This file is indexed.

/usr/share/go-1.10/src/runtime/mheap.go is in golang-1.10-src 1.10.1-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page heap.
//
// See malloc.go for overview.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// minPhysPageSize is a lower-bound on the physical page size. The
// true physical page size may be larger than this. In contrast,
// sys.PhysPageSize is an upper-bound on the physical page size.
const minPhysPageSize = 4096

// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
//
// mheap must not be heap-allocated because it contains mSpanLists,
// which must not be heap-allocated.
//
//go:notinheap
type mheap struct {
	lock      mutex
	free      [_MaxMHeapList]mSpanList // free lists of given length up to _MaxMHeapList
	freelarge mTreap                   // free treap of length >= _MaxMHeapList
	busy      [_MaxMHeapList]mSpanList // busy lists of large spans of given length
	busylarge mSpanList                // busy lists of large spans length >= _MaxMHeapList
	sweepgen  uint32                   // sweep generation, see comment in mspan
	sweepdone uint32                   // all spans are swept
	sweepers  uint32                   // number of active sweepone calls

	// allspans is a slice of all mspans ever created. Each mspan
	// appears exactly once.
	//
	// The memory for allspans is manually managed and can be
	// reallocated and move as the heap grows.
	//
	// In general, allspans is protected by mheap_.lock, which
	// prevents concurrent access as well as freeing the backing
	// store. Accesses during STW might not hold the lock, but
	// must ensure that allocation cannot happen around the
	// access (since that may free the backing store).
	allspans []*mspan // all spans out there

	// spans is a lookup table to map virtual address page IDs to *mspan.
	// For allocated spans, their pages map to the span itself.
	// For free spans, only the lowest and highest pages map to the span itself.
	// Internal pages map to an arbitrary span.
	// For pages that have never been allocated, spans entries are nil.
	//
	// Modifications are protected by mheap.lock. Reads can be
	// performed without locking, but ONLY from indexes that are
	// known to contain in-use or stack spans. This means there
	// must not be a safe-point between establishing that an
	// address is live and looking it up in the spans array.
	//
	// This is backed by a reserved region of the address space so
	// it can grow without moving. The memory up to len(spans) is
	// mapped. cap(spans) indicates the total reserved memory.
	spans []*mspan

	// sweepSpans contains two mspan stacks: one of swept in-use
	// spans, and one of unswept in-use spans. These two trade
	// roles on each GC cycle. Since the sweepgen increases by 2
	// on each cycle, this means the swept spans are in
	// sweepSpans[sweepgen/2%2] and the unswept spans are in
	// sweepSpans[1-sweepgen/2%2]. Sweeping pops spans from the
	// unswept stack and pushes spans that are still in-use on the
	// swept stack. Likewise, allocating an in-use span pushes it
	// on the swept stack.
	sweepSpans [2]gcSweepBuf

	_ uint32 // align uint64 fields on 32-bit for atomics

	// Proportional sweep
	//
	// These parameters represent a linear function from heap_live
	// to page sweep count. The proportional sweep system works to
	// stay in the black by keeping the current page sweep count
	// above this line at the current heap_live.
	//
	// The line has slope sweepPagesPerByte and passes through a
	// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
	// any given time, the system is at (memstats.heap_live,
	// pagesSwept) in this space.
	//
	// It's important that the line pass through a point we
	// control rather than simply starting at a (0,0) origin
	// because that lets us adjust sweep pacing at any time while
	// accounting for current progress. If we could only adjust
	// the slope, it would create a discontinuity in debt if any
	// progress has already been made.
	pagesInUse         uint64  // pages of spans in stats _MSpanInUse; R/W with mheap.lock
	pagesSwept         uint64  // pages swept this cycle; updated atomically
	pagesSweptBasis    uint64  // pagesSwept to use as the origin of the sweep ratio; updated atomically
	sweepHeapLiveBasis uint64  // value of heap_live to use as the origin of sweep ratio; written with lock, read without
	sweepPagesPerByte  float64 // proportional sweep ratio; written with lock, read without
	// TODO(austin): pagesInUse should be a uintptr, but the 386
	// compiler can't 8-byte align fields.

	// Malloc stats.
	largealloc  uint64                  // bytes allocated for large objects
	nlargealloc uint64                  // number of large object allocations
	largefree   uint64                  // bytes freed for large objects (>maxsmallsize)
	nlargefree  uint64                  // number of frees for large objects (>maxsmallsize)
	nsmallfree  [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize)

	// range of addresses we might see in the heap
	bitmap        uintptr // Points to one byte past the end of the bitmap
	bitmap_mapped uintptr

	// The arena_* fields indicate the addresses of the Go heap.
	//
	// The maximum range of the Go heap is
	// [arena_start, arena_start+_MaxMem+1).
	//
	// The range of the current Go heap is
	// [arena_start, arena_used). Parts of this range may not be
	// mapped, but the metadata structures are always mapped for
	// the full range.
	arena_start uintptr
	arena_used  uintptr // Set with setArenaUsed.

	// The heap is grown using a linear allocator that allocates
	// from the block [arena_alloc, arena_end). arena_alloc is
	// often, but *not always* equal to arena_used.
	arena_alloc uintptr
	arena_end   uintptr

	// arena_reserved indicates that the memory [arena_alloc,
	// arena_end) is reserved (e.g., mapped PROT_NONE). If this is
	// false, we have to be careful not to clobber existing
	// mappings here. If this is true, then we own the mapping
	// here and *must* clobber it to use it.
	arena_reserved bool

	_ uint32 // ensure 64-bit alignment

	// central free lists for small size classes.
	// the padding makes sure that the MCentrals are
	// spaced CacheLineSize bytes apart, so that each MCentral.lock
	// gets its own cache line.
	// central is indexed by spanClass.
	central [numSpanClasses]struct {
		mcentral mcentral
		pad      [sys.CacheLineSize - unsafe.Sizeof(mcentral{})%sys.CacheLineSize]byte
	}

	spanalloc             fixalloc // allocator for span*
	cachealloc            fixalloc // allocator for mcache*
	treapalloc            fixalloc // allocator for treapNodes* used by large objects
	specialfinalizeralloc fixalloc // allocator for specialfinalizer*
	specialprofilealloc   fixalloc // allocator for specialprofile*
	speciallock           mutex    // lock for special record allocators.

	unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
}

var mheap_ mheap

// An MSpan is a run of pages.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse or MSpanManual
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.

// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists.

// An MSpan representing actual memory has state _MSpanInUse,
// _MSpanManual, or _MSpanFree. Transitions between these states are
// constrained as follows:
//
// * A span may transition from free to in-use or manual during any GC
//   phase.
//
// * During sweeping (gcphase == _GCoff), a span may transition from
//   in-use to free (as a result of sweeping) or manual to free (as a
//   result of stacks being freed).
//
// * During GC (gcphase != _GCoff), a span *must not* transition from
//   manual or in-use to free. Because concurrent GC may read a pointer
//   and then look up its span, the span state must be monotonic.
type mSpanState uint8

const (
	_MSpanDead   mSpanState = iota
	_MSpanInUse             // allocated for garbage collected heap
	_MSpanManual            // allocated for manual management (e.g., stack allocator)
	_MSpanFree
)

// mSpanStateNames are the names of the span states, indexed by
// mSpanState.
var mSpanStateNames = []string{
	"_MSpanDead",
	"_MSpanInUse",
	"_MSpanManual",
	"_MSpanFree",
}

// mSpanList heads a linked list of spans.
//
//go:notinheap
type mSpanList struct {
	first *mspan // first span in list, or nil if none
	last  *mspan // last span in list, or nil if none
}

//go:notinheap
type mspan struct {
	next *mspan     // next span in list, or nil if none
	prev *mspan     // previous span in list, or nil if none
	list *mSpanList // For debugging. TODO: Remove.

	startAddr uintptr // address of first byte of span aka s.base()
	npages    uintptr // number of pages in span

	manualFreeList gclinkptr // list of free objects in _MSpanManual spans

	// freeindex is the slot index between 0 and nelems at which to begin scanning
	// for the next free object in this span.
	// Each allocation scans allocBits starting at freeindex until it encounters a 0
	// indicating a free object. freeindex is then adjusted so that subsequent scans begin
	// just past the newly discovered free object.
	//
	// If freeindex == nelem, this span has no free objects.
	//
	// allocBits is a bitmap of objects in this span.
	// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
	// then object n is free;
	// otherwise, object n is allocated. Bits starting at nelem are
	// undefined and should never be referenced.
	//
	// Object n starts at address n*elemsize + (start << pageShift).
	freeindex uintptr
	// TODO: Look up nelems from sizeclass and remove this field if it
	// helps performance.
	nelems uintptr // number of object in the span.

	// Cache of the allocBits at freeindex. allocCache is shifted
	// such that the lowest bit corresponds to the bit freeindex.
	// allocCache holds the complement of allocBits, thus allowing
	// ctz (count trailing zero) to use it directly.
	// allocCache may contain bits beyond s.nelems; the caller must ignore
	// these.
	allocCache uint64

	// allocBits and gcmarkBits hold pointers to a span's mark and
	// allocation bits. The pointers are 8 byte aligned.
	// There are three arenas where this data is held.
	// free: Dirty arenas that are no longer accessed
	//       and can be reused.
	// next: Holds information to be used in the next GC cycle.
	// current: Information being used during this GC cycle.
	// previous: Information being used during the last GC cycle.
	// A new GC cycle starts with the call to finishsweep_m.
	// finishsweep_m moves the previous arena to the free arena,
	// the current arena to the previous arena, and
	// the next arena to the current arena.
	// The next arena is populated as the spans request
	// memory to hold gcmarkBits for the next GC cycle as well
	// as allocBits for newly allocated spans.
	//
	// The pointer arithmetic is done "by hand" instead of using
	// arrays to avoid bounds checks along critical performance
	// paths.
	// The sweep will free the old allocBits and set allocBits to the
	// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
	// out memory.
	allocBits  *gcBits
	gcmarkBits *gcBits

	// sweep generation:
	// if sweepgen == h->sweepgen - 2, the span needs sweeping
	// if sweepgen == h->sweepgen - 1, the span is currently being swept
	// if sweepgen == h->sweepgen, the span is swept and ready to use
	// h->sweepgen is incremented by 2 after every GC

	sweepgen    uint32
	divMul      uint16     // for divide by elemsize - divMagic.mul
	baseMask    uint16     // if non-0, elemsize is a power of 2, & this will get object allocation base
	allocCount  uint16     // number of allocated objects
	spanclass   spanClass  // size class and noscan (uint8)
	incache     bool       // being used by an mcache
	state       mSpanState // mspaninuse etc
	needzero    uint8      // needs to be zeroed before allocation
	divShift    uint8      // for divide by elemsize - divMagic.shift
	divShift2   uint8      // for divide by elemsize - divMagic.shift2
	elemsize    uintptr    // computed from sizeclass or from npages
	unusedsince int64      // first time spotted by gc in mspanfree state
	npreleased  uintptr    // number of pages released to the os
	limit       uintptr    // end of data in span
	speciallock mutex      // guards specials list
	specials    *special   // linked list of special records sorted by offset.
}

func (s *mspan) base() uintptr {
	return s.startAddr
}

func (s *mspan) layout() (size, n, total uintptr) {
	total = s.npages << _PageShift
	size = s.elemsize
	if size > 0 {
		n = total / size
	}
	return
}

// recordspan adds a newly allocated span to h.allspans.
//
// This only happens the first time a span is allocated from
// mheap.spanalloc (it is not called when a span is reused).
//
// Write barriers are disallowed here because it can be called from
// gcWork when allocating new workbufs. However, because it's an
// indirect call from the fixalloc initializer, the compiler can't see
// this.
//
//go:nowritebarrierrec
func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
	h := (*mheap)(vh)
	s := (*mspan)(p)
	if len(h.allspans) >= cap(h.allspans) {
		n := 64 * 1024 / sys.PtrSize
		if n < cap(h.allspans)*3/2 {
			n = cap(h.allspans) * 3 / 2
		}
		var new []*mspan
		sp := (*slice)(unsafe.Pointer(&new))
		sp.array = sysAlloc(uintptr(n)*sys.PtrSize, &memstats.other_sys)
		if sp.array == nil {
			throw("runtime: cannot allocate memory")
		}
		sp.len = len(h.allspans)
		sp.cap = n
		if len(h.allspans) > 0 {
			copy(new, h.allspans)
		}
		oldAllspans := h.allspans
		*(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
		if len(oldAllspans) != 0 {
			sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
		}
	}
	h.allspans = h.allspans[:len(h.allspans)+1]
	h.allspans[len(h.allspans)-1] = s
}

// A spanClass represents the size class and noscan-ness of a span.
//
// Each size class has a noscan spanClass and a scan spanClass. The
// noscan spanClass contains only noscan objects, which do not contain
// pointers and thus do not need to be scanned by the garbage
// collector.
type spanClass uint8

const (
	numSpanClasses = _NumSizeClasses << 1
	tinySpanClass  = spanClass(tinySizeClass<<1 | 1)
)

func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
	return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
}

func (sc spanClass) sizeclass() int8 {
	return int8(sc >> 1)
}

func (sc spanClass) noscan() bool {
	return sc&1 != 0
}

// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into _MSpanManual spans.
// Non-preemptible because it is used by write barriers.
//go:nowritebarrier
//go:nosplit
func inheap(b uintptr) bool {
	if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
		return false
	}
	// Not a beginning of a block, consult span table to find the block beginning.
	s := mheap_.spans[(b-mheap_.arena_start)>>_PageShift]
	if s == nil || b < s.base() || b >= s.limit || s.state != mSpanInUse {
		return false
	}
	return true
}

// inHeapOrStack is a variant of inheap that returns true for pointers
// into any allocated heap span.
//
//go:nowritebarrier
//go:nosplit
func inHeapOrStack(b uintptr) bool {
	if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
		return false
	}
	// Not a beginning of a block, consult span table to find the block beginning.
	s := mheap_.spans[(b-mheap_.arena_start)>>_PageShift]
	if s == nil || b < s.base() {
		return false
	}
	switch s.state {
	case mSpanInUse, _MSpanManual:
		return b < s.limit
	default:
		return false
	}
}

// TODO: spanOf and spanOfUnchecked are open-coded in a lot of places.
// Use the functions instead.

// spanOf returns the span of p. If p does not point into the heap or
// no span contains p, spanOf returns nil.
func spanOf(p uintptr) *mspan {
	if p == 0 || p < mheap_.arena_start || p >= mheap_.arena_used {
		return nil
	}
	return spanOfUnchecked(p)
}

// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
// that p points into the heap (that is, mheap_.arena_start <= p <
// mheap_.arena_used).
func spanOfUnchecked(p uintptr) *mspan {
	return mheap_.spans[(p-mheap_.arena_start)>>_PageShift]
}

func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 {
	_g_ := getg()

	_g_.m.mcache.local_nlookup++
	if sys.PtrSize == 4 && _g_.m.mcache.local_nlookup >= 1<<30 {
		// purge cache stats to prevent overflow
		lock(&mheap_.lock)
		purgecachedstats(_g_.m.mcache)
		unlock(&mheap_.lock)
	}

	s := mheap_.lookupMaybe(unsafe.Pointer(v))
	if sp != nil {
		*sp = s
	}
	if s == nil {
		if base != nil {
			*base = 0
		}
		if size != nil {
			*size = 0
		}
		return 0
	}

	p := s.base()
	if s.spanclass.sizeclass() == 0 {
		// Large object.
		if base != nil {
			*base = p
		}
		if size != nil {
			*size = s.npages << _PageShift
		}
		return 1
	}

	n := s.elemsize
	if base != nil {
		i := (v - p) / n
		*base = p + i*n
	}
	if size != nil {
		*size = n
	}

	return 1
}

// Initialize the heap.
func (h *mheap) init(spansStart, spansBytes uintptr) {
	h.treapalloc.init(unsafe.Sizeof(treapNode{}), nil, nil, &memstats.other_sys)
	h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
	h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
	h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
	h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)

	// Don't zero mspan allocations. Background sweeping can
	// inspect a span concurrently with allocating it, so it's
	// important that the span's sweepgen survive across freeing
	// and re-allocating a span to prevent background sweeping
	// from improperly cas'ing it from 0.
	//
	// This is safe because mspan contains no heap pointers.
	h.spanalloc.zero = false

	// h->mapcache needs no init
	for i := range h.free {
		h.free[i].init()
		h.busy[i].init()
	}

	h.busylarge.init()
	for i := range h.central {
		h.central[i].mcentral.init(spanClass(i))
	}

	sp := (*slice)(unsafe.Pointer(&h.spans))
	sp.array = unsafe.Pointer(spansStart)
	sp.len = 0
	sp.cap = int(spansBytes / sys.PtrSize)

	// Map metadata structures. But don't map race detector memory
	// since we're not actually growing the arena here (and TSAN
	// gets mad if you map 0 bytes).
	h.setArenaUsed(h.arena_used, false)
}

// setArenaUsed extends the usable arena to address arena_used and
// maps auxiliary VM regions for any newly usable arena space.
//
// racemap indicates that this memory should be managed by the race
// detector. racemap should be true unless this is covering a VM hole.
func (h *mheap) setArenaUsed(arena_used uintptr, racemap bool) {
	// Map auxiliary structures *before* h.arena_used is updated.
	// Waiting to update arena_used until after the memory has been mapped
	// avoids faults when other threads try access these regions immediately
	// after observing the change to arena_used.

	// Map the bitmap.
	h.mapBits(arena_used)

	// Map spans array.
	h.mapSpans(arena_used)

	// Tell the race detector about the new heap memory.
	if racemap && raceenabled {
		racemapshadow(unsafe.Pointer(h.arena_used), arena_used-h.arena_used)
	}

	h.arena_used = arena_used
}

// mapSpans makes sure that the spans are mapped
// up to the new value of arena_used.
//
// Don't call this directly. Call mheap.setArenaUsed.
func (h *mheap) mapSpans(arena_used uintptr) {
	// Map spans array, PageSize at a time.
	n := arena_used
	n -= h.arena_start
	n = n / _PageSize * sys.PtrSize
	n = round(n, physPageSize)
	need := n / unsafe.Sizeof(h.spans[0])
	have := uintptr(len(h.spans))
	if have >= need {
		return
	}
	h.spans = h.spans[:need]
	sysMap(unsafe.Pointer(&h.spans[have]), (need-have)*unsafe.Sizeof(h.spans[0]), h.arena_reserved, &memstats.other_sys)
}

// Sweeps spans in list until reclaims at least npages into heap.
// Returns the actual number of pages reclaimed.
func (h *mheap) reclaimList(list *mSpanList, npages uintptr) uintptr {
	n := uintptr(0)
	sg := mheap_.sweepgen
retry:
	for s := list.first; s != nil; s = s.next {
		if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			list.remove(s)
			// swept spans are at the end of the list
			list.insertBack(s) // Puts it back on a busy list. s is not in the treap at this point.
			unlock(&h.lock)
			snpages := s.npages
			if s.sweep(false) {
				n += snpages
			}
			lock(&h.lock)
			if n >= npages {
				return n
			}
			// the span could have been moved elsewhere
			goto retry
		}
		if s.sweepgen == sg-1 {
			// the span is being sweept by background sweeper, skip
			continue
		}
		// already swept empty span,
		// all subsequent ones must also be either swept or in process of sweeping
		break
	}
	return n
}

// Sweeps and reclaims at least npage pages into heap.
// Called before allocating npage pages.
func (h *mheap) reclaim(npage uintptr) {
	// First try to sweep busy spans with large objects of size >= npage,
	// this has good chances of reclaiming the necessary space.
	for i := int(npage); i < len(h.busy); i++ {
		if h.reclaimList(&h.busy[i], npage) != 0 {
			return // Bingo!
		}
	}

	// Then -- even larger objects.
	if h.reclaimList(&h.busylarge, npage) != 0 {
		return // Bingo!
	}

	// Now try smaller objects.
	// One such object is not enough, so we need to reclaim several of them.
	reclaimed := uintptr(0)
	for i := 0; i < int(npage) && i < len(h.busy); i++ {
		reclaimed += h.reclaimList(&h.busy[i], npage-reclaimed)
		if reclaimed >= npage {
			return
		}
	}

	// Now sweep everything that is not yet swept.
	unlock(&h.lock)
	for {
		n := sweepone()
		if n == ^uintptr(0) { // all spans are swept
			break
		}
		reclaimed += n
		if reclaimed >= npage {
			break
		}
	}
	lock(&h.lock)
}

// Allocate a new span of npage pages from the heap for GC'd memory
// and record its size class in the HeapMap and HeapMapCache.
func (h *mheap) alloc_m(npage uintptr, spanclass spanClass, large bool) *mspan {
	_g_ := getg()
	if _g_ != _g_.m.g0 {
		throw("_mheap_alloc not on g0 stack")
	}
	lock(&h.lock)

	// To prevent excessive heap growth, before allocating n pages
	// we need to sweep and reclaim at least n pages.
	if h.sweepdone == 0 {
		// TODO(austin): This tends to sweep a large number of
		// spans in order to find a few completely free spans
		// (for example, in the garbage benchmark, this sweeps
		// ~30x the number of pages its trying to allocate).
		// If GC kept a bit for whether there were any marks
		// in a span, we could release these free spans
		// at the end of GC and eliminate this entirely.
		if trace.enabled {
			traceGCSweepStart()
		}
		h.reclaim(npage)
		if trace.enabled {
			traceGCSweepDone()
		}
	}

	// transfer stats from cache to global
	memstats.heap_scan += uint64(_g_.m.mcache.local_scan)
	_g_.m.mcache.local_scan = 0
	memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs)
	_g_.m.mcache.local_tinyallocs = 0

	s := h.allocSpanLocked(npage, &memstats.heap_inuse)
	if s != nil {
		// Record span info, because gc needs to be
		// able to map interior pointer to containing span.
		atomic.Store(&s.sweepgen, h.sweepgen)
		h.sweepSpans[h.sweepgen/2%2].push(s) // Add to swept in-use list.
		s.state = _MSpanInUse
		s.allocCount = 0
		s.spanclass = spanclass
		if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
			s.elemsize = s.npages << _PageShift
			s.divShift = 0
			s.divMul = 0
			s.divShift2 = 0
			s.baseMask = 0
		} else {
			s.elemsize = uintptr(class_to_size[sizeclass])
			m := &class_to_divmagic[sizeclass]
			s.divShift = m.shift
			s.divMul = m.mul
			s.divShift2 = m.shift2
			s.baseMask = m.baseMask
		}

		// update stats, sweep lists
		h.pagesInUse += uint64(npage)
		if large {
			memstats.heap_objects++
			mheap_.largealloc += uint64(s.elemsize)
			mheap_.nlargealloc++
			atomic.Xadd64(&memstats.heap_live, int64(npage<<_PageShift))
			// Swept spans are at the end of lists.
			if s.npages < uintptr(len(h.busy)) {
				h.busy[s.npages].insertBack(s)
			} else {
				h.busylarge.insertBack(s)
			}
		}
	}
	// heap_scan and heap_live were updated.
	if gcBlackenEnabled != 0 {
		gcController.revise()
	}

	if trace.enabled {
		traceHeapAlloc()
	}

	// h.spans is accessed concurrently without synchronization
	// from other threads. Hence, there must be a store/store
	// barrier here to ensure the writes to h.spans above happen
	// before the caller can publish a pointer p to an object
	// allocated from s. As soon as this happens, the garbage
	// collector running on another processor could read p and
	// look up s in h.spans. The unlock acts as the barrier to
	// order these writes. On the read side, the data dependency
	// between p and the index in h.spans orders the reads.
	unlock(&h.lock)
	return s
}

func (h *mheap) alloc(npage uintptr, spanclass spanClass, large bool, needzero bool) *mspan {
	// Don't do any operations that lock the heap on the G stack.
	// It might trigger stack growth, and the stack growth code needs
	// to be able to allocate heap.
	var s *mspan
	systemstack(func() {
		s = h.alloc_m(npage, spanclass, large)
	})

	if s != nil {
		if needzero && s.needzero != 0 {
			memclrNoHeapPointers(unsafe.Pointer(s.base()), s.npages<<_PageShift)
		}
		s.needzero = 0
	}
	return s
}

// allocManual allocates a manually-managed span of npage pages.
// allocManual returns nil if allocation fails.
//
// allocManual adds the bytes used to *stat, which should be a
// memstats in-use field. Unlike allocations in the GC'd heap, the
// allocation does *not* count toward heap_inuse or heap_sys.
//
// The memory backing the returned span may not be zeroed if
// span.needzero is set.
//
// allocManual must be called on the system stack to prevent stack
// growth. Since this is used by the stack allocator, stack growth
// during allocManual would self-deadlock.
//
//go:systemstack
func (h *mheap) allocManual(npage uintptr, stat *uint64) *mspan {
	lock(&h.lock)
	s := h.allocSpanLocked(npage, stat)
	if s != nil {
		s.state = _MSpanManual
		s.manualFreeList = 0
		s.allocCount = 0
		s.spanclass = 0
		s.nelems = 0
		s.elemsize = 0
		s.limit = s.base() + s.npages<<_PageShift
		// Manually manged memory doesn't count toward heap_sys.
		memstats.heap_sys -= uint64(s.npages << _PageShift)
	}

	// This unlock acts as a release barrier. See mheap.alloc_m.
	unlock(&h.lock)

	return s
}

// Allocates a span of the given size.  h must be locked.
// The returned span has been removed from the
// free list, but its state is still MSpanFree.
func (h *mheap) allocSpanLocked(npage uintptr, stat *uint64) *mspan {
	var list *mSpanList
	var s *mspan

	// Try in fixed-size lists up to max.
	for i := int(npage); i < len(h.free); i++ {
		list = &h.free[i]
		if !list.isEmpty() {
			s = list.first
			list.remove(s)
			goto HaveSpan
		}
	}
	// Best fit in list of large spans.
	s = h.allocLarge(npage) // allocLarge removed s from h.freelarge for us
	if s == nil {
		if !h.grow(npage) {
			return nil
		}
		s = h.allocLarge(npage)
		if s == nil {
			return nil
		}
	}

HaveSpan:
	// Mark span in use.
	if s.state != _MSpanFree {
		throw("MHeap_AllocLocked - MSpan not free")
	}
	if s.npages < npage {
		throw("MHeap_AllocLocked - bad npages")
	}
	if s.npreleased > 0 {
		sysUsed(unsafe.Pointer(s.base()), s.npages<<_PageShift)
		memstats.heap_released -= uint64(s.npreleased << _PageShift)
		s.npreleased = 0
	}

	if s.npages > npage {
		// Trim extra and put it back in the heap.
		t := (*mspan)(h.spanalloc.alloc())
		t.init(s.base()+npage<<_PageShift, s.npages-npage)
		s.npages = npage
		p := (t.base() - h.arena_start) >> _PageShift
		if p > 0 {
			h.spans[p-1] = s
		}
		h.spans[p] = t
		h.spans[p+t.npages-1] = t
		t.needzero = s.needzero
		s.state = _MSpanManual // prevent coalescing with s
		t.state = _MSpanManual
		h.freeSpanLocked(t, false, false, s.unusedsince)
		s.state = _MSpanFree
	}
	s.unusedsince = 0

	p := (s.base() - h.arena_start) >> _PageShift
	for n := uintptr(0); n < npage; n++ {
		h.spans[p+n] = s
	}

	*stat += uint64(npage << _PageShift)
	memstats.heap_idle -= uint64(npage << _PageShift)

	//println("spanalloc", hex(s.start<<_PageShift))
	if s.inList() {
		throw("still in list")
	}
	return s
}

// Large spans have a minimum size of 1MByte. The maximum number of large spans to support
// 1TBytes is 1 million, experimentation using random sizes indicates that the depth of
// the tree is less that 2x that of a perfectly balanced tree. For 1TByte can be referenced
// by a perfectly balanced tree with a depth of 20. Twice that is an acceptable 40.
func (h *mheap) isLargeSpan(npages uintptr) bool {
	return npages >= uintptr(len(h.free))
}

// allocLarge allocates a span of at least npage pages from the treap of large spans.
// Returns nil if no such span currently exists.
func (h *mheap) allocLarge(npage uintptr) *mspan {
	// Search treap for smallest span with >= npage pages.
	return h.freelarge.remove(npage)
}

// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
//
// h must be locked.
func (h *mheap) grow(npage uintptr) bool {
	// Ask for a big chunk, to reduce the number of mappings
	// the operating system needs to track; also amortizes
	// the overhead of an operating system mapping.
	// Allocate a multiple of 64kB.
	npage = round(npage, (64<<10)/_PageSize)
	ask := npage << _PageShift
	if ask < _HeapAllocChunk {
		ask = _HeapAllocChunk
	}

	v := h.sysAlloc(ask)
	if v == nil {
		if ask > npage<<_PageShift {
			ask = npage << _PageShift
			v = h.sysAlloc(ask)
		}
		if v == nil {
			print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
			return false
		}
	}

	// Create a fake "in use" span and free it, so that the
	// right coalescing happens.
	s := (*mspan)(h.spanalloc.alloc())
	s.init(uintptr(v), ask>>_PageShift)
	p := (s.base() - h.arena_start) >> _PageShift
	for i := p; i < p+s.npages; i++ {
		h.spans[i] = s
	}
	atomic.Store(&s.sweepgen, h.sweepgen)
	s.state = _MSpanInUse
	h.pagesInUse += uint64(s.npages)
	h.freeSpanLocked(s, false, true, 0)
	return true
}

// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
func (h *mheap) lookup(v unsafe.Pointer) *mspan {
	p := uintptr(v)
	p -= h.arena_start
	return h.spans[p>>_PageShift]
}

// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans. Free spans may have
// other garbage in their middles, so we have to
// check for that.
func (h *mheap) lookupMaybe(v unsafe.Pointer) *mspan {
	if uintptr(v) < h.arena_start || uintptr(v) >= h.arena_used {
		return nil
	}
	s := h.spans[(uintptr(v)-h.arena_start)>>_PageShift]
	if s == nil || uintptr(v) < s.base() || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != _MSpanInUse {
		return nil
	}
	return s
}

// Free the span back into the heap.
func (h *mheap) freeSpan(s *mspan, acct int32) {
	systemstack(func() {
		mp := getg().m
		lock(&h.lock)
		memstats.heap_scan += uint64(mp.mcache.local_scan)
		mp.mcache.local_scan = 0
		memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs)
		mp.mcache.local_tinyallocs = 0
		if msanenabled {
			// Tell msan that this entire span is no longer in use.
			base := unsafe.Pointer(s.base())
			bytes := s.npages << _PageShift
			msanfree(base, bytes)
		}
		if acct != 0 {
			memstats.heap_objects--
		}
		if gcBlackenEnabled != 0 {
			// heap_scan changed.
			gcController.revise()
		}
		h.freeSpanLocked(s, true, true, 0)
		unlock(&h.lock)
	})
}

// freeManual frees a manually-managed span returned by allocManual.
// stat must be the same as the stat passed to the allocManual that
// allocated s.
//
// This must only be called when gcphase == _GCoff. See mSpanState for
// an explanation.
//
// freeManual must be called on the system stack to prevent stack
// growth, just like allocManual.
//
//go:systemstack
func (h *mheap) freeManual(s *mspan, stat *uint64) {
	s.needzero = 1
	lock(&h.lock)
	*stat -= uint64(s.npages << _PageShift)
	memstats.heap_sys += uint64(s.npages << _PageShift)
	h.freeSpanLocked(s, false, true, 0)
	unlock(&h.lock)
}

// s must be on a busy list (h.busy or h.busylarge) or unlinked.
func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool, unusedsince int64) {
	switch s.state {
	case _MSpanManual:
		if s.allocCount != 0 {
			throw("MHeap_FreeSpanLocked - invalid stack free")
		}
	case _MSpanInUse:
		if s.allocCount != 0 || s.sweepgen != h.sweepgen {
			print("MHeap_FreeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
			throw("MHeap_FreeSpanLocked - invalid free")
		}
		h.pagesInUse -= uint64(s.npages)
	default:
		throw("MHeap_FreeSpanLocked - invalid span state")
	}

	if acctinuse {
		memstats.heap_inuse -= uint64(s.npages << _PageShift)
	}
	if acctidle {
		memstats.heap_idle += uint64(s.npages << _PageShift)
	}
	s.state = _MSpanFree
	if s.inList() {
		h.busyList(s.npages).remove(s)
	}

	// Stamp newly unused spans. The scavenger will use that
	// info to potentially give back some pages to the OS.
	s.unusedsince = unusedsince
	if unusedsince == 0 {
		s.unusedsince = nanotime()
	}
	s.npreleased = 0

	// Coalesce with earlier, later spans.
	p := (s.base() - h.arena_start) >> _PageShift
	if p > 0 {
		before := h.spans[p-1]
		if before != nil && before.state == _MSpanFree {
			// Now adjust s.
			s.startAddr = before.startAddr
			s.npages += before.npages
			s.npreleased = before.npreleased // absorb released pages
			s.needzero |= before.needzero
			p -= before.npages
			h.spans[p] = s
			// The size is potentially changing so the treap needs to delete adjacent nodes and
			// insert back as a combined node.
			if h.isLargeSpan(before.npages) {
				// We have a t, it is large so it has to be in the treap so we can remove it.
				h.freelarge.removeSpan(before)
			} else {
				h.freeList(before.npages).remove(before)
			}
			before.state = _MSpanDead
			h.spanalloc.free(unsafe.Pointer(before))
		}
	}

	// Now check to see if next (greater addresses) span is free and can be coalesced.
	if (p + s.npages) < uintptr(len(h.spans)) {
		after := h.spans[p+s.npages]
		if after != nil && after.state == _MSpanFree {
			s.npages += after.npages
			s.npreleased += after.npreleased
			s.needzero |= after.needzero
			h.spans[p+s.npages-1] = s
			if h.isLargeSpan(after.npages) {
				h.freelarge.removeSpan(after)
			} else {
				h.freeList(after.npages).remove(after)
			}
			after.state = _MSpanDead
			h.spanalloc.free(unsafe.Pointer(after))
		}
	}

	// Insert s into appropriate list or treap.
	if h.isLargeSpan(s.npages) {
		h.freelarge.insert(s)
	} else {
		h.freeList(s.npages).insert(s)
	}
}

func (h *mheap) freeList(npages uintptr) *mSpanList {
	return &h.free[npages]
}

func (h *mheap) busyList(npages uintptr) *mSpanList {
	if npages < uintptr(len(h.busy)) {
		return &h.busy[npages]
	}
	return &h.busylarge
}

func scavengeTreapNode(t *treapNode, now, limit uint64) uintptr {
	s := t.spanKey
	var sumreleased uintptr
	if (now-uint64(s.unusedsince)) > limit && s.npreleased != s.npages {
		start := s.base()
		end := start + s.npages<<_PageShift
		if physPageSize > _PageSize {
			// We can only release pages in
			// physPageSize blocks, so round start
			// and end in. (Otherwise, madvise
			// will round them *out* and release
			// more memory than we want.)
			start = (start + physPageSize - 1) &^ (physPageSize - 1)
			end &^= physPageSize - 1
			if end <= start {
				// start and end don't span a
				// whole physical page.
				return sumreleased
			}
		}
		len := end - start
		released := len - (s.npreleased << _PageShift)
		if physPageSize > _PageSize && released == 0 {
			return sumreleased
		}
		memstats.heap_released += uint64(released)
		sumreleased += released
		s.npreleased = len >> _PageShift
		sysUnused(unsafe.Pointer(start), len)
	}
	return sumreleased
}

func scavengelist(list *mSpanList, now, limit uint64) uintptr {
	if list.isEmpty() {
		return 0
	}

	var sumreleased uintptr
	for s := list.first; s != nil; s = s.next {
		if (now-uint64(s.unusedsince)) <= limit || s.npreleased == s.npages {
			continue
		}
		start := s.base()
		end := start + s.npages<<_PageShift
		if physPageSize > _PageSize {
			// We can only release pages in
			// physPageSize blocks, so round start
			// and end in. (Otherwise, madvise
			// will round them *out* and release
			// more memory than we want.)
			start = (start + physPageSize - 1) &^ (physPageSize - 1)
			end &^= physPageSize - 1
			if end <= start {
				// start and end don't span a
				// whole physical page.
				continue
			}
		}
		len := end - start

		released := len - (s.npreleased << _PageShift)
		if physPageSize > _PageSize && released == 0 {
			continue
		}
		memstats.heap_released += uint64(released)
		sumreleased += released
		s.npreleased = len >> _PageShift
		sysUnused(unsafe.Pointer(start), len)
	}
	return sumreleased
}

func (h *mheap) scavenge(k int32, now, limit uint64) {
	// Disallow malloc or panic while holding the heap lock. We do
	// this here because this is an non-mallocgc entry-point to
	// the mheap API.
	gp := getg()
	gp.m.mallocing++
	lock(&h.lock)
	var sumreleased uintptr
	for i := 0; i < len(h.free); i++ {
		sumreleased += scavengelist(&h.free[i], now, limit)
	}
	sumreleased += scavengetreap(h.freelarge.treap, now, limit)
	unlock(&h.lock)
	gp.m.mallocing--

	if debug.gctrace > 0 {
		if sumreleased > 0 {
			print("scvg", k, ": ", sumreleased>>20, " MB released\n")
		}
		print("scvg", k, ": inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n")
	}
}

//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
func runtime_debug_freeOSMemory() {
	GC()
	systemstack(func() { mheap_.scavenge(-1, ^uint64(0), 0) })
}

// Initialize a new span with the given start and npages.
func (span *mspan) init(base uintptr, npages uintptr) {
	// span is *not* zeroed.
	span.next = nil
	span.prev = nil
	span.list = nil
	span.startAddr = base
	span.npages = npages
	span.allocCount = 0
	span.spanclass = 0
	span.incache = false
	span.elemsize = 0
	span.state = _MSpanDead
	span.unusedsince = 0
	span.npreleased = 0
	span.speciallock.key = 0
	span.specials = nil
	span.needzero = 0
	span.freeindex = 0
	span.allocBits = nil
	span.gcmarkBits = nil
}

func (span *mspan) inList() bool {
	return span.list != nil
}

// Initialize an empty doubly-linked list.
func (list *mSpanList) init() {
	list.first = nil
	list.last = nil
}

func (list *mSpanList) remove(span *mspan) {
	if span.list != list {
		print("runtime: failed MSpanList_Remove span.npages=", span.npages,
			" span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
		throw("MSpanList_Remove")
	}
	if list.first == span {
		list.first = span.next
	} else {
		span.prev.next = span.next
	}
	if list.last == span {
		list.last = span.prev
	} else {
		span.next.prev = span.prev
	}
	span.next = nil
	span.prev = nil
	span.list = nil
}

func (list *mSpanList) isEmpty() bool {
	return list.first == nil
}

func (list *mSpanList) insert(span *mspan) {
	if span.next != nil || span.prev != nil || span.list != nil {
		println("runtime: failed MSpanList_Insert", span, span.next, span.prev, span.list)
		throw("MSpanList_Insert")
	}
	span.next = list.first
	if list.first != nil {
		// The list contains at least one span; link it in.
		// The last span in the list doesn't change.
		list.first.prev = span
	} else {
		// The list contains no spans, so this is also the last span.
		list.last = span
	}
	list.first = span
	span.list = list
}

func (list *mSpanList) insertBack(span *mspan) {
	if span.next != nil || span.prev != nil || span.list != nil {
		println("runtime: failed MSpanList_InsertBack", span, span.next, span.prev, span.list)
		throw("MSpanList_InsertBack")
	}
	span.prev = list.last
	if list.last != nil {
		// The list contains at least one span.
		list.last.next = span
	} else {
		// The list contains no spans, so this is also the first span.
		list.first = span
	}
	list.last = span
	span.list = list
}

// takeAll removes all spans from other and inserts them at the front
// of list.
func (list *mSpanList) takeAll(other *mSpanList) {
	if other.isEmpty() {
		return
	}

	// Reparent everything in other to list.
	for s := other.first; s != nil; s = s.next {
		s.list = list
	}

	// Concatenate the lists.
	if list.isEmpty() {
		*list = *other
	} else {
		// Neither list is empty. Put other before list.
		other.last.next = list.first
		list.first.prev = other.last
		list.first = other.first
	}

	other.first, other.last = nil, nil
}

const (
	_KindSpecialFinalizer = 1
	_KindSpecialProfile   = 2
	// Note: The finalizer special must be first because if we're freeing
	// an object, a finalizer special will cause the freeing operation
	// to abort, and we want to keep the other special records around
	// if that happens.
)

//go:notinheap
type special struct {
	next   *special // linked list in span
	offset uint16   // span offset of object
	kind   byte     // kind of special
}

// Adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
//  already exists.)
func addspecial(p unsafe.Pointer, s *special) bool {
	span := mheap_.lookupMaybe(p)
	if span == nil {
		throw("addspecial on invalid pointer")
	}

	// Ensure that the span is swept.
	// Sweeping accesses the specials list w/o locks, so we have
	// to synchronize with it. And it's just much safer.
	mp := acquirem()
	span.ensureSwept()

	offset := uintptr(p) - span.base()
	kind := s.kind

	lock(&span.speciallock)

	// Find splice point, check for existing record.
	t := &span.specials
	for {
		x := *t
		if x == nil {
			break
		}
		if offset == uintptr(x.offset) && kind == x.kind {
			unlock(&span.speciallock)
			releasem(mp)
			return false // already exists
		}
		if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
			break
		}
		t = &x.next
	}

	// Splice in record, fill in offset.
	s.offset = uint16(offset)
	s.next = *t
	*t = s
	unlock(&span.speciallock)
	releasem(mp)

	return true
}

// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
func removespecial(p unsafe.Pointer, kind uint8) *special {
	span := mheap_.lookupMaybe(p)
	if span == nil {
		throw("removespecial on invalid pointer")
	}

	// Ensure that the span is swept.
	// Sweeping accesses the specials list w/o locks, so we have
	// to synchronize with it. And it's just much safer.
	mp := acquirem()
	span.ensureSwept()

	offset := uintptr(p) - span.base()

	lock(&span.speciallock)
	t := &span.specials
	for {
		s := *t
		if s == nil {
			break
		}
		// This function is used for finalizers only, so we don't check for
		// "interior" specials (p must be exactly equal to s->offset).
		if offset == uintptr(s.offset) && kind == s.kind {
			*t = s.next
			unlock(&span.speciallock)
			releasem(mp)
			return s
		}
		t = &s.next
	}
	unlock(&span.speciallock)
	releasem(mp)
	return nil
}

// The described object has a finalizer set for it.
//
// specialfinalizer is allocated from non-GC'd memory, so any heap
// pointers must be specially handled.
//
//go:notinheap
type specialfinalizer struct {
	special special
	fn      *funcval // May be a heap pointer.
	nret    uintptr
	fint    *_type   // May be a heap pointer, but always live.
	ot      *ptrtype // May be a heap pointer, but always live.
}

// Adds a finalizer to the object p. Returns true if it succeeded.
func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool {
	lock(&mheap_.speciallock)
	s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
	unlock(&mheap_.speciallock)
	s.special.kind = _KindSpecialFinalizer
	s.fn = f
	s.nret = nret
	s.fint = fint
	s.ot = ot
	if addspecial(p, &s.special) {
		// This is responsible for maintaining the same
		// GC-related invariants as markrootSpans in any
		// situation where it's possible that markrootSpans
		// has already run but mark termination hasn't yet.
		if gcphase != _GCoff {
			_, base, _ := findObject(p)
			mp := acquirem()
			gcw := &mp.p.ptr().gcw
			// Mark everything reachable from the object
			// so it's retained for the finalizer.
			scanobject(uintptr(base), gcw)
			// Mark the finalizer itself, since the
			// special isn't part of the GC'd heap.
			scanblock(uintptr(unsafe.Pointer(&s.fn)), sys.PtrSize, &oneptrmask[0], gcw)
			if gcBlackenPromptly {
				gcw.dispose()
			}
			releasem(mp)
		}
		return true
	}

	// There was an old finalizer
	lock(&mheap_.speciallock)
	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
	unlock(&mheap_.speciallock)
	return false
}

// Removes the finalizer (if any) from the object p.
func removefinalizer(p unsafe.Pointer) {
	s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
	if s == nil {
		return // there wasn't a finalizer to remove
	}
	lock(&mheap_.speciallock)
	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
	unlock(&mheap_.speciallock)
}

// The described object is being heap profiled.
//
//go:notinheap
type specialprofile struct {
	special special
	b       *bucket
}

// Set the heap profile bucket associated with addr to b.
func setprofilebucket(p unsafe.Pointer, b *bucket) {
	lock(&mheap_.speciallock)
	s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
	unlock(&mheap_.speciallock)
	s.special.kind = _KindSpecialProfile
	s.b = b
	if !addspecial(p, &s.special) {
		throw("setprofilebucket: profile already set")
	}
}

// Do whatever cleanup needs to be done to deallocate s. It has
// already been unlinked from the MSpan specials list.
func freespecial(s *special, p unsafe.Pointer, size uintptr) {
	switch s.kind {
	case _KindSpecialFinalizer:
		sf := (*specialfinalizer)(unsafe.Pointer(s))
		queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot)
		lock(&mheap_.speciallock)
		mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
		unlock(&mheap_.speciallock)
	case _KindSpecialProfile:
		sp := (*specialprofile)(unsafe.Pointer(s))
		mProf_Free(sp.b, size)
		lock(&mheap_.speciallock)
		mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
		unlock(&mheap_.speciallock)
	default:
		throw("bad special kind")
		panic("not reached")
	}
}

// gcBits is an alloc/mark bitmap. This is always used as *gcBits.
//
//go:notinheap
type gcBits uint8

// bytep returns a pointer to the n'th byte of b.
func (b *gcBits) bytep(n uintptr) *uint8 {
	return addb((*uint8)(b), n)
}

// bitp returns a pointer to the byte containing bit n and a mask for
// selecting that bit from *bytep.
func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
	return b.bytep(n / 8), 1 << (n % 8)
}

const gcBitsChunkBytes = uintptr(64 << 10)
const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})

type gcBitsHeader struct {
	free uintptr // free is the index into bits of the next free byte.
	next uintptr // *gcBits triggers recursive type bug. (issue 14620)
}

//go:notinheap
type gcBitsArena struct {
	// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
	free uintptr // free is the index into bits of the next free byte; read/write atomically
	next *gcBitsArena
	bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
}

var gcBitsArenas struct {
	lock     mutex
	free     *gcBitsArena
	next     *gcBitsArena // Read atomically. Write atomically under lock.
	current  *gcBitsArena
	previous *gcBitsArena
}

// tryAlloc allocates from b or returns nil if b does not have enough room.
// This is safe to call concurrently.
func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
	if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
		return nil
	}
	// Try to allocate from this block.
	end := atomic.Xadduintptr(&b.free, bytes)
	if end > uintptr(len(b.bits)) {
		return nil
	}
	// There was enough room.
	start := end - bytes
	return &b.bits[start]
}

// newMarkBits returns a pointer to 8 byte aligned bytes
// to be used for a span's mark bits.
func newMarkBits(nelems uintptr) *gcBits {
	blocksNeeded := uintptr((nelems + 63) / 64)
	bytesNeeded := blocksNeeded * 8

	// Try directly allocating from the current head arena.
	head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
	if p := head.tryAlloc(bytesNeeded); p != nil {
		return p
	}

	// There's not enough room in the head arena. We may need to
	// allocate a new arena.
	lock(&gcBitsArenas.lock)
	// Try the head arena again, since it may have changed. Now
	// that we hold the lock, the list head can't change, but its
	// free position still can.
	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
		unlock(&gcBitsArenas.lock)
		return p
	}

	// Allocate a new arena. This may temporarily drop the lock.
	fresh := newArenaMayUnlock()
	// If newArenaMayUnlock dropped the lock, another thread may
	// have put a fresh arena on the "next" list. Try allocating
	// from next again.
	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
		// Put fresh back on the free list.
		// TODO: Mark it "already zeroed"
		fresh.next = gcBitsArenas.free
		gcBitsArenas.free = fresh
		unlock(&gcBitsArenas.lock)
		return p
	}

	// Allocate from the fresh arena. We haven't linked it in yet, so
	// this cannot race and is guaranteed to succeed.
	p := fresh.tryAlloc(bytesNeeded)
	if p == nil {
		throw("markBits overflow")
	}

	// Add the fresh arena to the "next" list.
	fresh.next = gcBitsArenas.next
	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))

	unlock(&gcBitsArenas.lock)
	return p
}

// newAllocBits returns a pointer to 8 byte aligned bytes
// to be used for this span's alloc bits.
// newAllocBits is used to provide newly initialized spans
// allocation bits. For spans not being initialized the
// the mark bits are repurposed as allocation bits when
// the span is swept.
func newAllocBits(nelems uintptr) *gcBits {
	return newMarkBits(nelems)
}

// nextMarkBitArenaEpoch establishes a new epoch for the arenas
// holding the mark bits. The arenas are named relative to the
// current GC cycle which is demarcated by the call to finishweep_m.
//
// All current spans have been swept.
// During that sweep each span allocated room for its gcmarkBits in
// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
// where the GC will mark objects and after each span is swept these bits
// will be used to allocate objects.
// gcBitsArenas.current becomes gcBitsArenas.previous where the span's
// gcAllocBits live until all the spans have been swept during this GC cycle.
// The span's sweep extinguishes all the references to gcBitsArenas.previous
// by pointing gcAllocBits into the gcBitsArenas.current.
// The gcBitsArenas.previous is released to the gcBitsArenas.free list.
func nextMarkBitArenaEpoch() {
	lock(&gcBitsArenas.lock)
	if gcBitsArenas.previous != nil {
		if gcBitsArenas.free == nil {
			gcBitsArenas.free = gcBitsArenas.previous
		} else {
			// Find end of previous arenas.
			last := gcBitsArenas.previous
			for last = gcBitsArenas.previous; last.next != nil; last = last.next {
			}
			last.next = gcBitsArenas.free
			gcBitsArenas.free = gcBitsArenas.previous
		}
	}
	gcBitsArenas.previous = gcBitsArenas.current
	gcBitsArenas.current = gcBitsArenas.next
	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
	unlock(&gcBitsArenas.lock)
}

// newArenaMayUnlock allocates and zeroes a gcBits arena.
// The caller must hold gcBitsArena.lock. This may temporarily release it.
func newArenaMayUnlock() *gcBitsArena {
	var result *gcBitsArena
	if gcBitsArenas.free == nil {
		unlock(&gcBitsArenas.lock)
		result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gc_sys))
		if result == nil {
			throw("runtime: cannot allocate memory")
		}
		lock(&gcBitsArenas.lock)
	} else {
		result = gcBitsArenas.free
		gcBitsArenas.free = gcBitsArenas.free.next
		memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
	}
	result.next = nil
	// If result.bits is not 8 byte aligned adjust index so
	// that &result.bits[result.free] is 8 byte aligned.
	if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 {
		result.free = 0
	} else {
		result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
	}
	return result
}