This file is indexed.

/usr/include/root/ZTrees.h is in libroot-core-dev 5.34.00-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
/* @(#)root/zip:$Id: ZTrees.h 20882 2007-11-19 11:31:26Z rdm $ */
/* Author: */
/*

 Copyright (C) 1990-1993 Mark Adler, Richard B. Wales, Jean-loup Gailly,
 Kai Uwe Rommel and Igor Mandrichenko.
 For conditions of distribution and use, see copyright notice in zlib.h

*/

/*
 *  trees.c by Jean-loup Gailly
 *
 *  This is a new version of im_ctree.c originally written by Richard B. Wales
 *  for the defunct implosion method.
 *
 *  PURPOSE
 *
 *      Encode various sets of source values using variable-length
 *      binary code trees.
 *
 *  DISCUSSION
 *
 *      The PKZIP "deflation" process uses several Huffman trees. The more
 *      common source values are represented by shorter bit sequences.
 *
 *      Each code tree is stored in the ZIP file in a compressed form
 *      which is itself a Huffman encoding of the lengths of
 *      all the code strings (in ascending order by source values).
 *      The actual code strings are reconstructed from the lengths in
 *      the UNZIP process, as described in the "application note"
 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
 *
 *  REFERENCES
 *
 *      Lynch, Thomas J.
 *          Data Compression:  Techniques and Applications, pp. 53-55.
 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
 *
 *      Storer, James A.
 *          Data Compression:  Methods and Theory, pp. 49-50.
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 *
 *      Sedgewick, R.
 *          Algorithms, p290.
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 *
 *  INTERFACE
 *
 *      void ct_init (ush *attr, int *method)
 *          Allocate the match buffer, initialize the various tables and save
 *          the location of the internal file attribute (ascii/binary) and
 *          method (DEFLATE/STORE)
 *
 *      void ct_tally (int dist, int lc);
 *          Save the match info and tally the frequency counts.
 *
 *      long flush_block (char *buf, ulg stored_len, int eof)
 *          Determine the best encoding for the current block: dynamic trees,
 *          static trees or store, and output the encoded block to the zip
 *          file. Returns the total compressed length for the file so far.
 *
 */

#include <ctype.h>
/* #include "zip.h" */
/* #include "ZIP.h" */

/* ===========================================================================
 * Constants
 */

#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */

#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */

#define LENGTH_CODES 29
/* number of length codes, not counting the special END_BLOCK code */

#define LITERALS  256
/* number of literal bytes 0..255 */

#define END_BLOCK 256
/* end of block literal code */

#define L_CODES (LITERALS+1+LENGTH_CODES)
/* number of Literal or Length codes, including the END_BLOCK code */

#define D_CODES   30
/* number of distance codes */

#define BL_CODES  19
/* number of codes used to transfer the bit lengths */


local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};

local int near extra_dbits[D_CODES] /* extra bits for each distance code */
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};

local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};

#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
/* The three kinds of block type */

#ifndef LIT_BUFSIZE
#  ifdef SMALL_MEM
#    define LIT_BUFSIZE  0x2000
#  else
#  ifdef MEDIUM_MEM
#    define LIT_BUFSIZE  0x4000
#  else
#    define LIT_BUFSIZE  0x8000
#  endif
#  endif
#endif
#define DIST_BUFSIZE  LIT_BUFSIZE
/* Sizes of match buffers for literals/lengths and distances.  There are
 * 4 reasons for limiting LIT_BUFSIZE to 64K:
 *   - frequencies can be kept in 16 bit counters
 *   - if compression is not successful for the first block, all input data is
 *     still in the window so we can still emit a stored block even when input
 *     comes from standard input.  (This can also be done for all blocks if
 *     LIT_BUFSIZE is not greater than 32K.)
 *   - if compression is not successful for a file smaller than 64K, we can
 *     even emit a stored file instead of a stored block (saving 5 bytes).
 *   - creating new Huffman trees less frequently may not provide fast
 *     adaptation to changes in the input data statistics. (Take for
 *     example a binary file with poorly compressible code followed by
 *     a highly compressible string table.) Smaller buffer sizes give
 *     fast adaptation but have of course the overhead of transmitting trees
 *     more frequently.
 *   - I can't count above 4
 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
 * memory at the expense of compression). Some optimizations would be possible
 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
 */

#define REP_3_6      16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */

#define REPZ_3_10    17
/* repeat a zero length 3-10 times  (3 bits of repeat count) */

#define REPZ_11_138  18
/* repeat a zero length 11-138 times  (7 bits of repeat count) */

/* ===========================================================================
 * Local data
 */

/* Data structure describing a single value and its code string. */
typedef struct ct_data {
    union {
        ush  freq;       /* frequency count */
        ush  code;       /* bit string */
    } fc;
    union {
        ush  dad;        /* father node in Huffman tree */
        ush  len;        /* length of bit string */
    } dl;
} ct_data;

#define Freq fc.freq
#define Code fc.code
#define Dad  dl.dad
#define Len  dl.len

#define HEAP_SIZE (2*L_CODES+1)
/* maximum heap size */

local ct_data near dyn_ltree[HEAP_SIZE];   /* literal and length tree */
local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */

local ct_data near static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
 * below).
 */

local ct_data near static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */

local ct_data near bl_tree[2*BL_CODES+1];
/* Huffman tree for the bit lengths */

typedef struct tree_desc {
    ct_data near *dyn_tree;      /* the dynamic tree */
    ct_data near *static_tree;   /* corresponding static tree or NULL */
    int     near *extra_bits;    /* extra bits for each code or NULL */
    int     extra_base;          /* base index for extra_bits */
    int     elems;               /* max number of elements in the tree */
    int     max_length;          /* max bit length for the codes */
    int     max_code;            /* largest code with non zero frequency */
} tree_desc;

local tree_desc near l_desc =
{dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};

local tree_desc near d_desc =
{dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};

local tree_desc near bl_desc =
{bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};


local ush near bl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */

local uch near bl_order[BL_CODES]
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */

local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
local int heap_len;               /* number of elements in the heap */
local int heap_max;               /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 * The same heap array is used to build all trees.
 */

local uch near depth[2*L_CODES+1];
/* Depth of each subtree used as tie breaker for trees of equal frequency */

local uch length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */

local uch dist_code[512];
/* distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */

local int near base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */

local int near base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */

#ifndef DYN_ALLOC
  local uch far l_buf[LIT_BUFSIZE];  /* buffer for literals/lengths */
  local ush far d_buf[DIST_BUFSIZE]; /* buffer for distances */
#else
  local uch far *l_buf;
  local ush far *d_buf;
#endif

local uch near flag_buf[(LIT_BUFSIZE/8)];
/* flag_buf is a bit array distinguishing literals from lengths in
 * l_buf, and thus indicating the presence or absence of a distance.
 */

local unsigned last_lit;    /* running index in l_buf */
local unsigned last_dist;   /* running index in d_buf */
local unsigned last_flags;  /* running index in flag_buf */
local uch flags;            /* current flags not yet saved in flag_buf */
local uch flag_bit;         /* current bit used in flags */
/* bits are filled in flags starting at bit 0 (least significant).
 * Note: these flags are overkill in the current code since we don't
 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
 */

local ulg opt_len;        /* bit length of current block with optimal trees */
local ulg static_len;     /* bit length of current block with static trees */

local ulg compressed_len; /* total bit length of compressed file */

local ulg input_len;      /* total byte length of input file */
/* input_len is for debugging only since we can get it by other means. */

ush *R__file_type;        /* pointer to UNKNOWN, BINARY or ASCII */
int *R__file_method;      /* pointer to DEFLATE or STORE */

#ifdef DEBUG
/* extern ulg R__bits_sent; */ /* bit length of the compressed data */
/* extern ulg R__isize;     */ /* byte length of input file */
#endif

/* extern long R__block_start;       */ /* window offset of current block */
/* extern unsigned near R__strstart; */ /* window offset of current string */

/* ===========================================================================
 * Local (static) routines in this file.
 */

local void R__init_block     OF((void));
local void R__pqdownheap     OF((ct_data near *tree, int k));
local void R__gen_bitlen     OF((tree_desc near *desc));
local void R__gen_codes      OF((ct_data near *tree, int max_code));
local void R__build_tree     OF((tree_desc near *desc));
local void R__scan_tree      OF((ct_data near *tree, int max_code));
local void R__send_tree      OF((ct_data near *tree, int max_code));
local int  R__build_bl_tree  OF((void));
local void R__send_all_trees OF((int lcodes, int dcodes, int blcodes));
local void R__compress_block OF((ct_data near *ltree, ct_data near *dtree));
local void R__set_file_type  OF((void));


#ifndef DEBUG
#  define send_code(c, tree) R__send_bits(tree[c].Code, tree[c].Len)
   /* Send a code of the given tree. c and tree must not have side effects */

#else /* DEBUG */
#  define send_code(c, tree) \
     { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
       R__send_bits(tree[c].Code, tree[c].Len); }
#endif

#define d_code(dist) \
   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
 * must not have side effects. dist_code[256] and dist_code[257] are never
 * used.
 */

#define MAX(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */

/* ===========================================================================
 * Allocate the match buffer, initialize the various tables and save the
 * location of the internal file attribute (ascii/binary) and method
 * (DEFLATE/STORE).
 */
void R__ct_init(ush *attr, int *method)
    /* ush  *attr;    pointer to internal file attribute */
    /* int  *method;  pointer to compression method */
{
    int n;        /* iterates over tree elements */
    int bits;     /* bit counter */
    int length;   /* length value */
    int code;     /* code value */
    int dist;     /* distance index */

    R__file_type   = attr;
    R__file_method = method;
    compressed_len = input_len = 0L;

    if (static_dtree[0].Len != 0) return; /* ct_init already called */

#ifdef DYN_ALLOC
    d_buf = (ush far*) fcalloc(DIST_BUFSIZE, sizeof(ush));
    l_buf = (uch far*) fcalloc(LIT_BUFSIZE/2, 2);
    /* Avoid using the value 64K on 16 bit machines */
    if (l_buf == NULL || d_buf == NULL) R__error("R__ct_init: out of memory");
#endif

    /* Initialize the mapping length (0..255) -> length code (0..28) */
    length = 0;
    for (code = 0; code < LENGTH_CODES-1; code++) {
        base_length[code] = length;
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
            length_code[length++] = (uch)code;
        }
    }
    Assert (length == 256, "R__ct_init: length != 256");
    /* Note that the length 255 (match length 258) can be represented
     * in two different ways: code 284 + 5 bits or code 285, so we
     * overwrite length_code[255] to use the best encoding:
     */
    length_code[length-1] = (uch)code;

    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    dist = 0;
    for (code = 0 ; code < 16; code++) {
        base_dist[code] = dist;
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
            dist_code[dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "R__ct_init: dist != 256");
    dist >>= 7; /* from now on, all distances are divided by 128 */
    for ( ; code < D_CODES; code++) {
        base_dist[code] = dist << 7;
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
            dist_code[256 + dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "R__ct_init: 256+dist != 512");

    /* Construct the codes of the static literal tree */
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    n = 0;
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    /* Codes 286 and 287 do not exist, but we must include them in the
     * tree construction to get a canonical Huffman tree (longest code
     * all ones)
     */
    R__gen_codes((ct_data near *)static_ltree, L_CODES+1);

    /* The static distance tree is trivial: */
    for (n = 0; n < D_CODES; n++) {
        static_dtree[n].Len = 5;
        static_dtree[n].Code = R__bi_reverse(n, 5);
    }

    /* Initialize the first block of the first file: */
    R__init_block();
}

/* ===========================================================================
 * Initialize a new block.
 */
local void R__init_block()
{
    int n; /* iterates over tree elements */

    /* Initialize the trees. */
    for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;
    for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;
    for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;

    dyn_ltree[END_BLOCK].Freq = 1;
    opt_len = static_len = 0L;
    last_lit = last_dist = last_flags = 0;
    flags = 0; flag_bit = 1;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
 * Remove the smallest element from the heap and recreate the heap with
 * one less element. Updates heap and heap_len.
 */
#define pqremove(tree, top) \
{\
    top = heap[SMALLEST]; \
    heap[SMALLEST] = heap[heap_len--]; \
    R__pqdownheap(tree, SMALLEST); \
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
#define smaller(tree, n, m) \
   (tree[n].Freq < tree[m].Freq || \
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
local void R__pqdownheap(ct_data near *tree, int k)
    /* ct_data near *tree;   the tree to restore */
    /* int k;                node to move down */
{
    int v = heap[k];
    int j = k << 1;  /* left son of k */
    int htemp;       /* required because of bug in SASC compiler */

    while (j <= heap_len) {
        /* Set j to the smallest of the two sons: */
        if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;

        /* Exit if v is smaller than both sons */
        htemp = heap[j];
        if (smaller(tree, v, htemp)) break;

        /* Exchange v with the smallest son */
        heap[k] = htemp;
        k = j;

        /* And continue down the tree, setting j to the left son of k */
        j <<= 1;
    }
    heap[k] = v;
}

/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
local void R__gen_bitlen(tree_desc near *desc)
    /* tree_desc near *desc;  the tree descriptor */
{
    ct_data near *tree  = desc->dyn_tree;
    int near *extra     = desc->extra_bits;
    int base            = desc->extra_base;
    int max_code        = desc->max_code;
    int max_length      = desc->max_length;
    ct_data near *stree = desc->static_tree;
    int h;              /* heap index */
    int n, m;           /* iterate over the tree elements */
    int bits;           /* bit length */
    int xbits;          /* extra bits */
    ush f;              /* frequency */
    int overflow = 0;   /* number of elements with bit length too large */

    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;

    /* In a first pass, compute the optimal bit lengths (which may
     * overflow in the case of the bit length tree).
     */
    tree[heap[heap_max]].Len = 0; /* root of the heap */

    for (h = heap_max+1; h < HEAP_SIZE; h++) {
        n = heap[h];
        bits = tree[tree[n].Dad].Len + 1;
        if (bits > max_length) bits = max_length, overflow++;
        tree[n].Len = bits;
        /* We overwrite tree[n].Dad which is no longer needed */

        if (n > max_code) continue; /* not a leaf node */

        bl_count[bits]++;
        xbits = 0;
        if (n >= base) xbits = extra[n-base];
        f = tree[n].Freq;
        opt_len += (ulg)f * (bits + xbits);
        if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
    }
    if (overflow == 0) return;

    Trace((stderr,"\nbit length overflow\n"));
    /* This happens for example on obj2 and pic of the Calgary corpus */

    /* Find the first bit length which could increase: */
    do {
        bits = max_length-1;
        while (bl_count[bits] == 0) bits--;
        bl_count[bits]--;      /* move one leaf down the tree */
        bl_count[bits+1] += 2; /* move one overflow item as its brother */
        bl_count[max_length]--;
        /* The brother of the overflow item also moves one step up,
         * but this does not affect bl_count[max_length]
         */
        overflow -= 2;
    } while (overflow > 0);

    /* Now recompute all bit lengths, scanning in increasing frequency.
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     * lengths instead of fixing only the wrong ones. This idea is taken
     * from 'ar' written by Haruhiko Okumura.)
     */
    for (bits = max_length; bits != 0; bits--) {
        n = bl_count[bits];
        while (n != 0) {
            m = heap[--h];
            if (m > max_code) continue;
            if (tree[m].Len != (unsigned) bits) {
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
                tree[m].Len = bits;
            }
            n--;
        }
    }
}

/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
local void R__gen_codes (ct_data near *tree, int max_code)
    /* ct_data near *tree;         the tree to decorate */
    /* int max_code;               largest code with non zero frequency */
{
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    ush code = 0;              /* running code value */
    int bits;                  /* bit index */
    int n;                     /* code index */

    /* The distribution counts are first used to generate the code values
     * without bit reversal.
     */
    for (bits = 1; bits <= MAX_BITS; bits++) {
        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
    }
    /* Check that the bit counts in bl_count are consistent. The last code
     * must be all ones.
     */
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
            "inconsistent bit counts");
    Tracev((stderr,"\nR__gen_codes: max_code %d ", max_code));

    for (n = 0;  n <= max_code; n++) {
        int len = tree[n].Len;
        if (len == 0) continue;
        /* Now reverse the bits */
        tree[n].Code = R__bi_reverse(next_code[len]++, len);

        Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    }
}

/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
local void R__build_tree(tree_desc near *desc)
    /* tree_desc near *desc;  the tree descriptor */
{
    ct_data near *tree   = desc->dyn_tree;
    ct_data near *stree  = desc->static_tree;
    int elems            = desc->elems;
    int n, m;          /* iterate over heap elements */
    int max_code = -1; /* largest code with non zero frequency */
    int node = elems;  /* next internal node of the tree */

    /* Construct the initial heap, with least frequent element in
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     * heap[0] is not used.
     */
    heap_len = 0, heap_max = HEAP_SIZE;

    for (n = 0; n < elems; n++) {
        if (tree[n].Freq != 0) {
            heap[++heap_len] = max_code = n;
            depth[n] = 0;
        } else {
            tree[n].Len = 0;
        }
    }

    /* The pkzip format requires that at least one distance code exists,
     * and that at least one bit should be sent even if there is only one
     * possible code. So to avoid special checks later on we force at least
     * two codes of non zero frequency.
     */
    while (heap_len < 2) {
        int new1 = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
        tree[new1].Freq = 1;
        depth[new1] = 0;
        opt_len--; if (stree) static_len -= stree[new1].Len;
        /* new is 0 or 1 so it does not have extra bits */
    }
    desc->max_code = max_code;

    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     * establish sub-heaps of increasing lengths:
     */
    for (n = heap_len/2; n >= 1; n--) R__pqdownheap(tree, n);

    /* Construct the Huffman tree by repeatedly combining the least two
     * frequent nodes.
     */
    do {
        pqremove(tree, n);   /* n = node of least frequency */
        m = heap[SMALLEST];  /* m = node of next least frequency */

        heap[--heap_max] = n; /* keep the nodes sorted by frequency */
        heap[--heap_max] = m;

        /* Create a new node father of n and m */
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
        depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
        tree[n].Dad = tree[m].Dad = node;
#ifdef DUMP_BL_TREE
        if (tree == bl_tree) {
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
        }
#endif
        /* and insert the new node in the heap */
        heap[SMALLEST] = node++;
        R__pqdownheap(tree, SMALLEST);

    } while (heap_len >= 2);

    heap[--heap_max] = heap[SMALLEST];

    /* At this point, the fields freq and dad are set. We can now
     * generate the bit lengths.
     */
    R__gen_bitlen((tree_desc near *)desc);

    /* The field len is now set, we can generate the bit codes */
    R__gen_codes ((ct_data near *)tree, max_code);
}

/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree. Updates opt_len to take into account the repeat
 * counts. (The contribution of the bit length codes will be added later
 * during the construction of bl_tree.)
 */
local void R__scan_tree (ct_data near *tree, int max_code)
    /* ct_data near *tree;  the tree to be scanned */
    /* int max_code;        and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    if (nextlen == 0) max_count = 138, min_count = 3;
    tree[max_code+1].Len = (ush)-1; /* guard */

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            bl_tree[curlen].Freq += count;
        } else if (curlen != 0) {
            if (curlen != prevlen) bl_tree[curlen].Freq++;
            bl_tree[REP_3_6].Freq++;
        } else if (count <= 10) {
            bl_tree[REPZ_3_10].Freq++;
        } else {
            bl_tree[REPZ_11_138].Freq++;
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
local void R__send_tree (ct_data near *tree, int max_code)
    /* ct_data near *tree;  the tree to be scanned */
    /* int max_code;        and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    /* tree[max_code+1].Len = -1; */  /* guard already set */
    if (nextlen == 0) max_count = 138, min_count = 3;

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            do { send_code(curlen, bl_tree); } while (--count != 0);

        } else if (curlen != 0) {
            if (curlen != prevlen) {
                send_code(curlen, bl_tree); count--;
            }
            Assert(count >= 3 && count <= 6, " 3_6?");
            send_code(REP_3_6, bl_tree); R__send_bits(count-3, 2);

        } else if (count <= 10) {
            send_code(REPZ_3_10, bl_tree); R__send_bits(count-3, 3);

        } else {
            send_code(REPZ_11_138, bl_tree); R__send_bits(count-11, 7);
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
local int R__build_bl_tree()
{
    int max_blindex;  /* index of last bit length code of non zero freq */

    /* Determine the bit length frequencies for literal and distance trees */
    R__scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
    R__scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);

    /* Build the bit length tree: */
    R__build_tree((tree_desc near *)(&bl_desc));
    /* opt_len now includes the length of the tree representations, except
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     */

    /* Determine the number of bit length codes to send. The pkzip format
     * requires that at least 4 bit length codes be sent. (appnote.txt says
     * 3 but the actual value used is 4.)
     */
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
        if (bl_tree[bl_order[max_blindex]].Len != 0) break;
    }
    /* Update opt_len to include the bit length tree and counts */
    opt_len += 3*(max_blindex+1) + 5+5+4;
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));

    return max_blindex;
}

/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
local void R__send_all_trees(int lcodes, int dcodes, int blcodes)
    /* int lcodes, dcodes, blcodes;  number of codes for each tree */
{
    int rank;                    /* index in bl_order */

    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
            "too many codes");
    Tracev((stderr, "\nbl counts: "));
    R__send_bits(lcodes-257, 5);
    /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
    R__send_bits(dcodes-1,   5);
    R__send_bits(blcodes-4,  4); /* not -3 as stated in appnote.txt */
    for (rank = 0; rank < blcodes; rank++) {
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
        R__send_bits(bl_tree[bl_order[rank]].Len, 3);
    }
    Tracev((stderr, "\nbl tree: sent %ld", R__bits_sent));

    R__send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
    Tracev((stderr, "\nlit tree: sent %ld", R__bits_sent));

    R__send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
    Tracev((stderr, "\ndist tree: sent %ld", R__bits_sent));
}

/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and output the encoded block to the zip file. This function
 * returns the total compressed length for the file so far.
 */
ulg R__flush_block(char *buf, ulg stored_len, int eof)
    /* char *buf;         input block, or NULL if too old */
    /* ulg stored_len;    length of input block */
    /* int eof;           true if this is the last block for a file */
{
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    int max_blindex;  /* index of last bit length code of non zero freq */

    flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */

     /* Check if the file is ascii or binary */
    if (*R__file_type == (ush)UNKNOWN) R__set_file_type();

    /* Construct the literal and distance trees */
    R__build_tree((tree_desc near *)(&l_desc));
    Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));

    R__build_tree((tree_desc near *)(&d_desc));
    Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
    /* At this point, opt_len and static_len are the total bit lengths of
     * the compressed block data, excluding the tree representations.
     */

    /* Build the bit length tree for the above two trees, and get the index
     * in bl_order of the last bit length code to send.
     */
    max_blindex = R__build_bl_tree();

    /* Determine the best encoding. Compute first the block length in bytes */
    opt_lenb = (opt_len+3+7)>>3;
    static_lenb = (static_len+3+7)>>3;
    input_len += stored_len; /* for debugging only */

    Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
            opt_lenb, opt_len, static_lenb, static_len, stored_len,
            last_lit, last_dist));

    if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

#ifndef PGP /* PGP can't handle stored blocks */
    /* If compression failed and this is the first and last block,
     * and if the zip file can be seeked (to rewrite the local header),
     * the whole file is transformed into a stored file:
     */
#ifdef FORCE_METHOD
    if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
#else
    if (stored_len <= opt_lenb && eof && compressed_len == 0L && R__seekable()) {
#endif
        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
        if (buf == (char *) NULL) R__error ("block vanished");

        R__copy_block(buf, (unsigned)stored_len, 0); /* without header */
        compressed_len = stored_len << 3;
        *R__file_method = STORE;
    } else
#endif /* PGP */

#ifdef FORCE_METHOD
    if (level == 2 && buf != (char*)NULL) { /* force stored block */
#else
    if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
                       /* 4: two words for the lengths */
#endif
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
         * Otherwise we can't have processed more than WSIZE input bytes since
         * the last block flush, because compression would have been
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
         * transform a block into a stored block.
         */
        R__send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
        compressed_len = (compressed_len + 3 + 7) & ~7L;
        compressed_len += (stored_len + 4) << 3;

        R__copy_block(buf, (unsigned)stored_len, 1); /* with header */

#ifdef FORCE_METHOD
    } else if (level == 3) { /* force static trees */
#else
    } else if (static_lenb == opt_lenb) {
#endif
        R__send_bits((STATIC_TREES<<1)+eof, 3);
        R__compress_block( (ct_data near *)static_ltree,
                        (ct_data near *)static_dtree );
        compressed_len += 3 + static_len;
    } else {
        R__send_bits((DYN_TREES<<1)+eof, 3);
        R__send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
        R__compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
        compressed_len += 3 + opt_len;
    }
    Assert (compressed_len == R__bits_sent, "bad compressed size");
    R__init_block();

    if (eof) {
#if defined(PGP) && !defined(MMAP)
        /* Wipe out sensitive data for pgp */
/*
 *# ifdef DYN_ALLOC
 *       extern uch *R__window;
 *# else
 *       extern uch R__window[];
 *# endif
 */
        memset(R__window, 0, (unsigned)(2*WSIZE-1)); /* -1 needed if WSIZE=32K */
#else /* !PGP */
        Assert (input_len == R__isize, "bad input size");
#endif
        R__bi_windup();
        compressed_len += 7;  /* align on byte boundary */
    }
    Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
           compressed_len-7*eof));

    return compressed_len >> 3;
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
int R__ct_tally (int dist, int lc)
    /* int dist;   distance of matched string */
    /* int lc;     match length-MIN_MATCH or unmatched char (if dist==0) */
{
    l_buf[last_lit++] = (uch)lc;
    if (dist == 0) {
        /* lc is the unmatched char */
        dyn_ltree[lc].Freq++;
    } else {
        /* Here, lc is the match length - MIN_MATCH */
        dist--;             /* dist = match distance - 1 */
        Assert((ush)dist < (ush)MAX_DIST &&
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
               (ush)d_code(dist) < (ush)D_CODES,  "R__ct_tally: bad match");

        dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
        dyn_dtree[d_code(dist)].Freq++;

        d_buf[last_dist++] = dist;
        flags |= flag_bit;
    }
    flag_bit <<= 1;

    /* Output the flags if they fill a byte: */
    if ((last_lit & 7) == 0) {
        flag_buf[last_flags++] = flags;
        flags = 0, flag_bit = 1;
    }
    /* Try to guess if it is profitable to stop the current block here */
    if (level > 2 && (last_lit & 0xfff) == 0) {
        /* Compute an upper bound for the compressed length */
        ulg out_length = (ulg)last_lit*8L;
        ulg in_length = (ulg)R__strstart-R__block_start;
        int dcode;
        for (dcode = 0; dcode < D_CODES; dcode++) {
            out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
        }
        out_length >>= 3;
        Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
               last_lit, last_dist, in_length, out_length,
               100L - out_length*100L/in_length));
        if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
    }
    return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
    /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */
}

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
local void R__compress_block(ct_data near *ltree, ct_data near *dtree)
    /* ct_data near *ltree;  literal tree */
    /* ct_data near *dtree;  distance tree */
{
    unsigned dist;      /* distance of matched string */
    int lc;             /* match length or unmatched char (if dist == 0) */
    unsigned lx = 0;    /* running index in l_buf */
    unsigned dx = 0;    /* running index in d_buf */
    unsigned fx = 0;    /* running index in flag_buf */
    uch flag = 0;       /* current flags */
    unsigned code;      /* the code to send */
    int extra;          /* number of extra bits to send */

    if (last_lit != 0) do {
        if ((lx & 7) == 0) flag = flag_buf[fx++];
        lc = l_buf[lx++];
        if ((flag & 1) == 0) {
            send_code(lc, ltree); /* send a literal byte */
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
        } else {
            /* Here, lc is the match length - MIN_MATCH */
            code = length_code[lc];
            send_code(code+LITERALS+1, ltree); /* send the length code */
            extra = extra_lbits[code];
            if (extra != 0) {
                lc -= base_length[code];
                R__send_bits(lc, extra);        /* send the extra length bits */
            }
            dist = d_buf[dx++];
            /* Here, dist is the match distance - 1 */
            code = d_code(dist);
            Assert (code < D_CODES, "bad d_code");

            send_code(code, dtree);       /* send the distance code */
            extra = extra_dbits[code];
            if (extra != 0) {
                dist -= base_dist[code];
                R__send_bits(dist, extra);   /* send the extra distance bits */
            }
        } /* literal or match pair ? */
        flag >>= 1;
    } while (lx < last_lit);

    send_code(END_BLOCK, ltree);
}

/* ===========================================================================
 * Set the file type to ASCII or BINARY, using a crude approximation:
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 */
local void R__set_file_type()
{
    int n = 0;
    unsigned ascii_freq = 0;
    unsigned bin_freq = 0;
    while (n < 7)        bin_freq += dyn_ltree[n++].Freq;
    while (n < 128)    ascii_freq += dyn_ltree[n++].Freq;
    while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
    *R__file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
#ifndef PGP
#if 0
    if (*R__file_type == BINARY && translate_eol) {
        warn("-l used on binary file", "");
    }
#endif
#endif
    if (verbose) { }
}