/usr/share/go-1.10/src/runtime/profbuf.go is in golang-1.10-src 1.10.1-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | // Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
// A profBuf is a lock-free buffer for profiling events,
// safe for concurrent use by one reader and one writer.
// The writer may be a signal handler running without a user g.
// The reader is assumed to be a user g.
//
// Each logged event corresponds to a fixed size header, a list of
// uintptrs (typically a stack), and exactly one unsafe.Pointer tag.
// The header and uintptrs are stored in the circular buffer data and the
// tag is stored in a circular buffer tags, running in parallel.
// In the circular buffer data, each event takes 2+hdrsize+len(stk)
// words: the value 2+hdrsize+len(stk), then the time of the event, then
// hdrsize words giving the fixed-size header, and then len(stk) words
// for the stack.
//
// The current effective offsets into the tags and data circular buffers
// for reading and writing are stored in the high 30 and low 32 bits of r and w.
// The bottom bits of the high 32 are additional flag bits in w, unused in r.
// "Effective" offsets means the total number of reads or writes, mod 2^length.
// The offset in the buffer is the effective offset mod the length of the buffer.
// To make wraparound mod 2^length match wraparound mod length of the buffer,
// the length of the buffer must be a power of two.
//
// If the reader catches up to the writer, a flag passed to read controls
// whether the read blocks until more data is available. A read returns a
// pointer to the buffer data itself; the caller is assumed to be done with
// that data at the next read. The read offset rNext tracks the next offset to
// be returned by read. By definition, r ≤ rNext ≤ w (before wraparound),
// and rNext is only used by the reader, so it can be accessed without atomics.
//
// If the writer gets ahead of the reader, so that the buffer fills,
// future writes are discarded and replaced in the output stream by an
// overflow entry, which has size 2+hdrsize+1, time set to the time of
// the first discarded write, a header of all zeroed words, and a "stack"
// containing one word, the number of discarded writes.
//
// Between the time the buffer fills and the buffer becomes empty enough
// to hold more data, the overflow entry is stored as a pending overflow
// entry in the fields overflow and overflowTime. The pending overflow
// entry can be turned into a real record by either the writer or the
// reader. If the writer is called to write a new record and finds that
// the output buffer has room for both the pending overflow entry and the
// new record, the writer emits the pending overflow entry and the new
// record into the buffer. If the reader is called to read data and finds
// that the output buffer is empty but that there is a pending overflow
// entry, the reader will return a synthesized record for the pending
// overflow entry.
//
// Only the writer can create or add to a pending overflow entry, but
// either the reader or the writer can clear the pending overflow entry.
// A pending overflow entry is indicated by the low 32 bits of 'overflow'
// holding the number of discarded writes, and overflowTime holding the
// time of the first discarded write. The high 32 bits of 'overflow'
// increment each time the low 32 bits transition from zero to non-zero
// or vice versa. This sequence number avoids ABA problems in the use of
// compare-and-swap to coordinate between reader and writer.
// The overflowTime is only written when the low 32 bits of overflow are
// zero, that is, only when there is no pending overflow entry, in
// preparation for creating a new one. The reader can therefore fetch and
// clear the entry atomically using
//
// for {
// overflow = load(&b.overflow)
// if uint32(overflow) == 0 {
// // no pending entry
// break
// }
// time = load(&b.overflowTime)
// if cas(&b.overflow, overflow, ((overflow>>32)+1)<<32) {
// // pending entry cleared
// break
// }
// }
// if uint32(overflow) > 0 {
// emit entry for uint32(overflow), time
// }
//
type profBuf struct {
// accessed atomically
r, w profAtomic
overflow uint64
overflowTime uint64
eof uint32
// immutable (excluding slice content)
hdrsize uintptr
data []uint64
tags []unsafe.Pointer
// owned by reader
rNext profIndex
overflowBuf []uint64 // for use by reader to return overflow record
wait note
}
// A profAtomic is the atomically-accessed word holding a profIndex.
type profAtomic uint64
// A profIndex is the packet tag and data counts and flags bits, described above.
type profIndex uint64
const (
profReaderSleeping profIndex = 1 << 32 // reader is sleeping and must be woken up
profWriteExtra profIndex = 1 << 33 // overflow or eof waiting
)
func (x *profAtomic) load() profIndex {
return profIndex(atomic.Load64((*uint64)(x)))
}
func (x *profAtomic) store(new profIndex) {
atomic.Store64((*uint64)(x), uint64(new))
}
func (x *profAtomic) cas(old, new profIndex) bool {
return atomic.Cas64((*uint64)(x), uint64(old), uint64(new))
}
func (x profIndex) dataCount() uint32 {
return uint32(x)
}
func (x profIndex) tagCount() uint32 {
return uint32(x >> 34)
}
// countSub subtracts two counts obtained from profIndex.dataCount or profIndex.tagCount,
// assuming that they are no more than 2^29 apart (guaranteed since they are never more than
// len(data) or len(tags) apart, respectively).
// tagCount wraps at 2^30, while dataCount wraps at 2^32.
// This function works for both.
func countSub(x, y uint32) int {
// x-y is 32-bit signed or 30-bit signed; sign-extend to 32 bits and convert to int.
return int(int32(x-y) << 2 >> 2)
}
// addCountsAndClearFlags returns the packed form of "x + (data, tag) - all flags".
func (x profIndex) addCountsAndClearFlags(data, tag int) profIndex {
return profIndex((uint64(x)>>34+uint64(uint32(tag)<<2>>2))<<34 | uint64(uint32(x)+uint32(data)))
}
// hasOverflow reports whether b has any overflow records pending.
func (b *profBuf) hasOverflow() bool {
return uint32(atomic.Load64(&b.overflow)) > 0
}
// takeOverflow consumes the pending overflow records, returning the overflow count
// and the time of the first overflow.
// When called by the reader, it is racing against incrementOverflow.
func (b *profBuf) takeOverflow() (count uint32, time uint64) {
overflow := atomic.Load64(&b.overflow)
time = atomic.Load64(&b.overflowTime)
for {
count = uint32(overflow)
if count == 0 {
time = 0
break
}
// Increment generation, clear overflow count in low bits.
if atomic.Cas64(&b.overflow, overflow, ((overflow>>32)+1)<<32) {
break
}
overflow = atomic.Load64(&b.overflow)
time = atomic.Load64(&b.overflowTime)
}
return uint32(overflow), time
}
// incrementOverflow records a single overflow at time now.
// It is racing against a possible takeOverflow in the reader.
func (b *profBuf) incrementOverflow(now int64) {
for {
overflow := atomic.Load64(&b.overflow)
// Once we see b.overflow reach 0, it's stable: no one else is changing it underfoot.
// We need to set overflowTime if we're incrementing b.overflow from 0.
if uint32(overflow) == 0 {
// Store overflowTime first so it's always available when overflow != 0.
atomic.Store64(&b.overflowTime, uint64(now))
atomic.Store64(&b.overflow, (((overflow>>32)+1)<<32)+1)
break
}
// Otherwise we're racing to increment against reader
// who wants to set b.overflow to 0.
// Out of paranoia, leave 2³²-1 a sticky overflow value,
// to avoid wrapping around. Extremely unlikely.
if int32(overflow) == -1 {
break
}
if atomic.Cas64(&b.overflow, overflow, overflow+1) {
break
}
}
}
// newProfBuf returns a new profiling buffer with room for
// a header of hdrsize words and a buffer of at least bufwords words.
func newProfBuf(hdrsize, bufwords, tags int) *profBuf {
if min := 2 + hdrsize + 1; bufwords < min {
bufwords = min
}
// Buffer sizes must be power of two, so that we don't have to
// worry about uint32 wraparound changing the effective position
// within the buffers. We store 30 bits of count; limiting to 28
// gives us some room for intermediate calculations.
if bufwords >= 1<<28 || tags >= 1<<28 {
throw("newProfBuf: buffer too large")
}
var i int
for i = 1; i < bufwords; i <<= 1 {
}
bufwords = i
for i = 1; i < tags; i <<= 1 {
}
tags = i
b := new(profBuf)
b.hdrsize = uintptr(hdrsize)
b.data = make([]uint64, bufwords)
b.tags = make([]unsafe.Pointer, tags)
b.overflowBuf = make([]uint64, 2+b.hdrsize+1)
return b
}
// canWriteRecord reports whether the buffer has room
// for a single contiguous record with a stack of length nstk.
func (b *profBuf) canWriteRecord(nstk int) bool {
br := b.r.load()
bw := b.w.load()
// room for tag?
if countSub(br.tagCount(), bw.tagCount())+len(b.tags) < 1 {
return false
}
// room for data?
nd := countSub(br.dataCount(), bw.dataCount()) + len(b.data)
want := 2 + int(b.hdrsize) + nstk
i := int(bw.dataCount() % uint32(len(b.data)))
if i+want > len(b.data) {
// Can't fit in trailing fragment of slice.
// Skip over that and start over at beginning of slice.
nd -= len(b.data) - i
}
return nd >= want
}
// canWriteTwoRecords reports whether the buffer has room
// for two records with stack lengths nstk1, nstk2, in that order.
// Each record must be contiguous on its own, but the two
// records need not be contiguous (one can be at the end of the buffer
// and the other can wrap around and start at the beginning of the buffer).
func (b *profBuf) canWriteTwoRecords(nstk1, nstk2 int) bool {
br := b.r.load()
bw := b.w.load()
// room for tag?
if countSub(br.tagCount(), bw.tagCount())+len(b.tags) < 2 {
return false
}
// room for data?
nd := countSub(br.dataCount(), bw.dataCount()) + len(b.data)
// first record
want := 2 + int(b.hdrsize) + nstk1
i := int(bw.dataCount() % uint32(len(b.data)))
if i+want > len(b.data) {
// Can't fit in trailing fragment of slice.
// Skip over that and start over at beginning of slice.
nd -= len(b.data) - i
i = 0
}
i += want
nd -= want
// second record
want = 2 + int(b.hdrsize) + nstk2
if i+want > len(b.data) {
// Can't fit in trailing fragment of slice.
// Skip over that and start over at beginning of slice.
nd -= len(b.data) - i
i = 0
}
return nd >= want
}
// write writes an entry to the profiling buffer b.
// The entry begins with a fixed hdr, which must have
// length b.hdrsize, followed by a variable-sized stack
// and a single tag pointer *tagPtr (or nil if tagPtr is nil).
// No write barriers allowed because this might be called from a signal handler.
func (b *profBuf) write(tagPtr *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
if b == nil {
return
}
if len(hdr) > int(b.hdrsize) {
throw("misuse of profBuf.write")
}
if hasOverflow := b.hasOverflow(); hasOverflow && b.canWriteTwoRecords(1, len(stk)) {
// Room for both an overflow record and the one being written.
// Write the overflow record if the reader hasn't gotten to it yet.
// Only racing against reader, not other writers.
count, time := b.takeOverflow()
if count > 0 {
var stk [1]uintptr
stk[0] = uintptr(count)
b.write(nil, int64(time), nil, stk[:])
}
} else if hasOverflow || !b.canWriteRecord(len(stk)) {
// Pending overflow without room to write overflow and new records
// or no overflow but also no room for new record.
b.incrementOverflow(now)
b.wakeupExtra()
return
}
// There's room: write the record.
br := b.r.load()
bw := b.w.load()
// Profiling tag
//
// The tag is a pointer, but we can't run a write barrier here.
// We have interrupted the OS-level execution of gp, but the
// runtime still sees gp as executing. In effect, we are running
// in place of the real gp. Since gp is the only goroutine that
// can overwrite gp.labels, the value of gp.labels is stable during
// this signal handler: it will still be reachable from gp when
// we finish executing. If a GC is in progress right now, it must
// keep gp.labels alive, because gp.labels is reachable from gp.
// If gp were to overwrite gp.labels, the deletion barrier would
// still shade that pointer, which would preserve it for the
// in-progress GC, so all is well. Any future GC will see the
// value we copied when scanning b.tags (heap-allocated).
// We arrange that the store here is always overwriting a nil,
// so there is no need for a deletion barrier on b.tags[wt].
wt := int(bw.tagCount() % uint32(len(b.tags)))
if tagPtr != nil {
*(*uintptr)(unsafe.Pointer(&b.tags[wt])) = uintptr(unsafe.Pointer(*tagPtr))
}
// Main record.
// It has to fit in a contiguous section of the slice, so if it doesn't fit at the end,
// leave a rewind marker (0) and start over at the beginning of the slice.
wd := int(bw.dataCount() % uint32(len(b.data)))
nd := countSub(br.dataCount(), bw.dataCount()) + len(b.data)
skip := 0
if wd+2+int(b.hdrsize)+len(stk) > len(b.data) {
b.data[wd] = 0
skip = len(b.data) - wd
nd -= skip
wd = 0
}
data := b.data[wd:]
data[0] = uint64(2 + b.hdrsize + uintptr(len(stk))) // length
data[1] = uint64(now) // time stamp
// header, zero-padded
i := uintptr(copy(data[2:2+b.hdrsize], hdr))
for ; i < b.hdrsize; i++ {
data[2+i] = 0
}
for i, pc := range stk {
data[2+b.hdrsize+uintptr(i)] = uint64(pc)
}
for {
// Commit write.
// Racing with reader setting flag bits in b.w, to avoid lost wakeups.
old := b.w.load()
new := old.addCountsAndClearFlags(skip+2+len(stk)+int(b.hdrsize), 1)
if !b.w.cas(old, new) {
continue
}
// If there was a reader, wake it up.
if old&profReaderSleeping != 0 {
notewakeup(&b.wait)
}
break
}
}
// close signals that there will be no more writes on the buffer.
// Once all the data has been read from the buffer, reads will return eof=true.
func (b *profBuf) close() {
if atomic.Load(&b.eof) > 0 {
throw("runtime: profBuf already closed")
}
atomic.Store(&b.eof, 1)
b.wakeupExtra()
}
// wakeupExtra must be called after setting one of the "extra"
// atomic fields b.overflow or b.eof.
// It records the change in b.w and wakes up the reader if needed.
func (b *profBuf) wakeupExtra() {
for {
old := b.w.load()
new := old | profWriteExtra
if !b.w.cas(old, new) {
continue
}
if old&profReaderSleeping != 0 {
notewakeup(&b.wait)
}
break
}
}
// profBufReadMode specifies whether to block when no data is available to read.
type profBufReadMode int
const (
profBufBlocking profBufReadMode = iota
profBufNonBlocking
)
var overflowTag [1]unsafe.Pointer // always nil
func (b *profBuf) read(mode profBufReadMode) (data []uint64, tags []unsafe.Pointer, eof bool) {
if b == nil {
return nil, nil, true
}
br := b.rNext
// Commit previous read, returning that part of the ring to the writer.
// First clear tags that have now been read, both to avoid holding
// up the memory they point at for longer than necessary
// and so that b.write can assume it is always overwriting
// nil tag entries (see comment in b.write).
rPrev := b.r.load()
if rPrev != br {
ntag := countSub(br.tagCount(), rPrev.tagCount())
ti := int(rPrev.tagCount() % uint32(len(b.tags)))
for i := 0; i < ntag; i++ {
b.tags[ti] = nil
if ti++; ti == len(b.tags) {
ti = 0
}
}
b.r.store(br)
}
Read:
bw := b.w.load()
numData := countSub(bw.dataCount(), br.dataCount())
if numData == 0 {
if b.hasOverflow() {
// No data to read, but there is overflow to report.
// Racing with writer flushing b.overflow into a real record.
count, time := b.takeOverflow()
if count == 0 {
// Lost the race, go around again.
goto Read
}
// Won the race, report overflow.
dst := b.overflowBuf
dst[0] = uint64(2 + b.hdrsize + 1)
dst[1] = uint64(time)
for i := uintptr(0); i < b.hdrsize; i++ {
dst[2+i] = 0
}
dst[2+b.hdrsize] = uint64(count)
return dst[:2+b.hdrsize+1], overflowTag[:1], false
}
if atomic.Load(&b.eof) > 0 {
// No data, no overflow, EOF set: done.
return nil, nil, true
}
if bw&profWriteExtra != 0 {
// Writer claims to have published extra information (overflow or eof).
// Attempt to clear notification and then check again.
// If we fail to clear the notification it means b.w changed,
// so we still need to check again.
b.w.cas(bw, bw&^profWriteExtra)
goto Read
}
// Nothing to read right now.
// Return or sleep according to mode.
if mode == profBufNonBlocking {
return nil, nil, false
}
if !b.w.cas(bw, bw|profReaderSleeping) {
goto Read
}
// Committed to sleeping.
notetsleepg(&b.wait, -1)
noteclear(&b.wait)
goto Read
}
data = b.data[br.dataCount()%uint32(len(b.data)):]
if len(data) > numData {
data = data[:numData]
} else {
numData -= len(data) // available in case of wraparound
}
skip := 0
if data[0] == 0 {
// Wraparound record. Go back to the beginning of the ring.
skip = len(data)
data = b.data
if len(data) > numData {
data = data[:numData]
}
}
ntag := countSub(bw.tagCount(), br.tagCount())
if ntag == 0 {
throw("runtime: malformed profBuf buffer - tag and data out of sync")
}
tags = b.tags[br.tagCount()%uint32(len(b.tags)):]
if len(tags) > ntag {
tags = tags[:ntag]
}
// Count out whole data records until either data or tags is done.
// They are always in sync in the buffer, but due to an end-of-slice
// wraparound we might need to stop early and return the rest
// in the next call.
di := 0
ti := 0
for di < len(data) && data[di] != 0 && ti < len(tags) {
if uintptr(di)+uintptr(data[di]) > uintptr(len(data)) {
throw("runtime: malformed profBuf buffer - invalid size")
}
di += int(data[di])
ti++
}
// Remember how much we returned, to commit read on next call.
b.rNext = br.addCountsAndClearFlags(skip+di, ti)
if raceenabled {
// Match racereleasemerge in runtime_setProfLabel,
// so that the setting of the labels in runtime_setProfLabel
// is treated as happening before any use of the labels
// by our caller. The synchronization on labelSync itself is a fiction
// for the race detector. The actual synchronization is handled
// by the fact that the signal handler only reads from the current
// goroutine and uses atomics to write the updated queue indices,
// and then the read-out from the signal handler buffer uses
// atomics to read those queue indices.
raceacquire(unsafe.Pointer(&labelSync))
}
return data[:di], tags[:ti], false
}
|