limits or use
                #zmin, zmax = ax.getp('zlim')
                pass
            #self._g.axis('manual', nout=0)
        elif mode == 'tight':
            # set the limits on the axis to the range of the data. If
            # this is not automated in the plotting package, one can
            # use the following limits:
            #xmin, xmax, ymin, ymax, zmin, zmax = ax.get_limits()
            self._g.axis('tight', nout=0)
        elif mode == 'fill':
            # not sure about this
            self._g.axis('fill', nout=0)

    def _set_position(self, ax):
        """Set axes position."""
        rect = ax.getp('viewport')
        if rect and ax.getp('pth') is None:
            # axes position is defined. In Matlab rect is defined as
            # [left,bottom,width,height], where the four parameters are
            # location values between 0 and 1 ((0,0) is the lower-left
            # corner and (1,1) is the upper-right corner).
            # NOTE: This can be different in the plotting package.
            #h = self._g.gca()
            #self._g.set_(h, 'Position', rect, nout=0)
            pass  # position of arbitrary axes are done in _replot

    def _set_daspect(self, ax):
        """Set data aspect ratio."""
        if ax.getp('daspectmode') == 'manual':
            dar = ax.getp('daspect')  # dar is a list (len(dar) is 3).
            self._axargs.extend(['DataAspectRatio', dar])
        else:
            #self._axargs.extend(['DataAspectRatioMode', 'auto'])
            pass
        
    def _set_axis_method(self, ax):
        method = ax.getp('method')
        if method == 'equal':
            # tick mark increments on the x-, y-, and z-axis should
            # be equal in size.
            self._g.axis('equal', nout=0)
        elif method == 'image':
            # same effect as axis('equal') and axis('tight')
            self._g.axis('image', nout=0)
        elif method == 'square':
            # make the axis box square in size
            self._axargs.extend(['DataAspectRatioMode', 'auto',
                                 'PlotBoxAspectRatio', [1,1,1]])
        elif method == 'normal':
            # full size axis box
            self._axargs.extend(['DataAspectRatioMode', 'auto',
                                 'PlotBoxAspectRatioMode', 'auto',
                                 'CameraViewAngleMode', 'auto'])
        elif method == 'vis3d':
            # freeze data aspect ratio when rotating 3D objects
            #self._g.axis('vis3d', nout=0)
            ax = self._g.gca()
            camva = self._g.get(ax, 'CameraViewAngle')
            dar = self._g.get(ax, 'DataAspectRatio')
            pbar = self._g.get(ax, 'PlotBoxAspectRatio')
            self._axargs.extend(['DataAspectRatio', dar,
                                 'PlotBoxAspectRatio', pbar,
                                 'CameraViewAngle', camva])

    def _set_coordinate_system(self, ax):
        """
        Use either the default Cartesian coordinate system or a
        matrix coordinate system.
        """
        direction = ax.getp('direction')
        if direction == 'ij':
            # Use matrix coordinates. The origin of the coordinate
            # system is the upper-left corner. The i-axis should be
            # vertical and numbered from top to bottom, while the j-axis
            # should be horizontal and numbered from left to right.
            self._axargs.extend(['YDir', 'reverse'])
        elif direction == 'xy':
            # use the default Cartesian axes form. The origin is at the
            # lower-left corner. The x-axis is vertical and numbered
            # from left to right, while the y-axis is vertical and
            # numbered from bottom to top.
            self._axargs.extend(['YDir', 'normal'])

    def _set_box(self, ax):
        """Turn box around axes boundary on or off."""
        if DEBUG:
            print "Setting box"
        if ax.getp('box'):
            # display box 
            self._axargs.extend(['Box', 'on'])
        else:
            # do not display box
            self._axargs.extend(['Box', 'off'])
        
    def _set_grid(self, ax):
        """Turn grid lines on or off."""
        if DEBUG:
            print "Setting grid"
        state = None
        if ax.getp('grid'):
            # turn grid lines on
            state = 'on'
        else:
            # turn grid lines off
            state = 'off'
        self._axargs.extend(['XGrid', state, 'YGrid', state, 'ZGrid', state])

    def _set_hidden_line_removal(self, ax):
        """Turn on/off hidden line removal for meshes."""
        if DEBUG:
            print "Setting hidden line removal"
        if ax.getp('hidden'):
            # turn hidden line removal on
            pass  #self._g.hidden('on', nout=0)
        else:
            # turn hidden line removal off
            self._g.hidden('off', nout=0)

    def _set_colorbar(self, ax):
        """Add a colorbar to the axis."""
        if DEBUG:
            print "Setting colorbar"
        cbar = ax.getp('colorbar')
        if cbar.getp('visible'):
            # turn on colorbar
            cbar_title = cbar.getp('cbtitle')
            cbar_location = cbar.getp('cblocation')
            self._g.colorbar(cbar_location)
            # FIXME: what about the title?
        else:
            # turn off colorbar
            pass

    def _set_caxis(self, ax):
        """Set the color axis scale."""
        if DEBUG:
            print "Setting caxis"
        if ax.getp('caxismode') == 'manual':
            cmin, cmax = ax.getp('caxis')
            # NOTE: cmin and cmax might be None:
            if cmin is None or cmax is None:
                #cmin, cmax = [0,1]
                self._axargs.extend(['CLimMode', 'manual'])
            else:
                # set color axis scaling according to cmin and cmax
                self._axargs.extend(['CLim', [cmin, cmax]])
        else:
            # use autoranging for color axis scale
            self._axargs.extend(['CLimMode', 'auto'])

    def _set_colormap(self, ax):
        """Set the colormap."""
        if DEBUG:
            print "Setting colormap"
        cmap = ax.getp('colormap')
        # cmap is plotting package dependent
        if cmap is not None:
            self._g.colormap(cmap, nout=0)
        else:
            pass  #self._g.colormap('default', nout=0)

    def _set_view(self, ax):
        """Set viewpoint specification."""
        if DEBUG:
            print "Setting view"
        cam = ax.getp('camera')
        view = cam.getp('view')
        matlab_view = list(ravel(self._g.get(self._g.gca(), 'View')))
        if view == 2:
            # setup a default 2D view
            self._axargs.extend(['View', [0,90]])
        elif view == 3:
            az = cam.getp('azimuth')
            el = cam.getp('elevation')
            if az is None or el is None:
                # azimuth or elevation is not given. Set up a default
                # 3D view (az=-37.5 and el=30 is the default 3D view in
                # Matlab).
                self._axargs.extend(['View', [-37.5,30]])
            else:
                # set a 3D view according to az and el
                self._axargs.extend(['View', [az,el]])
            
            if cam.getp('cammode') == 'manual':
                # for advanced camera handling:
                roll = cam.getp('camroll')
                if roll is not None:
                    self._g.camroll(roll, nout=0)
                zoom = cam.getp('camzoom')
                #if zoom != 1:  # FIXME: Is this the right way?
                #    self._g.camzoom(zoom, nout=0)
                dolly = cam.getp('camdolly')
                #if dolly != (0,0,0):
                #    self._g.camdolly(list(dolly), nout=0)
                target = cam.getp('camtarget')
                position = cam.getp('campos')
                up_vector = cam.getp('camup')
                view_angle = cam.getp('camva')
                projection = cam.getp('camproj')
                #self._axargs.extend(['CameraTarget', target,
                #                     'CameraPosition', position,
                #                     'CameraPosition', position,
                #                     'CamearUpVector', up_vector,
                #                     'CameraViewAngle', view_angle,
                #                     'Projection', projection])

    def _set_axis_props(self, ax):
        if DEBUG:
            print "Setting axis properties"
        h = self._g.gca()
        self._axargs = [h]
        self._set_title(ax)
        self._set_scale(ax)
        self._set_axis_method(ax)  # should be called before _set_limits.
        self._set_limits(ax)
        self._set_position(ax)
        self._set_daspect(ax)
        self._set_coordinate_system(ax)
        self._set_hidden_line_removal(ax)
        self._set_colorbar(ax)
        self._set_caxis(ax)
        self._set_colormap(ax)
        self._set_view(ax)
        if ax.getp('visible'):
            self._set_labels(ax)
            self._set_box(ax)
            self._set_grid(ax)
            self._axargs.extend(['Visible', 'on'])
        else:
            # turn off all axis labeling, tickmarks, and background
            self._axargs.extend(['Visible', 'off'])
        kwargs = {'nout': 0}
        self._g.set_(*self._axargs, **kwargs)

    def _get_linespecs(self, item):
        """
        Return the line marker, line color, line style, and
        line width of the item.
        """
        marker = item.getp('linemarker')
        color = item.getp('linecolor')
        style = item.getp('linetype')
        width = item.getp('linewidth')
        return marker, color, style, width

    def _add_line(self, item):
        """Add a 2D or 3D curve to the scene."""
        if DEBUG:
            print "Adding a line"
        # get data:
        x = item.getp('xdata')
        y = item.getp('ydata')
        z = item.getp('zdata')
        # get line specifiactions:
        marker, color, style, width = self._get_linespecs(item)

        if z is not None:
            # zdata is given, add a 3D curve:
            args = [x,y,z]
            func = self._g.plot3
        else:
            # no zdata, add a 2D curve:
            args = [x,y]
            func = self._g.plot

        if color:
            args.extend(['Color', color])
        if style:
            args.extend(['LineStyle', style])
        if marker:
            args.extend(['Marker', marker])
            if not style:
                args.extend(['LineStyle', 'none'])
        if width:
            args.extend(['LineWidth', float(width)])

        kwargs = {'nout': 0}
        func(*args, **kwargs)

    def _add_bar_graph(self, item, shading='faceted'):
        if DEBUG:
            print "Adding a bar graph"
        # get data:
        x = item.getp('xdata')
        y = item.getp('ydata')
        # get line specifiactions:
        marker, color, style, width = self._get_linespecs(item)

        edgecolor = item.getp('edgecolor')
        if not edgecolor:
            edgecolor = 'k'
            # FIXME: should use ax.getp('fgcolor') as the default edgecolor
        facecolor = item.getp('facecolor')
        if not facecolor:
            facecolor = color
        args = [x,y]

        barwidth = item.getp('barwidth')
        if barwidth is not None:
            args.append(barwidth)
        args.append('grouped')
        if facecolor:
            args.extend(['FaceColor', facecolor])
        if shading != 'faceted':
            args.extend(['EdgeColor', 'none'])
        elif edgecolor:
            args.extend(['EdgeColor', '%s' % edgecolor])
            # FIXME: a three-tuple [r,g,b] should also be supported

        kwargs = {'nout': 0}
        self._g.bar(*args, **kwargs)
        
        barticks = item.getp('barticks')
        if barticks is not None:
            #self._g.set_(self._g.gca(), 'XTickLabel', barticks, nout=0)
            if item.getp('rotated_barticks'):
                pass

    def _add_surface(self, item, shading='faceted'):
        if DEBUG:
            print "Adding a surface"
        x = squeeze(item.getp('xdata'))  # grid component in x-direction
        y = squeeze(item.getp('ydata'))  # grid component in y-direction
        z = item.getp('zdata')           # scalar field
        c = item.getp('cdata')           # pseudocolor data (can be None)

        if item.getp('indexing') == 'ij' and \
               (shape(x) != shape(z) and shape(y) != shape(z)):
            x,y = ndgrid(x, y, sparse=False)
        args = [x,y,z]
        if c is not None:
            args.append(c)
            
        # get line specifiactions:
        marker, color, style, width = self._get_linespecs(item)
        edgecolor = item.getp('edgecolor')
        facecolor = item.getp('facecolor')
        if edgecolor:
            args.extend(['EdgeColor', edgecolor])
        if facecolor:
            args.extend(['FaceColor', facecolor])
        if style:
            args.extend(['LineStyle', style])
        if marker:
            args.extend(['Marker', marker])
        if width:
            args.extend(['LineWidth', float(width)])

        if not shading == 'faceted' and not color:
            args.extend(['EdgeColor', 'none', 'FaceColor', shading])
        
        contours = item.getp('contours')
        if contours:
            # the current item is produced by meshc or surfc and we
            # should therefore add contours at the bottom:
            #self._add_contours(contours, placement='bottom')
            pass

        if item.getp('wireframe'):
            # wireframe mesh (as produced by mesh or meshc)
            if contours:
                func = self._g.meshc
            else:
                func = self._g.mesh
        else:
            # colored surface (as produced by surf, surfc, or pcolor)
            # use keyword argument shading to set the color shading mode
            if contours:
                func = self._g.surfc
            else:
                if item.getp('function') == 'pcolor':
                    func = self._g.pcolor
                else:
                    func = self._g.surf

        kwargs = {'nout': 0}
        if item.getp('function') in ['pcolor','meshc']:
            # pcolor needs special treatment since it has no support for
            # parameter/value pairs.
            if c is not None:
                extra_args = ['CData', c] + args[4:]
            else:
                extra_args = args[3:]
            h = func(x,y,z,nout=1)
            if extra_args:
                extra_args = [h] + extra_args
                self._g.set_(*extra_args, **kwargs)
        else:
            func(*args, **kwargs)
        
    def _add_contours(self, item, placement=None):
        # The placement keyword can be either None or 'bottom'. The
        # latter specifies that the contours should be placed at the
        # bottom (as in meshc or surfc).
        if DEBUG:
            print "Adding contours"
        x = squeeze(item.getp('xdata'))  # grid component in x-direction
        y = squeeze(item.getp('ydata'))  # grid component in y-direction
        z = item.getp('zdata')           # scalar field

        if item.getp('indexing') == 'ij' and \
               (shape(x) != shape(z) and shape(y) != shape(z)):
            x,y = ndgrid(x, y, sparse=False)
        args = [x,y,z]

        filled = item.getp('filled')  # draw filled contour plot if True

        cvector = item.getp('cvector')
        clevels = item.getp('clevels')  # number of contour levels
        if cvector is None:
            # the contour levels are chosen automatically
            #cvector =
            args.append(clevels)
        else:
            args.append(cvector)

        location = item.getp('clocation')
        if location == 'surface':
            # place the contours at the corresponding z level (contour3)
            func = self._g.contour3
        elif location == 'base':
            # standard contour plot
            if filled:
                func = self._g.contourf
            else:
                func = self._g.contour

        # get line specifiactions:
        marker, color, style, width = self._get_linespecs(item)
        extra_args = []
        if style:
            extra_args.extend(['LineStyle', style])
        if width:
            extra_args.extend(['LineWidth', float(width)])
        
        kwargs = {'nout': 2}
        if item.getp('function') == 'contour3':
            # contour3 does not allow property-value pairs
            cs, h = func(*args, **kwargs)
            if color:
                extra_args.extend(['EdgeColor', color])
            if marker:
                extra_args.extend(['Marker', marker])
            args = [h] + extra_args
            kwargs = {'nout': 0}
            if len(args) > 1:
                self._g.set_(*args, **kwargs)
        else:
            if color:
                extra_args.extend(['Color', color])
            args.extend(extra_args)
            cs, h = func(*args, **kwargs)

        if item.getp('clabels'):
            # add labels on the contour curves
            self._g.clabel(cs, h, nout=0)
    
    def _add_vectors(self, item):
        if DEBUG:
            print "Adding vectors"
        # uncomment the following command if there is no support for
        # automatic scaling of vectors in the current plotting package:
        #item.scale_vectors()

        # grid components:
        x = squeeze(item.getp('xdata'))
        y = squeeze(item.getp('ydata'))
        z = item.getp('zdata')
        # vector components:
        u = item.getp('udata')
        v = item.getp('vdata')
        w = item.getp('wdata')
        # get line specifiactions (marker='.' means no marker):
        marker, color, style, width = self._get_linespecs(item)

        # scale the vectors according to this variable (scale=0 should
        # turn off automatic scaling):
        scale = item.getp('arrowscale')

        filled = item.getp('filledarrows') # draw filled arrows if True

        if z is not None and w is not None:
            # draw velocity vectors as arrows with components (u,v,w) at
            # points (x,y,z):
            z = squeeze(z)
            if item.getp('indexing') == 'ij' and \
                   (shape(x) != shape(u) and shape(y) != shape(u) and \
                    shape(z) != shape(u)):
                x,y,z = ndgrid(x, y, z, sparse=False)
            args = [x,y,z,u,v,w]
            func = self._g.quiver3
        else:
            # draw velocity vectors as arrows with components (u,v) at
            # points (x,y):
            if item.getp('indexing') == 'ij' and \
                   (shape(x) != shape(u) and shape(y) != shape(u)):
                x,y = ndgrid(x, y, sparse=False)
            args = [x,y,u,v]
            func = self._g.quiver
        args.append(scale)
        if filled:
            args.append('filled')
        if color:
            args.extend(['Color', color])
        if style:
            args.extend(['LineStyle', style])
        if marker:
            args.extend(['Marker', marker, 'ShowArrowHead', 'off'])
        if width:
            args.extend(['LineWidth', float(width)])
        kwargs = {'nout': 0}
        func(*args, **kwargs)

    def _add_streams(self, item):
        if DEBUG:
            print "Adding streams"
        # grid components:
        x, y, z = item.getp('xdata'), item.getp('ydata'), item.getp('zdata')
        # vector components:
        u, v, w = item.getp('udata'), item.getp('vdata'), item.getp('wdata')
        # starting positions for streams:
        sx = item.getp('startx')
        sy = item.getp('starty')
        sz = item.getp('startz')
        # get line specifiactions:
        marker, color, style, width = self._get_linespecs(item)
        # TODO: implement linepecs

        args = [x,y,z,u,v,w,sx,sy,sz]
        if item.getp('tubes'):
            # draw stream tubes from vector data (u,v,w) at points (x,y,z)
            n = item.getp('n') # no points along the circumference of the tube
            scale = item.getp('tubescale')
            args.append([scale, n])
            func = self._g.streamtube
        elif item.getp('ribbons'):
            # draw stream ribbons from vector data (u,v,w) at points (x,y,z)
            width = item.getp('ribbonwidth')
            args.append(width)
            func = self._g.streamribbon
        else:
            if z is not None and w is not None:
                # draw stream lines from vector data (u,v,w) at points (x,y,z)
                pass
            else:
                # draw stream lines from vector data (u,v) at points (x,y)
                args = [x,y,u,v,sx,sy]
            func = self._g.streamline
        kwargs = {'nout': 0}
        func(*args, **kwargs)

    def _add_isosurface(self, item):
        if DEBUG:
            print "Adding a isosurface"
        # grid components:
        x, y, z = item.getp('xdata'), item.getp('ydata'), item.getp('zdata')
        v = item.getp('vdata')  # volume
        c = item.getp('cdata')  # pseudocolor data
        isovalue = item.getp('isovalue')

        if item.getp('indexing') == 'ij' and \
               (shape(x) != shape(v) and shape(y) != shape(v) and \
                shape(z) != shape(v)):
            x,y,z = ndgrid(x,y,z,sparse=False)
        args = [x,y,z,v]
        if c is not None:
            args.append(c)
        args.append(isovalue)
        kwargs = {'nout': 0}
        self._g.isosurface(*args, **kwargs)

    def _add_slices(self, item):
        if DEBUG:
            print "Adding slices in a volume"
        # grid components:
        x, y, z = item.getp('xdata'), item.getp('ydata'), item.getp('zdata')
        v = item.getp('vdata')  # volume

        if item.getp('indexing') == 'ij' and \
               (shape(x) != shape(v) and shape(y) != shape(v) and \
                shape(z) != shape(v)):
            x,y,z = ndgrid(x,y,z,sparse=False)
        sx, sy, sz = item.getp('slices')
        if rank(sz) == 2:
            # sx, sy, and sz defines a surface
            pass
        else:
            # sx, sy, and sz is either numbers or vectors with numbers
            pass
        self._g.slice_(x,y,z,v,sx,sy,sz,nout=0)

    def _add_contourslices(self, item):
        if DEBUG:
            print "Adding contours in slice planes"
        # grid components:
        x, y, z = item.getp('xdata'), item.getp('ydata'), item.getp('zdata')
        v = item.getp('vdata')  # volume

        sx, sy, sz = item.getp('slices')
        if rank(sz) == 2:
            # sx, sy, and sz defines a surface
            pass
        else:
            # sx, sy, and sz is either numbers or vectors with numbers
            pass
        
        if item.getp('indexing') == 'ij' and \
               (shape(x) != shape(v) and shape(y) != shape(v) and \
                shape(z) != shape(v)):
            x,y,z = ndgrid(x,y,z,sparse=False)
        args = [x,y,z,v,sx,sy,sz]

        cvector = item.getp('cvector')
        clevels = item.getp('clevels')  # number of contour levels per plane
        if cvector is None:
            # the contour levels are chosen automatically
            args.append(clevels)
        else:
            args.append(cvector)
        kwargs = {'nout': 0}
        self._g.contourslice(*args, **kwargs)

    def _set_figure_size(self, fig):
        if DEBUG:
            print "Setting figure size"
        width, height = fig.getp('size')
        if width and height:
            # set figure width and height
            pass
        else:
            # use the default width and height in plotting package
            pass

    def figure(self, *args, **kwargs):
        # Extension of BaseClass.figure:
        # add a plotting package figure instance as fig._g and create a
        # link to it as self._g
        fig = BaseClass.figure(self, *args, **kwargs)
        try:
            fig._g
        except:
            # create plotting package figure and save figure instance
            # as fig._g
            if DEBUG:
                name = 'Fig ' + str(fig.getp('number'))
                print "creating figure %s in backend" % name

            fig._g = mlab
        self._g = fig._g # link for faster access

        #h = self._g.figure(self.getp('curfig'), nout=1)
        # hide figure until calling _replot:
        #self._g.set_(h, 'Visible', 'off', nout=0)
        return fig

    def _fix_latex(self, legend):
        """Remove latex syntax a la $, \, {, } etc."""
        legend = legend.strip()
        # General fix of latex syntax (more readable)
        legend = legend.replace('**', '^')  
        #legend = legend.replace('*', '')
        legend = legend.replace('$', '')
        legend = legend.replace('{', '')
        legend = legend.replace('}', '')
        legend = legend.replace('\\', '')
        return legend

    def _replot(self):
        """Replot all axes and all plotitems in the backend."""
        # NOTE: only the current figure (gcf) is redrawn.
        if DEBUG:
            print "Doing replot in backend"
        
        fig = self.gcf()
        try:
            fig._g
        except: 
            self.figure(self.getp('curfig'))
        h = self._g.figure(self.getp('curfig'), nout=1)
        # reset the plotting package instance in fig._g now if needed
        self._g.clf('reset')
        
        self._set_figure_size(fig)
        
        nrows, ncolumns = fig.getp('axshape')
        for axnr, ax in fig.getp('axes').items():
            if nrows != 1 or ncolumns != 1:
                # create axes in tiled position
                # this is subplot(nrows,ncolumns,axnr)
                axhandle = self._g.subplot(nrows,ncolumns,axnr,nout=1)
            else:
                rect = ax.getp('viewport')
                if rect and ax.getp('pth') is None:
                    axhandle = self._g.axes('position', rect, nout=1)
                else:
                    axhandle = self._g.gca()
            if ax.getp('numberofitems') > 0:
                hold_state = False
                legends = []
                plotitems = ax.getp('plotitems')
                plotitems.sort(self._cmpPlotProperties)
                for item in plotitems:
                    func = item.getp('function')
                    if isinstance(item, Line):
                        self._add_line(item)
                    elif isinstance(item, Bars):
                        self._add_bar_graph(item,shading=ax.getp('shading'))
                    elif isinstance(item, Surface):
                        self._add_surface(item, shading=ax.getp('shading'))
                    elif isinstance(item, Contours):
                        self._add_contours(item)
                    elif isinstance(item, VelocityVectors):
                        self._add_vectors(item)
                    elif isinstance(item, Streams):
                        self._add_streams(item)
                    elif isinstance(item, Volume):
                        if func == 'isosurface':
                            self._add_isosurface(item)
                        elif func == 'slice_':
                            self._add_slices(item)
                        elif func == 'contourslice':
                            self._add_contourslices(item)
                    legend = self._fix_latex(item.getp('legend'))
                    if legend:
                        # add legend to plot
                        legends.append(legend)
                    if ax.getp('numberofitems') > 1 and not hold_state:
                        self._g.hold(axhandle, 'on', nout=0)
                        hold_state = True
                    
                if legends:
                    self._g.legend(*legends)
                    
                if hold_state:
                    self._g.hold(axhandle, 'off', nout=0)

                self._set_axis_props(ax)
            else:
                self._g.set_(axhandle, 'Visible', 'off', nout=0)
                
        if self.getp('show'):
            # display plot on the screen
            if DEBUG:
                print "\nDumping plot data to screen\n"
                debug(self)
            #h = self._g.gcf()
            #self._g.set_(h, 'Visible', 'on', nout=0)

    def hardcopy(self, filename, **kwargs):
        """
        Supported extensions:

          '.ps'  (PostScript)
          '.eps' (Encapsualted PostScript)
          '.jpg' (Joint Photographic Experts Group)
          '.png' (Portable Network Graphics)
          '.pdf' (Portable Document Format)
          '.pbm' (Portable Bitmap)
          '.pgm' (Portable Graymap)
          '.ppm' (Portable Pixmap)
          '.tif' (Tagged Image File Format)
          '.hgl' (Hewlett-Packard Graphics Language)
          '.ai'  (Adobe Illustrator file)
          '.pcx' (Paintbrush 24-bit file)
          '.bmp' (Bitmap Image)

        Optional arguments:

          renderer    -- Specify which renderer to use. Available renderers
                         are 'painters', 'zbuffer', and 'opengl'. If not
                         specified, the default renderer in Matlab is chosen.
                         (This option is not available when running Matlab
                         with the -nodisplay argument.)
          color       -- If True, create a plot with colors. If False
                         (default), create a plot in black and white. This
                         option is only available for PostScript output.
          pslevel     -- Set the PostScript level to be used. By default,
                         level 1 PostScript is used, while pslevel=2 will use
                         PostScript level 2 instead.
          raw         -- If True, this will use raw format on PBM, PGM,
                         and PPM files. If False (default), a plain text
                         format is used.
          quality     -- Set the quality level of a JPEG image. Must be an
                         integer between 0 and 100, where 100 gives the best
                         quality but also the lowest compression. The default
                         quality level is 75.
          tiffcompression -- Set whether to use compression or no compression
                         (default) on a TIFF file.

        Example on how to use the backend directly to save a hardcopy of
        the current figure:

        >>> g = get_backend()
        >>> g.print_(g.gcf(), '-deps', 'foo.eps')
        """
        self.setp(**kwargs)
        color = self.getp('color')
        replot = kwargs.get('replot', True)
        if replot:
            self._replot()

        if DEBUG:
            print "Hardcopy to %s" % filename

        renderer = kwargs.get('renderer', None)
        pscolor = color and 'c' or ''
        quality = kwargs.get('quality', 75)
        pslevel = kwargs.get('pslevel', '')
        tiffcompression = kwargs.get('tiffcompression', False)
        tiffcompression = tiffcompression and '' or 'nocompression'
        raw = kwargs.get('raw', False)
        raw = raw and 'raw' or ''
            
        # convert table (extension --> device):
        ext2dev = {
            '': '-dps%s%s' % (pscolor,pslevel),
            '.ps': '-dps%s%s' % (pscolor,pslevel),
            '.eps': '-deps%s%s' % (pscolor,pslevel),
            '.jpg': '-djpeg%d' % int(quality),
            '.jpeg': '-djpeg%d' % int(quality),
            '.jpe': '-djpeg%d' % int(quality),
            '.png': '-dpng',
            '.hgl': '-dhpgl',
            '.ai': '-dill',
            '.tif': '-dtiff%s' % tiffcompression,
            '.tiff': '-dtiff%s' % tiffcompression,
            '.pbm': '-dpbm%s' % raw,
            '.ppm': '-dpgm%s' % raw,
            '.ppm': '-dppm%s' % raw,
            '.pdf': '-dpdf',
            '.pcx': '-dpcx24b',
            '.bmp': '-dbmp',
            '.dib': '-dbmp',
            }
        basename, ext = os.path.splitext(filename)
        device = ext2dev[ext]
        
        h = self._g.gcf()
        args = [h,device,filename]
        if renderer is not None:
            args.append('-%s' % renderer)
        kwargs = {'nout': 0}
        self._g.print_(*args, **kwargs)

    # reimplement color maps and other methods (if necessary) like clf,
    # closefig, and closefigs here.

    def clf(self):
        self._g.clf()
        BaseClass.clf(self)

    def closefig(self, arg=None): 
        if arg is None:
            num = self.getp('curfig')  # close current figure
        elif arg in self._figs.keys():
            num = arg
        elif arg in self._figs.values():
            for fignr, fig in self._figs.items():
                if fig == arg:
                    num = fignr
                    break
        else:
            raise ValueError("closefig: cannot close figure '%s'" % arg)
        self._g.close(num)
        #del self._figs[num]._g
        #del self._figs[num]
        
    def closefigs(self):
        for key in self._figs.keys():
            self.closefig(key)
        #del self._g
        BaseClass.closefigs(self)
           
    # Colormap methods:
    def hsv(self, m=64):
        return mlab.hsv(m)

    def hot(self, m=64):
        return mlab.hot(m)
    
    def gray(self, m=64):
        return mlab.gray(m)
    
    def bone(self, m=64):
        return mlab.bone(m)

    def copper(self, m=64):
        return mlab.copper(m)

    def pink(self, m=64):
        return mlab.pink(m)
    
    def white(self, m=64):
        return mlab.white(m)
    
    def flag(self, m=64):
        return mlab.flag(m)
        
    def lines(self, m=64):
        return mlab.lines(m)
    
    def colorcube(self, m=64):
        return mlab.colorcube(m)
    
    def vga(self, m=64):
        return mlab.vga(m)
    
    def jet(self, m=64):
        return mlab.jet(m)
    
    def prism(self, m=64):
        return mlab.prism(m)
        
    def cool(self, m=64):
        return mlab.cool(m)
    
    def autumn(self, m=64):
        return mlab.autumn(m)
    
    def spring(self, m=64):
        return mlab.spring(m)
    
    def winter(self, m=64):
        return mlab.winter(m)
    
    def summer(self, m=64):
        return mlab.summer(m)


    # Now we add the doc string from the methods in BaseClass to the
    # methods that are reimplemented in this backend:
    for cmd in BaseClass._matlab_like_cmds:
        if not '__' in cmd and hasattr(BaseClass, cmd):
            m1 = eval('BaseClass.%s' % cmd)
            try:
                m2 = eval('%s' % cmd)
            except NameError:
                pass
            else:
                if m1.__doc__ != m2.__doc__:
                    if m2.__doc__ is None:
                        m2.__doc__ = ""
                    m2.__doc__ = m1.__doc__ + m2.__doc__

    
plt = MatlabBackend()  # create backend instance
use(plt, globals())      # export public namespace of plt to globals()
backend = os.path.splitext(os.path.basename(__file__))[0][:-1]