This file is indexed.

/usr/share/help/C/gnumeric/analysis-statistical.xml is in gnumeric-doc 1.12.35-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
<sect1 id="sect-stat-analysis-overview">
  <title>Overview</title>

  <para>
    All tools have the same output options (see <xref
    linkend="fig-outputoptions" />).  The results can be printed into a
    new sheet, into a new workbook, or into a given output range on a
    sheet of the current workbook.  To select the output method select
    one of the radio buttons inside the <guilabel>Output</guilabel>
    frame. If you have chosen <quote><guibutton>Output
    Range</guibutton></quote> you must also enter a single range in
    the entry field. 
  </para>

  <para>Select the <guilabel>Autofit
    Columns</guilabel> option to automatically adjust the widths of
    the columns in the output range.
  </para> 

  <para>You will normally want to select the <guilabel>Clear
    Output Range</guilabel> option, since otherwise some of the cells with 
    existing content will remain in the output range.
  </para> 

  <para> The <guilabel>Retain Output Range Formatting</guilabel> and 
    <guilabel>Retain Output Range Comments</guilabel> options are useful 
    if you have already preformatted the output range.
  </para>

  <para>All analysis tools also provide a choice whether
    they will enter formul&#xe6; or just values in the cells. By default 
    &gnum; will usually enter formul&#xe6;. These formul&#xe6; will automatically
    reevaluate when the data change. For some tools, the formul&#xe6; also
    permit modification of certain parameters. 
  </para> 
  

  <note>
    <para>
      If the chosen output range is too small, some of the results
      will be lost.
    </para>
  </note>

  <note>
    <para>
      The old data in the output range is deleted and cannot be
      recovered.
    </para>
  </note>

  <figure id="fig-outputoptions">
    <title>Common output options of the data analysis tools</title>
    <screenshot id="outputoptions-shot">
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-outputoptions.png" 
              format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output options dialog used by
              the statistical analysis tools.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>
    To enter a range into an entry field, you can either type the
    range specification into the text field, or click in the text
    field and then select the range on the sheet (see <xref
    linkend="specifyingranges" />).
  </para>

  <figure id="specifyingranges">
    <title>Specifying Ranges</title>
    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ranges.png" format="PNG" />
      </imageobject>
            <textobject>
              <phrase>An image of the input range text box used by the
              statistical analysis tools.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>
    Some entry fields accept lists of ranges. To enter these lists,
    select one range, type a comma, and then select the next range. At
    any time, you may switch to another sheet of the workbook.
  </para>

</sect1>

<sect1 id="descriptive_statistics">
  <title>Descriptive Statistics</title>
  <sect2 id="correlation-tool">
     <title>Correlation Tool</title>

  <figure id="correlation-tool-dialog">
    <title>Correlation Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-correlation.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the correlation analysis dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>The correlation tool calculates the pairwise Pearson 
     correlation coefficients of the
     given variables.  Use this tool to calculate any number of
     correlation coefficients at the same time.  The variables for
     which the correlations are calculated are specified by the <quote><guilabel>Input
     Range:</guilabel></quote> entry. The input range can consist of either a single 
     range or a comma separated list of ranges. The given range or 
     ranges can be grouped by columns, by rows, or by areas.</para>

     <para>If the first row or column of the given ranges, or the 
     first field of each area contains labels,  the
     <quote><guibutton>Labels</guibutton></quote> option should be selected.
     </para>

  <figure id="correlation-example-1">
    <title>Some Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-correlation-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of an example data set for a
              correlation analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <example id="usingcorrelationtool">
 <title>Using the Correlation Tool</title>
    <para>For example, you want to calculate the correlation between
     three variables, one each in columns A, B, and C.
     Both variables have 10 values in rows 2 to 11 with labels in row 1
     (see <xref linkend="correlation-example-1" />).</para>
<orderedlist>
     <listitem><para>
     Enter A1:B11 in the <quote><guilabel>Input Range:</guilabel></quote> entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting that range on the sheet. In the latter case the 
     entry will also contain the sheet name. </para></listitem>
     <listitem><para>
     Select the <quote><guibutton>Columns</guibutton></quote> radio button next to 
     <quote><guilabel>Grouped By:</guilabel></quote>, 
     since each variable is in its own column.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains labels. (see 
     <xref linkend="correlation-example-2" />).</para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para>The calculated correlations are given in a table with each column and
     row labeled with the names of the variables.  If the
     names are not given in the input range, &gnum; generates them.
     In our example, the 
     correlation between the variables in column A and B, can be found
     in the second column and third row of the results table (see 
     <xref linkend="correlation-example-3" />).</para>
 </example>
  <figure id="correlation-example-2">
    <title>Completed Correlation Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-correlation-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the completed correlation analysis
              dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="correlation-example-3">
    <title>Correlation Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-correlation-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of the correlation
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect2>

  <sect2 id="covariance-tool">
     <title>Covariance Tool</title>

  <figure id="covariance-tool-dialog">
    <title>Covariance Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-covariance.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the covariance analysis
              dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>The covariance tool calculates the pairwise 
     covariance coefficients of the
     given variables.  Use this tool to calculate any number of
     covariance coefficients at the same time.  The variables for
     which the covariances are calculated are specified by the <quote><guilabel>Input
     Range:</guilabel></quote> entry. The input range can consist of either a single 
     range or a comma separated list of ranges. The given range or 
     ranges can be grouped by columns, by rows, or by areas.</para>

     <para>If the first row or column of the given ranges, or the 
     first field of each area contains labels,  the
     <quote><guibutton>Labels</guibutton></quote> option should be selected.
     </para>

  <figure id="covariance-example-1">
    <title>Some Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-covariance-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image example data for a covariance
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <example id="usingcovariancetool">
 <title>Using The Covariance Tool</title>
    <para>For example, you want to calculate the covariance between
     three variables, one each in columns A, B, and C.
     Both variables have 10 values in rows 2 to 11 with labels in row 1
     (see <xref linkend="covariance-example-1" />).</para>
<orderedlist>
     <listitem><para>
     Enter A1:B11 in the <quote><guilabel>Input Range:</guilabel></quote> entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting that range on the sheet. In the latter case the 
     entry will also contain the sheet name. </para></listitem>
     <listitem><para>
     Select the <quote><guibutton>Columns</guibutton></quote> radio button next to 
     <quote><guilabel>Grouped By:</guilabel></quote>, 
     since each variable is in its own column.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains labels.
     </para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para>The calculated covariances are given in a table with each column and
     row labeled with the names of the variables.  If the
     names are not given in the input range, &gnum; generates them.
     In our example, the 
     covariance between the variables in column A and B, can be found
     in the second column and third row of the results table (see 
     <xref linkend="covariance-example-2" />).</para>
 </example>
  <figure id="covariance-example-2">
    <title>Covariance Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-covariance-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of a covariance analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect2>


  <sect2 id="descriptive-statistics-tool">
     <title>Descriptive Statistics Tool</title>

  <figure id="descriptive-statistics-tool-dialog">
    <title>Descriptive Statistics Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-descstats.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the descriptive statistics dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>The descriptive statistics tool calculates various statistics 
     for the given variables and a confidence interval for the population
     mean. The variables are specified via the <quote><guilabel>Input
     Range:</guilabel></quote> entry.  The given range or list of ranges can be grouped into 
     variables by columns, rows, or areas.</para>

     <para>This tool can produce four different kinds of statistical
     data.
     </para>
     <itemizedlist>
     <listitem><para>If the <quote><guibutton>Summary Statistics</guibutton></quote> option is selected,  
     this tool calculates the
     mean, standard error, median, mode, standard deviation, sample
     variance, kurtosis, skewness, range, minimum, maximum, sum, and
     count for each variable.</para>
     </listitem>
     <listitem><para>If the <quote><guibutton>Confidence Interval for the Mean</guibutton></quote> option is 
     selected, the tool calculates  confidence intervals for the population
     mean of each variable.
     Specify the confidence level in the entry box.  The default confidence 
     level is 95&#037;.</para> 

     <note><para>The interval given will usually be wider than the 
     interval obtained using the CONFIDENCE function. The CONFIDENCE function
     assumes that the population standard deviation is known. This tool
     estimates the population standard deviation using the sample standard
     deviation.</para></note></listitem>

     <listitem><para>If the <quote><guibutton>Kth Largest:</guibutton></quote> option is selected, the tool finds
     the <parameter>k</parameter>th largest value of each of the variables.  Specify 
     <parameter>k</parameter> in
     the entry box next to the option. The default is 1.
     </para></listitem>

     <listitem><para>If the <quote><guibutton>Kth Smallest:</guibutton></quote> option is selected, the tool finds
     the <parameter>k</parameter>th smallest value of each of the variables.  Specify 
     <parameter>k</parameter> in
     the entry box next to the option. The default is 1.
     </para></listitem>
     </itemizedlist>
     <para>If the first entry for each variable contains the label,
     select the <quote><guibutton>Labels</guibutton></quote> option.
     </para>
  <figure id="descstats-example-1">
    <title>Some Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-descstats-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of some example data for descriptive
              statistics.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 <example id="usingdescstatstool"><title>Using the Descriptive Statistics Tool</title>
     <para><xref linkend="descstats-example-1" /> shows some example data, 
     <xref linkend="descstats-example-1-options" /> the selected options, and 
     <xref linkend="descstats-example-2" /> the corresponding output.
     </para>
</example>
  <figure id="descstats-example-1-options">
    <title>The Options Page For Descriptive Statistics</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-descstats-ex1-options.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of some example data for descriptive
              statistics.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="descstats-example-2">
    <title>Descriptive Statistics Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-descstats-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of a descriptive
              statistics analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect2>

  <sect2 id="frequencies-tools">
      <title>Frequency Tables</title>
      <para>
	&gnum; provides two types of frequencies tables:
      </para>
     <itemizedlist>
     <listitem><para>The frequency table tools is primarily useful for non-numeric data 
	 (data of nominal and ordinal level of measurement). It allows to determine 
	 frequencies for given values.
     </para></listitem>
     <listitem><para> The histogram tool is useful for numeric data that is supposed to be 
	 classified into a certain number of intervals. These intervals can be either 
	 specified or calculated.
     </para></listitem>
     </itemizedlist>

    <sect3 id="frequency-tool">
      <title>Frequency Tables Tool</title>

      <sect4 id="frequency-tool-intro">
	<title>Introduction</title>
	
	<para> The frequency tool can be used to create frequency tables for 
	  non-numerical data.  It presents this table 
	  numerically as well as graphically.
	</para>
	
	<note><para>
	    If your data are numeric and you want to accumulate  whole intervals of values into
	    frequency counts then this tool is not appropriate. In that case you may 
	    want to use the histogram table tool described in section <xref linkend="histogram-tool" />.
	</para></note>
	
	<figure id="frequency-tool-dialog">
	  <title>Frequency Tool Dialog</title>
	  <screenshot>
	    <mediaobject>
              <imageobject>
		<imagedata fileref="figures/analysistools-frequency.png" 
			   format="PNG" />
              </imageobject>
              <textobject>
		<phrase>An image of the dialog to generate various
		  frequency tables open to the "Input" tab.</phrase>
              </textobject>
            </mediaobject>
	  </screenshot>
	</figure>
	
	<para>As shown in <xref linkend="frequency-tool-dialog" />, the
	  frequency table dialog has four tabs. We will introduce them in
	  sequence.
	</para>
      </sect4>
      
      <sect4 id="frequency-tool-inputtab">
	<title>The <quote><guilabel>Input</guilabel></quote> Tab</title>
	
	<para>The <quote><guilabel>Input</guilabel></quote> tab shown in 
	  <xref linkend="frequency-tool-dialog" /> contains
	  the field specifying the data to be used for the
	  histogram.</para>
	<para>
	  The <quote><guilabel>Input Range</guilabel></quote> entry
	  contains a single range or a list of ranges, that can be grouped
	  into variables by rows, columns, or areas.
	</para>
	<para>If the first row or column of the given input ranges, or
	  the first field of each area contains labels, the
	  <quote><guibutton>Labels</guibutton></quote> option should
	  be selected.
	  If the input is grouped by areas and the top left cell contains a label, the
	  other cells in the first row are being ignored.
	</para>
      </sect4>
      
      <sect4 id="frequency-tool-catstab">
	<title>The <quote><guilabel>Categories</guilabel></quote> Tab</title>
	
	<para>The <quote><guilabel>Categories</guilabel></quote> tab permits the specification
	  of a range that contains the possible values that are supposed to be counted in the 
	  input range.
	</para>
	
	<note><para>The <quote><guilabel>Automatic categories</guilabel></quote> option is 
	    disabled since it is not yet implemented.
	</para></note>

	<figure id="frequency-tool-dialog-cats">
	  <title>Frequency Tool Dialog Categories Tab</title>
	  <screenshot>
	    <mediaobject>
              <imageobject>
		<imagedata fileref="figures/analysistools-frequency-cats.png" 
			   format="PNG" />
              </imageobject>
              <textobject>
		<phrase>An image of the dialog to generate various
		  frequency tables open to the "Categories" tab.</phrase>
              </textobject>
            </mediaobject>
	  </screenshot>
	</figure>
      </sect4>
      
      
      <sect4 id="frequency-tool-optionstab">
	<title>The <quote><guilabel>Graphs &amp;  Options</guilabel></quote> Tab</title>
	
	<para>The <quote><guilabel>Graphs &amp;  Options</guilabel></quote> tab allows various 
	  options to be set. In the top half of the tab you can choose whether you would like 
	  a graph to be created. If you choose to have a graph created you can specify whether 
	  you would like to see a bar chart or a column chart. 	
	</para>
	<para>In the bottom part of the tab you 
	  can select the  <quote><guilabel>percentages</guilabel></quote> option. This option 
	  replaces the frequency counts with percentages.
	</para>
	<note><para>If the categories range contains repeated values, then the percentages may
	    add up to more than 100%. If the categories range does not contain all values that 
	    occur in the input range, the percentages may sum to less than 100%.
	</para></note>
	<para>The <quote><guilabel>Use exact comparisons</guilabel></quote> checkbox determines how 
	  category values and input range values are compared. If it is checked then the function 
	  <function>EXACT</function> is used for the comparison. If it isn't checked then simple
	  equality is used. In this latter case, empty cells and cells containing the numerical 
	  value 0 are considered equal. As a consequence you usually want that checkbox to be selected. 
	</para>
	

	<figure id="frequency-tool-dialog-graphs">
	  <title>Frequency Tool Dialog Graphs &amp;  Options Tab</title>
	  <screenshot>
	    <mediaobject>
              <imageobject>
		<imagedata fileref="figures/analysistools-frequency-graphs.png" 
			   format="PNG" />
              </imageobject>
              <textobject>
		<phrase>An image of the dialog to generate various
		  frequency tables open to the "Graphs &amp;  Options" tab.</phrase>
              </textobject>
            </mediaobject>
	  </screenshot>
	</figure>
      </sect4>
      
      
      <sect4 id="frequency-tool-results-sect">
	<title>Frequency Tool Results</title>
	<figure id="frequency-tool-results">
	  <title>Frequency Tool Results</title>
	  <screenshot>
	    <mediaobject>
	      <imageobject>
		<imagedata fileref="figures/analysistools-frequency-results.png" 
			   format="PNG" />
	      </imageobject>
	      <textobject>
		<phrase>Sample results of the frequencies tool.</phrase>
	      </textobject>
	    </mediaobject>
	  </screenshot>
	</figure>
      </sect4>
    </sect3>
    
    <sect3 id="histogram-tool">
      <title>Histogram Tool</title>
      
      <sect4 id="histogram-tool-intro">
	<title>Introduction</title>
	
	
	<para> The histogram tool can be used to create histograms or frequency tables for 
	  numerical data. Using this tool you can define intervals, or <quote>bins</quote>. 
	  The tool determines how many data points belong to each bin and presents this number 
	  numerically as well as graphically.
	</para>
	
	<note><para>
	    If your data are non-numeric this tool is not appropriate. In that case you may 
	    want to use the frequency table tool described in section <xref linkend="frequency-tool" />.
	</para></note>
	
	<figure id="histogram-tool-dialog">
	  <title>Histogram Tool Dialog</title>
	  <screenshot>
	    <mediaobject>
              <imageobject>
		<imagedata fileref="figures/analysistools-histogram.png" 
			   format="PNG" />
              </imageobject>
              <textobject>
		<phrase>An image of the dialog to generate various
		  histograms open to the "Input" tab.</phrase>
              </textobject>
            </mediaobject>
	  </screenshot>
	</figure>
	
	<para>As shown in <xref linkend="histogram-tool-dialog" />, the
	  histogram dialog has five tabs. We will introduce them in
	  sequence.
	</para>
      </sect4>

  <sect4 id="histogram-tool-inputtab">
     <title>The <quote><guilabel>Input</guilabel></quote> Tab</title>

     <para>The <quote><guilabel>Input</guilabel></quote> tab shown in 
       <xref linkend="histogram-tool-dialog" /> contains
       the field specifying the data to be used for the
       histogram.</para>
     <para>
       The <quote><guilabel>Input Range</guilabel></quote> entry
       contains a single range or a list of ranges, that can be grouped
       into variables by rows, columns, or areas.
     </para>
     <para>If the first row or column of the given input ranges, or
       the first field of each area contains labels, the
       <quote><guibutton>Labels</guibutton></quote> option should
       be selected.
       If the input is grouped by areas and the top left cell contains a label, the
       other cells in the first row are being ignored.
     </para>
  </sect4>
  
  <sect4 id="histogram-tool-cutoffsstab">
     <title>The <quote><guilabel>Cutoffs</guilabel></quote> Tab</title>
  <figure id="histogram-tool-dialog-cutoffs">
    <title>Histogram Tool Dialog <quote><guilabel>Cutoffs</guilabel></quote> Tab</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-cutoffs.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the dialog to generate various
              histograms open to the "Cutoffs" tab.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>The cutoffs for the histogram can either be predetermined by data 
    contained in your workbook or calculated by the histogram tool.  These cutoffs 
    determine bins as defined
    by the selection on the <quote><guilabel>Bins</guilabel></quote> tab.
  </para>

  <para>Select the <quote><guilabel>Predetermined Cutoffs</guilabel></quote> option to specify 
    data on your worksheet in the <quote><guilabel>Cutoff Range:</guilabel></quote> entry. The 
    values in this range will be used as cutoffs <parameter>c<subscript>1</subscript></parameter>,
    <parameter>c<subscript>2</subscript></parameter>, and so on 
    to  <parameter>c<subscript>n</subscript></parameter>.
  </para> 

  <para>Select the <quote><guilabel>Calculated Cutoffs</guilabel></quote> option to have the 
    cutoffs determined by the tool. Enter the desired number of cutoffs in the 
    <quote><guilabel>Number of Cutoffs</guilabel></quote> entry. It is strongly recommended 
    (but optional) that you 
    specify the minimum and maximum cutoffs in the <quote><guilabel>Minimum cutoff</guilabel></quote>
    and <quote><guilabel>Maximum cutoff</guilabel></quote> entries. If the minimum or maximum
    cutoff is not specified, the tool will use the minimum and/or maximum of the current data. 
  </para>
  </sect4>
  
  <sect4 id="histogram-tool-binstab">
     <title>The <quote><guilabel>Bins</guilabel></quote> Tab</title>
  <figure id="histogram-tool-dialog-bins">
    <title>Histogram Tool Dialog <quote><guilabel>Bins Tab</guilabel></quote></title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-bins.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the dialog to generate various
              histograms open to the "Bins" tab.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para> The bins tab is used to determine how the cutoffs <parameter>c<subscript>1</subscript></parameter>,
    <parameter>c<subscript>2</subscript></parameter>, and so on 
    to  <parameter>c<subscript>n</subscript></parameter> are translated into bins. Specifically, 
    it has to be determined whether first and/or last bins reaching from &#x2212;&#x221e; to 
    <parameter>c<subscript>1</subscript></parameter> and from 
    <parameter>c<subscript>n</subscript></parameter> to &#x221e; are added and whether data points that much
    cutoffs exactly are included in the bin to the right or the left.
  </para>
  <para> For example the option  
    <quote><guilabel>[&#x2219;,&#x2219;),[&#x2219;,&#x2219;),&#x22ef;,
	[&#x2219;,&#x2219;),[&#x2219;,&#x221e;)
    </guilabel></quote>
    indicates that the first bin starts at the first cutoff while the last bin ends at &#x221e;. Moreover,
    each cutoff value belongs to the bin on its right.
  </para>
    </sect4>

  <sect4 id="histogram-tool-optionstab">
     <title>The <quote><guilabel>Graphs &amp; Options</guilabel></quote> Tab</title>
 <figure id="histogram-tool-dialog-options">
    <title>Histogram Tool Dialog <quote><guilabel>Graphs &amp; Options Tab</guilabel></quote></title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-graphs.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the dialog to generate various
              histograms open to the "Graphs &amp; Options" tab.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para> The options in the graphs and options tab specify any graph to be created and modify 
       the appearance of the histogram:</para>

     <itemizedlist>
     <listitem>
     <para> The <quote><guibutton>No chart</guibutton></quote> option causes the chart to be omitted.
     </para>
     </listitem>
     <listitem>
     <para> The <quote><guibutton>Bar chart</guibutton></quote> option causes a bar chart to be 
       added to the histogram. For each bin, the bar chart shows a horizontal bar indicating the frequency.
     </para>
     <para> The <quote><guibutton>Column chart</guibutton></quote> option causes a column chart to be 
       added to the histogram. For each bin, the column chart shows a vertical bar indicating the frequency.
     </para>
     <para> The <quote><guibutton>Histogram chart</guibutton></quote> option causes a histogram chart to be 
       added to the histogram. For each bin, the histogram chart shows a vertical bar indicating the density 
       (that is the frequency divided by the width of the bin).
     </para>
     </listitem>
     <listitem>
     <para> The <quote><guibutton>Percentages</guibutton></quote> option causes the frequencies to be 
       expressed as percentages. 
     </para>
     </listitem>
     <listitem>
     <para> The <quote><guibutton>Cumulative answers</guibutton></quote> option causes a cumulative 
       frequency table (either with counts or with pecentages) to be created.  
     </para>
     </listitem>
     <listitem>
     <para> The <quote><guibutton>Count numbers only</guibutton></quote> option determines whether only numbers are counted. If also non-numbers are counted they are first converted into numbers, usually into 0.  
     </para>
     </listitem>
     </itemizedlist>

  </sect4>


  <sect4 id="histogram-tool-outputtab">
     <title>The <quote><guilabel>Output</guilabel></quote> Tab</title>

      <para>
        The Output tab contains the standard output options and fields
        described in <xref
        linkend="sect-stat-analysis-overview" />.
      </para>
  </sect4>


  <sect4 id="histogram-tool-example">
    <title>A Histogram Example</title>

    <figure id="histogram-example-1">
      <title>Some Example Data</title>
      <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of some example data for use with the
              histogram tool.</phrase>
            </textobject>
           </mediaobject>
      </screenshot>
    </figure>

    <example id="usinghistogramtool">
      <title>Using the Histogram Tool</title>

      <para>
        For example, you want to calculate a histogram for the number of
        successes in several sequences of trials. The numbers of
        successes are recorded in column A and the cutoffs of interest
        in column C (see <xref linkend="histogram-example-1" />).
      </para>

      <orderedlist>
        <listitem>
          <para>
            Enter A1:A31 in the <quote><guilabel>Input
            Range:</guilabel></quote> entry of the
            <quote><guilabel>Input</guilabel></quote> tab by typing
            this directly into the entry or clicking in the entry
            field and then selecting that range on the sheet. In the
            latter case the entry may also contain the sheet
            name. 
          </para>
        </listitem>
        <listitem>
          <para>
            Since you only have one variable select the
            <quote><guibutton>Areas</guibutton></quote> or
            <quote><guibutton>Columns</guibutton></quote> radio button
            next to <quote><guilabel>Grouped By:</guilabel></quote>.
            </para>
        </listitem> 
        <listitem><para> Select the
            <quote><guibutton>Labels</guibutton></quote> option
            since the first cell of the Input Range contains a
            label.</para>
        </listitem>
	
        <listitem><para> Enter C2:C5 in
            the <quote><guilabel>Cutoff Range:</guilabel></quote> entry
            of the <quote><guilabel>Cutoffs</guilabel></quote> tab. The
            <quote><guilabel>Predetermined Cutoffs</guilabel></quote>
            option will now also be selected (see <xref
            linkend="histogram-example-2" />). </para>
        </listitem>
        <listitem><para> In the  <quote><guilabel>Bins</guilabel></quote> tab 
	    select the second option since we want to add two bins reaching to &#x2213;&#x221e; and 
	    we want to count each cutoff value in the bin to its right (see <xref
            linkend="histogram-example-3" />).</para>
        </listitem>
        <listitem><para> Select the
            <quote><guibutton>Percentage</guibutton></quote> option of the
            <quote><guilabel>Graphs &amp;Options</guilabel></quote> tab to have
	    the frequencies expressed as percentages.
            </para>
        </listitem>
        <listitem><para> Select the
            <quote><guibutton>Column Chart</guibutton></quote> option of the
            <quote><guilabel>Graphs &amp;Options</guilabel></quote> tab to have
	    a column chart added to the histogram (see <xref
            linkend="histogram-example-4" />).
            </para>
        </listitem>
        <listitem>
          <para>
            In the <quote><guilabel>Output</guilabel></quote> tab,
            specify the output options as described in
            <xref linkend="sect-stat-analysis-overview" />.
          </para>
        </listitem>
        <listitem><para>
            Press the OK button. </para>
        </listitem>
      </orderedlist>
     <para> The results are shown in 
       <xref linkend="histogram-example-5" />. Note that the graph will by default appear on top 
       of the histogram table. It usually needs to be moved in to proper position. That has
       already been done here.
     </para>
 </example>
 

    <figure id="histogram-example-2">
      <title>Histogram Tool: Specifying Cutoffs</title>
      <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of selecting the cutoffs for the example
              data used with the histogram tool.</phrase>
            </textobject>
           </mediaobject>
      </screenshot>
    </figure>

 <figure id="histogram-example-3">
    <title>Histogram Tool: Specifying Bins</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of selecting a certain bins type.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <figure id="histogram-example-4">
    <title>Histogram Tool: Specifying Options</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-ex4.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of specifying the required options.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <figure id="histogram-example-5">
    <title>Histogram Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-histogram-ex5.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from the histogram
              analysis tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect4>
  </sect3>
  </sect2>

  <sect2 id="rank-and-percentile-tool">
     <title>Rank and Percentile Tool</title>

  <figure id="rank-and-percentile-tool-dialog">
    <title>Rank and Percentile Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-rank.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the rank and percentile analysis
              tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>Use this tool to rank given data and to calculate the
     percentiles of each data point.</para>
     <para>Specify the datasets to use in the <quote><guilabel>Input  
     Range:</guilabel></quote> entry.  
     The given range can be grouped into datasets by columns, by rows, or by areas.</para>

     <para>For each dataset, the tool creates three columns in the 
     output table:</para>
     <orderedlist>
     <listitem><para>The first column gives the indices of the 
     ordered data from largest to smallest data value.</para></listitem>
     <listitem><para>The second column 
     gives data values corresponding to the indices in the first column.</para></listitem>
     <listitem><para>The  third column indicates
     the percentile of the  data value in the second column.</para></listitem>
     </orderedlist>

     <para>If you have labels
     in the first cell of each data set, select the
     <quote><guilabel>Labels</guilabel></quote> option.</para>

   <figure id="rank-example-1">
    <title>Some Example Data for the Rank and Percentile Tool</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-rank-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use with the rank
              and percentile analysis tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 <example id="usingranktool"><title>Using the Rank and Percentile Tool</title>
     <para><xref linkend="rank-example-1" /> shows some example data and 
     <xref linkend="rank-example-2" /> the corresponding output.
     </para>
</example>
  <figure id="rank-example-2">
    <title>Rank and Percentile Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-rank-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a rank and
              percentile analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <note><para>In the case of ties, the rank calculated by this tool differs from the 
  value of the RANK function for the same data. This tool calculates the rank as it is 
  normally used in Statistics: If two values are tied, the assigned rank is the average
  rank for those entries. For example in <xref
  linkend="rank-example-1" /> the two values 10
  are the second and third largest values. Since they are equal each receives the rank of 
  2.5, the average of 2 and 3. The rank function on the other hand assigns the rank as it 
  is normally used to determine placements. The two values 10 would therefore each receive
  a rank of 2.   
  </para></note>
  </sect2>
</sect1>

<sect1 id="sampling-tool">
     <title>Sampling Tool</title>
     <figure>
        <title>Sampling Tool Dialog</title>
	<screenshot>
	   	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-sampling.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the sampling tool.</phrase>
            </textobject>
           </mediaobject>
	</screenshot>
      </figure>
     <para>Use the sampling tool to take a sample of a data set.  This
     tool can take both a random sample of a given size or a periodic
     sample:</para>
     <variablelist>
     <varlistentry><term>random sample</term>
     <listitem><para>A random sample is a subset of the population such that 
     every subset of that size has the same chance of being picked.</para></listitem>
     </varlistentry>
     <varlistentry><term>periodic sample</term>
     <listitem><para>In a periodic sample every <parameter>k</parameter>th element in 
     the population is selected.</para></listitem>
     </varlistentry>
     </variablelist>

     <para>To use this tool, first specify the data set or data sets by setting the
     <quote><guilabel>Input Range:</guilabel></quote> entry. The range or ranges 
     given can be grouped into datasets by rows, by columns, or by areas.</para>
     <para>If the first entry in each data set contains a variable, select the 
     <quote><guilabel>Labels</guilabel></quote> option.</para>

     <para>Select the sampling method which
     can be either periodic or random.</para>
     <variablelist>
     <varlistentry><term>random sample</term>
     <listitem><para>Specify the size of the random sample in the <quote><guilabel>Size 
     of Sample:</guilabel></quote> entry.</para></listitem>
     </varlistentry>
     <varlistentry><term>periodic sample</term>
     <listitem><para>Specify the period in the <quote><guilabel>Period:</guilabel></quote>
     entry.</para></listitem>
     </varlistentry>
     </variablelist>

     <para>Specify the number of samples you would like to obtain in the <quote><guilabel>
     Number of Samples:</guilabel></quote> entry.</para>
     <note><para> Since the period uniquely determines a periodic sample, if you specify 
     that you would like 2 samples you will be given the identical sample twice.</para></note>
     <note><para>If the dataset for a periodic sample is a two dimensional range, &gnum; 
     will enumerate the data points by row first.</para></note>

   <figure id="sampling-example-1">
    <title>Some Example Data for the Sampling Tool</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-sampling-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use with the
              sampling tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 <example id="usingsamplingtool"><title>Using the Sampling Tool</title>
     <para><xref linkend="sampling-example-1" /> shows some example data and 
     <xref linkend="sampling-example-2" /> the corresponding output.
     </para>
</example>
  <figure id="sampling-example-2">
    <title>Sampling Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-sampling-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from the sampling
              tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect1>


<sect1 id="dependent_observations">
  <title>Dependent Observations</title>
 <sect2 id="forecast-tools">
     <title>Forecast Tools</title>
  <sect3 id="exp-smoothing-tool">
     <title>Exponential Smoothing Tool</title>

  <figure id="smoothing-tool-dialog">
    <title>Exponential Smoothing Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the exponential smoothing
              dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>The Exponential Smoothing tool performs the exponential
       smoothing for the given set or sets of values. It provides the choice of 5
       different exponential smoothing methods: 
     </para>
     <itemizedlist>
     <listitem>
       <para>Simple exponential smoothing according to (Hunter, 1968).</para>
     </listitem>
     <listitem>
       <para>Simple exponential smoothing according to (Roberts, 1959).</para>
     </listitem>
     <listitem>
       <para>Holt's trend corrected exponential smoothing (occasionally also 
	 referred to as double exponential smoothing)</para>
     </listitem>
     <listitem>
       <para>Additive Holt-Winters exponential smoothing</para>
     </listitem>
     <listitem>
       <para>Multiplicative Holt-Winters exponential smoothing (occasionally also 
	 referred to as triple exponential smoothing)</para>
     </listitem>
     </itemizedlist>

     <para>Since the kind of options available depend on the type of exponential 
       smoothing desired, you can choose the type on the <quote><guilabel>Input
       </guilabel></quote>
       page.
     </para>

     <sect4 id="exp-smoothing-tool-common">
 <title>Common Options of the Exponential Smoothing Tool</title>

     <para>Specify the cells containing the datasets in the <quote><guilabel>Input
     Range</guilabel></quote> entry. The entered range or ranges are grouped into 
     datasets either by rows or by columns.</para> 

     <para>If you have labels
     in the first cell of each data set, select the
     <quote><guilabel>Labels</guilabel></quote> option.</para>

     <para> If you select the <quote><guilabel>Include chart</guilabel></quote> 
       option, &gnum;
       will also create a chart showing both the data and corresponding smoothed 
       values.
     </para>
     </sect4>

  <sect4 id="exp-smoothing-tool-hunter">
 <title>Exponential Smoothing According to Hunter</title>

    <para>  Each value in the
     smoothed set is predicted based on the forecast for the prior
     period.  The formula is given in <xref linkend="exp-smoothing-tool-formula-hunter" />. 
     &#x03b1; is the value given as <quote><guilabel>Damping factor</guilabel></quote>.
     <parameter>y<subscript>t</subscript></parameter> is the <parameter>t</parameter>th
     value in the original data set and <parameter>l<subscript>t</subscript></parameter>
     the corresponding smoothed value.</para>

  <figure id="exp-smoothing-tool-formula-hunter">
    <title>Exponential Smoothing Formula According To Hunter</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-hunter-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used in exponential smoothing according to Hunter.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>For example, a value for &#x03b1;  between 0.2 and 0.3 represents 20 to 30 percent error
       adjustment in the prior forecast.
     </para>

     <note><para>
	 If you choose to have the tool enter formul&#xe6; rather than values into the output region, 
	 then you can modify the damping factor &#x03b1; even after you executed the tool. 
     </para></note>

     <para>To have the standard errors output as well, check the 
       <quote><guilabel>Standard error</guilabel></quote> check box. The formula 
       used is given in  <xref linkend="exp-smoothing-tool-formula-hunter-stderr" />.  
       The denominator can be adjusted by selecting the appropriate radio button. Since 
       there are <parameter>t&#x2212;1</parameter> terms in the sum of the denominator, 
       selecting <quote><guilabel>n&#x2212;1</guilabel></quote> means that the denominator 
       will be <parameter>t&#x2212;2</parameter>.
     </para>


  <figure id="exp-smoothing-tool-formula-hunter-stderr">
    <title>The Standard Error Formula For Exponential Smoothing According To Hunter</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-hunter-stderr.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used to calculate the standard error of exponential 
		smoothing according to Hunter
	      </phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 
   <para>If you check the <quote><guilabel>Include chart</guilabel></quote> check box, a line
    graph showing the observations <parameter>y<subscript>t</subscript></parameter> and the 
    predicted values <parameter>l<subscript>t</subscript></parameter> will also be created.
  </para>

 <example id="usingsmoothingtool"><title>Using the Exponential Smoothing Tool</title>
     <para><xref linkend="smoothing-example-1" /> shows some example data, <xref linkend="smoothing-example-2" /> the selected options and 
     <xref linkend="smoothing-example-3" /> the corresponding output.
     </para>
</example>
  <figure id="smoothing-example-1">
    <title>Some Example Data for the Exponential Smoothing Tool</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for exponential
              smoothing.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
   <figure id="smoothing-example-2">
    <title>The Options for the Exponential Smoothing Tool</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options tab of the exponential smoothing tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="smoothing-example-3">
    <title>Exponential Smoothing Tool Output (Hunter)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of an exponential
              smoothing analysis according to Hunter.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  </sect4>

  <sect4 id="exp-smoothing-tool-roberts">
<title>Exponential Smoothing According to Roberts</title>

  <para>The simple exponential smoothing method according to Roberts is used for 
    forecasting a time series without a trend or seasonal pattern, but for which 
    the level is nevertheless slowly changing over time. The predicted values are 
    calculated according to the formula given in 
    <xref linkend="exp-smoothing-tool-formula-roberts" />. &#x03b1; is the value 
    given as <quote><guilabel>Damping factor</guilabel></quote>.
    <parameter>y<subscript>t</subscript></parameter> is the <parameter>t</parameter>th
    value in the original data set and <parameter>l<subscript>t</subscript></parameter>
    the predicted value. <parameter>l<subscript>0</subscript></parameter> is the 
    predicted value at time 0 and must be estimated. This tool uses the average 
    value of the first 5 observations as estimate.  
  </para>

     <note><para>
	 If you choose to have the tool enter formul&#xe6; rather than values into 
	 the output region, 
	 then you can modify the damping factor &#x03b1; and the estimated value
	 at time 0 after executing the tool. 
     </para></note>

  <figure id="exp-smoothing-tool-formula-roberts">
    <title>Exponential Smoothing Formula According To Roberts</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-roberts-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used in exponential smoothing according to Roberts.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>To have the standard errors output as well, check the 
       <quote><guilabel>Standard error</guilabel></quote> check box. The formula used is 
       given in  <xref linkend="exp-smoothing-tool-formula-roberts-stderr" />.  The 
       denominator can be adjusted by selecting the appropriate radio button.
     </para>

  <figure id="exp-smoothing-tool-formula-roberts-stderr">
    <title>The Standard Error Formula For Exponential Smoothing According To Roberts</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-roberts-stderr.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used to calculate the standard error of exponential 
		smoothing according to Roberts
	      </phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>If you check the <quote><guilabel>Include chart</guilabel></quote> check box, a line
    graph showing the observations <parameter>y<subscript>t</subscript></parameter> and the 
    predicted values <parameter>l<subscript>t</subscript></parameter> will also be created.
  </para>

  <example id="usingsmoothingtool-roberts"><title>Using the Exponential Smoothing Tool</title>
     <para> 
     <xref linkend="smoothing-example-4" /> shows example output for the exponential smoothing
     tool using the formula according to Roberts. Cell A4 contains the estimated level at time 0.
     If you requested to have formul&#xe6; rather than values entered into the sheet, then changing 
     the estimate in A4 and/or the value for &#x03b1; in A2 will result in an immediate change to 
     the predicted values.
     </para>
</example>


  <figure id="smoothing-example-4">
    <title>Exponential Smoothing Tool Output (Roberts)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex4.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of an exponential
              smoothing analysis according to Roberts.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect4>

  <sect4 id="exp-smoothing-tool-holt">
<title>Holt's Trend Corrected Exponential Smoothing</title>

  <para>Holt's trend corrected exponential smoothing is appropriate when both the level and the growth rate of a time series are changing. (If the time series has a fixed growth rate and therefore exhibits a linear trend, a linear regression model is more appropriate.) 
  </para>

  <para><parameter>y<subscript>t</subscript></parameter> is the true value at time 
    <parameter>t</parameter>, <parameter>l<subscript>t</subscript></parameter>
    is the estimated level at time <parameter>t</parameter> and <parameter>b<subscript>t
    </subscript></parameter>
    is the estimated growth rate at time <parameter>t</parameter>. We use the two smoothing equations
    given in <xref linkend="exp-smoothing-tool-formula-holt" /> to update our estimates.
    &#x03b1; is the value 
    given as <quote><guilabel>Damping factor</guilabel></quote> and &#x03b3; is the value 
    given as <quote><guilabel>Growth damping factor</guilabel></quote>. 
  </para>

  <para>This tool obtains initial (time 0) estimates for the level and growth rate by performing
    a linear regression using the first 5 data values.
  </para>

  <figure id="exp-smoothing-tool-formula-holt">
    <title>Formulae Of Holt's Trend Corrected Exponential Smoothing</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-holt-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formulae used in Holt's trend corrected exponential smoothing.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <note><para>
	 If you choose to have the tool enter formul&#xe6; rather than values into 
	 the output region, 
	 then you can modify the damping factors &#x03b1; and &#x03b3; as well as the estimated level and growth rate
	 at time 0 after executing the tool. 
     </para></note>


     <para>To have the standard errors output as well, check the 
       <quote><guilabel>Standard error</guilabel></quote> check box. The formula used is 
       given in  <xref linkend="exp-smoothing-tool-formula-holt-stderr" />.  The 
       denominator can be adjusted by selecting the appropriate radio button.
     </para>

  <figure id="exp-smoothing-tool-formula-holt-stderr">
    <title>The Standard Error Formula For Holt's Trend Corrected Exponential Smoothing</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-holt-stderr.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used to calculate the standard error for Holt's trend
		corrected exponential smoothing.
	      </phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>If you check the <quote><guilabel>Include chart</guilabel></quote> check box, a line
    graph showing the observations <parameter>y<subscript>t</subscript></parameter> and the 
    estimated level values <parameter>l<subscript>t</subscript></parameter> will also be created.
  </para>

  <example id="usingsmoothingtool-holt"><title>Using the Exponential Smoothing Tool</title>
     <para> 
     <xref linkend="smoothing-example-5" /> shows example output for Holt's trend corrected 
     exponential smoothing. Cell A4 contains the estimated level at time 0 and B4 the estimated 
     growth rate at time 0.
     If you requested to have formul&#xe6; rather than values entered into the sheet, then changing 
     the estimates in A4, B4, the values for &#x03b1; in A2 and/or for &#x03b3; in B2 will result 
     in an immediate change to 
     the predicted values.
     </para>
</example>


  <figure id="smoothing-example-5">
    <title>Exponential Smoothing Tool Output (Holt's)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex5.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of Holt's trend corrected exponential
              smoothing.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect4>


  <sect4 id="exp-smoothing-tool-additive-holt-winters">
<title>Additive Holt-Winters Method</title>

  <para>The additive Holt-Winters method of exponential smoothing is appropriate when a time 
    series with a linear trend has an additive seasonal pattern for which the level, the growth 
    rate and the seasonal pattern may be changing. An additive seasonal pattern is a pattern in 
    which the seasonal variation can be explained by the addition of a seasonal constant 
    (although we allow for this constant to change slowly.) 
  </para>

   <para><parameter>y<subscript>t</subscript></parameter> is the true value at time 
    <parameter>t</parameter>, <parameter>l<subscript>t</subscript></parameter>
    is the estimated level at time <parameter>t</parameter>, <parameter>b<subscript>t
    </subscript></parameter>
    is the estimated growth rate at time <parameter>t</parameter> and <parameter>s<subscript>t
    </subscript></parameter>
    is the estimated seasonal adjustment for time <parameter>t</parameter>.
    We use the three smoothing equations
    given in <xref linkend="exp-smoothing-tool-formula-a-holt-winters" /> to update our estimates.
    &#x03b1; is the value 
    given as <quote><guilabel>Damping factor</guilabel></quote>, &#x03b3; is the value 
    given as <quote><guilabel>Growth damping factor</guilabel></quote> and &#x03b4; is the value 
    given as <quote><guilabel>Seasonal damping factor</guilabel></quote>. <parameter>L</parameter>
    is the value 
    given as <quote><guilabel>Seasonal period</guilabel></quote>. If your data consist of monthly 
    values, then  <parameter>L</parameter> should be 12, if it consist of quarterly values then 
    <parameter>L</parameter> should be 4.
  </para>

  <para>This tool obtains initial (time 0) estimates for the level and growth rate by performing
    a linear regression using all data values. It obtains estimates 
    for the seasonal adjustments by averaging the appropriate seasonal differences from values 
    predicted by linear regression alone.  
  </para>


 <figure id="exp-smoothing-tool-formula-a-holt-winters">
    <title>Exponential Smoothing Formulae Of The Additive Holt-Winters Method</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-a-holt-winters-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formulae used in the additive Holt-Winters Method.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <note><para>
	 If you choose to have the tool enter formul&#xe6; rather than values into 
	 the output region, 
	 then you can modify the damping factors &#x03b1;, &#x03b3;  and  &#x03b4; as well as all
	 estimates after executing the tool. 
     </para></note>

     <para>To have the standard errors output as well, check the 
       <quote><guilabel>Standard error</guilabel></quote> check box. The formula used is 
       given in  <xref linkend="exp-smoothing-tool-formula-a-holt-winters-stderr" />.  
       The denominator can be adjusted by selecting the appropriate radio button.
     </para>

  <figure id="exp-smoothing-tool-formula-a-holt-winters-stderr">
    <title>The Standard Error Formula Of The Additive Holt-Winters Method</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-a-holt-winters-stderr.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used to calculate the standard error in the additive 
		Holt-Winters Method
	      </phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

   <para>If you check the <quote><guilabel>Include chart</guilabel></quote> check box, a line
    graph showing the observations <parameter>y<subscript>t</subscript></parameter> and the 
    estimated level values <parameter>l<subscript>t</subscript></parameter> will also be created.
  </para>

 <example id="usingsmoothingtool-ahw"><title>Using the Exponential Smoothing Tool</title>
     <para> 
     <xref linkend="smoothing-example-6" /> shows the options' tab of the exponential smoothing 
     tool for the additive Holt-Winters method. The data is expected to have a seasonal period 
     of 4 (this would for example happen if we have a data value for each quarter of a year). 
     <xref linkend="smoothing-example-7" /> shows the corresponding example output for the
     additive Holt-Winters method. Cell C7 contains the estimated level at time 0, D7 the 
     estimated growth rate at time 0, and E4 to E7 the initial seasonal adjustments for each 
     of the 4 seasons preceding our data time period.
     If you requested to have formul&#xe6; rather than values entered into the sheet, then changing
     any of these estimates, the values for &#x03b1; in A2, for &#x03b3; in B2 and/or for &#x03b4; 
     in C2 will result in an immediate change to the estimated values.
     </para>
</example>

  <figure id="smoothing-example-6">
    <title>Exponential Smoothing Tool Options (Additive Holt-Winters)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex6.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options' tab for the additive Holt-Winters method.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <figure id="smoothing-example-7">
    <title>Exponential Smoothing Tool Output (Additive Holt-Winters)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex7.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of the additive Holt-Winters method.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

    </sect4>

  <sect4 id="exp-smoothing-tool-multiplicative-holt-winters">
<title>Multiplicative Holt-Winters Method</title>

  <para>The multiplicative Holt-Winters method of exponential smoothing is appropriate when a time 
    series with a linear trend has a multiplicative seasonal pattern for which the level, the growth 
    rate and the seasonal pattern may be changing. A multiplicative seasonal pattern is a pattern in 
    which the seasonal variation can be explained by the multiplication of a seasonal constant 
    (although we allow for this constant to change slowly.) 
  </para>

   <para><parameter>y<subscript>t</subscript></parameter> is the true value at time 
    <parameter>t</parameter>, <parameter>l<subscript>t</subscript></parameter>
    is the estimated level at time <parameter>t</parameter>, <parameter>b<subscript>t
    </subscript></parameter>
    is the estimated growth rate at time <parameter>t</parameter> and <parameter>s<subscript>t
    </subscript></parameter>
    is the estimated seasonal adjustment for time <parameter>t</parameter>.
    We use the three smoothing equations
    given in <xref linkend="exp-smoothing-tool-formula-m-holt-winters" /> to update our estimates.
    &#x03b1; is the value 
    given as <quote><guilabel>Damping factor</guilabel></quote>, &#x03b3; is the value 
    given as <quote><guilabel>Growth damping factor</guilabel></quote> and &#x03b4; is the value 
    given as <quote><guilabel>Seasonal damping factor</guilabel></quote>. <parameter>L</parameter>
    is the value 
    given as <quote><guilabel>Seasonal period</guilabel></quote>. If your data consist of monthly 
    values, then  <parameter>L</parameter> should be 12, if it consist of quarterly values then 
    <parameter>L</parameter> should be 4.
  </para>

  <para>This tool obtains initial (time 0) estimates for the level and growth rate by performing
    a linear regression using the data values of the first 4 seasonal periods. It obtains estimates 
    for the seasonal adjustments by averaging the appropriate seasonal differences from values 
    predicted by linear regression alone during the first 4 seasonal periods.  
  </para>

  <figure id="exp-smoothing-tool-formula-m-holt-winters">
    <title>Exponential Smoothing Formulae Of The Multiplicative Holt-Winters Method</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-m-holt-winters-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formulae used in the multiplicative Holt-Winters Method</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <note><para>
	 If you choose to have the tool enter formul&#xe6; rather than values into 
	 the output region, 
	 then you can modify the damping factors &#x03b1;, &#x03b3;  and  &#x03b4; as well as all
	 estimates after executing the tool. 
     </para></note>

  <para>To have the standard errors output as well, check the 
    <quote><guilabel>Standard error</guilabel></quote> check box. The formula used is given in  
    <xref linkend="exp-smoothing-tool-formula-m-holt-winters-stderr" />.  The denominator 
    can be adjusted by selecting the appropriate radio button.
  </para>

  <figure id="exp-smoothing-tool-formula-m-holt-winters-stderr">
    <title>The Standard Error Formula Of The Multiplicative Holt-Winters Method</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-exp-smoothing-m-holt-winters-stderr.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formula used to calculate the standard error in the multiplicative 
		Holt-Winters Method
	      </phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>If you check the <quote><guilabel>Include chart</guilabel></quote> check box, a line
    graph showing the observations <parameter>y<subscript>t</subscript></parameter> and the 
    estimated level values <parameter>l<subscript>t</subscript></parameter> will also be created.
  </para>

  <example id="usingsmoothingtool-mhw"><title>Using the Exponential Smoothing Tool</title>
     <para> 
     <xref linkend="smoothing-example-8" /> shows the example output for the
     multiplicative Holt-Winters method, assuming 4 seasons. Cell C7 contains the estimated level 
     at time 0, D7 the estimated growth rate at time 0, and E4 to E7 the initial seasonal 
     adjustments for each of the 4 seasons preceding our data time period.
     If you requested to have formul&#xe6; rather than values entered into the sheet, then changing
     any of these estimates, the values for &#x03b1; in A2, for &#x03b3; in B2 and/or for &#x03b4; 
     in C2 will result in an immediate change to the estimated values.
     </para>
</example>

 <figure id="smoothing-example-8">
    <title>Exponential Smoothing Tool Output (Multiplicative Holt-Winters)</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-smoothing-ex8.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of the multiplicative Holt-Winters method.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  </sect4>
  </sect3>

  <sect3 id="moving-average-tool">
     <title>Moving Average Tool</title>

  <figure id="moving-tool-dialog">
    <title>Moving Average Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-moving-average.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the dialog for the moving average
              analysis tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>Use the moving average tool to calculate moving averages of
     one or more data sets.  A moving average provides useful trend
     information of the data that is lost in a simple average.  In
     addition, moving averages can be used to eliminate random
     variance.  For example, use this tool to create a smoother curve
     of a stock prize.</para>

     <para>Specify the cells containing the datasets in the
     <quote><guilabel>Input Range</guilabel></quote> entry. The
     entered range or ranges are grouped into datasets either by rows
     or by columns.</para>

     <para>If you have labels in the first cell of each data set,
     select the <quote><guilabel>Labels</guilabel></quote>
     option.</para>

     <para>Choose the type of moving average you would like to calculate. The tool can
       determine 4 types of moving averages:
     </para>
     <orderedlist spacing="compact">
       <listitem><para>
	   Simple moving average
       </para></listitem>
       <listitem><para>
	   Cumulative moving average
       </para></listitem>
       <listitem><para>
	   Weighted moving average
       </para></listitem>
       <listitem><para>
	   Spencer's 15 point moving average
       </para></listitem>
     </orderedlist>

  <figure id="moving-tool-dialog-options">
    <title>
      Moving Average Tool Dialog: The 
      <quote><guilabel>Options</guilabel></quote> Tab
    </title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-moving-average-options.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the <quote><guilabel>Options</guilabel></quote> 
		tab of the moving average
		analysis tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  <para>Specify the <quote><guilabel>Interval</guilabel></quote>
    for the moving average.  The interval <parameter>i</parameter> is
    the number of consecutive values to be included in each moving
    average. This options is only available for the simple and weighted 
    moving averages.
  </para>

  <para>Check the <quote><guilabel>Standard errors</guilabel></quote>
    checkbox if you would also like the standard error to be calculated.  
    Since there is no general agreement on the denominator for the standard 
    error you can choose the appropriate radio button.
  </para>

  <para>In the case of the simple moving average, you can also choose between 
    a prior moving average and a central moving average, or you may even specify 
    any other desired offset.
  </para>
     <orderedlist>
       <listitem><para>
	   <quote><guilabel>Prior moving average</guilabel></quote>: Each average 
	   takes into account the current observation and the most recent prior 
	   observations for a total of <parameter>i</parameter> observations.
       </para></listitem>
       <listitem><para>
	   <quote><guilabel>Central moving average</guilabel></quote>
	   with <parameter>i</parameter> being odd: Each average 
	   takes into account the current observation and the same number of most recent prior 
	   observations and closest future observations for a total of 
	   <parameter>i</parameter> observations.
       </para></listitem>
       <listitem><para>
	   <quote><guilabel>Central moving average</guilabel></quote>
	   with <parameter>i</parameter> being even:
	   This is calculated according to the formula given in 
	   <xref linkend="moving-formula-central" />. 
	   <parameter>a<subscript>t</subscript></parameter> is the moving average
	   at time <parameter>t</parameter> and 
	   <parameter>y<subscript>t</subscript></parameter> is the observation at
	   time <parameter>t</parameter>.
       </para></listitem>
       <listitem><para>
	   <quote><guilabel>Other offset</guilabel></quote>: If the offset is 0,
	   this is just the prior moving average. Otherwise the offset indicates 
	   the number of closest future observations to include in the average. 
	   Correspondingly, the number of most recent past observations is decreased.
       </para></listitem>
     </orderedlist>

       <figure id="moving-formula-central">
	 <title>Formula For The Central Moving Average With Even Interval</title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-formula-central.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>The formula for the central moving average if the interval 
		 length is even.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>


  <para>The results are given in one column for each dataset (with a second 
    column added if you have chosen standard errors to be calculated). Each
    row represents the moving average of the corresponding row or
    column in the input range.  Depending on the type of average and 
    the offset, the moving average cannot be
    calculated for the first rows in the
    input range.
  </para>

     <sect4 id="moving-averages-simple">
       <title>Simple Moving Average</title>
       <para>
	 A simple moving average is the unweighted average of a collection of 
	 observations. Exactly which observations are included depends on whether 
	 a prior or central moving average is calculated.  
       </para>
     </sect4>
     <sect4 id="moving-averages-cumulative">
       <title>Cumulative Moving Average</title>
       <para>A cumulative moving average is a prior moving average in which the current 
       and all prior observations are included.</para>
     </sect4>
     <sect4 id="moving-averages-weighted">
       <title>Weighted Moving Average</title>
       <para>A weighted moving average with an interval <parameter>i</parameter> is a prior 
	 moving average calculated according to formula 
	 <xref linkend="moving-formula-central" />. 
	 <parameter>a<subscript>t</subscript></parameter> is the moving average
	 at time <parameter>t</parameter> and 
	 <parameter>y<subscript>t</subscript></parameter> is the observation at
	 time <parameter>t</parameter>.
       </para>

       <figure id="moving-averages-weighted-formula">
	 <title>Formula For The Weighted Moving Average With Interval 
	   <parameter>i</parameter></title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-formula-weighted.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>The formula for the weighted moving average if the interval 
		 length is <parameter>i</parameter>.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>
     </sect4>
   

     <sect4 id="moving-averages-spencer">
       <title>Spencer's 15 Point Moving Average</title>
       <para>Spencer's 15 point moving average is a central moving average calculated 
	 according to formula 
       <xref linkend="moving-formula-spencer" />. 
       <parameter>a<subscript>t</subscript></parameter> is the moving average
       at time <parameter>t</parameter> and 
       <parameter>y<subscript>t</subscript></parameter> is the observation at
       time <parameter>t</parameter>.
       </para>

       <figure id="moving-formula-spencer">
	 <title>Formula For Spencer's 15 Point Moving Average</title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-formula-spencer.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>The formula for the Spencer's 15 point moving average.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>
     </sect4>

     <sect4 id="moving-averages-example">
       <title>A Moving Average Example</title>
       <figure id="moving-example-1">
	 <title>Some Example Data for the Moving Average Tool</title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-ex1.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>An image of some example data for use with the
		 moving average analysis tool.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>
       <example id="usingmovingtool"><title>Using the Moving Average Tool</title>
	 <para><xref linkend="moving-example-1" /> shows some example data,  
	   <xref linkend="moving-example-2" /> shows the option settings, and 
	   <xref linkend="moving-example-3" /> the corresponding output.
	 </para>
       </example>
       <figure id="moving-example-2">
	 <title>Moving Averages Tool Options</title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-ex2.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>An image of the option settings of the moving averages 
		 example.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>
       <figure id="moving-example-3">
	 <title>Moving Averages Tool Output</title>
	 <screenshot>
	   <mediaobject>
             <imageobject>
               <imagedata fileref="figures/analysistools-moving-average-ex3.png" 
			  format="PNG" />
             </imageobject>
             <textobject>
               <phrase>An image of the output from the moving average
		 analysis tool.</phrase>
             </textobject>
           </mediaobject>
	 </screenshot>
       </figure>
     </sect4>
  </sect3>
  </sect2>

  <sect2 id="fourier-analysis-tool">
     <title>Fourier Analysis Tool</title>

  <figure id="fourier-tool-dialog">
    <title>Fourier Analysis Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-fourier.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the fourier analysis
              dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>
       The Fourier Analysis tool normally performs a Fast Fourier
       Transform to obtain the discrete fourier transform
       F<subscript>s</subscript> of the given sequence
       f<subscript>t</subscript> of real numbers according to the
       formula given in <xref linkend="fourier-tool-formula"
       />.</para> <para>Select the
       <quote><guilabel>Inverse</guilabel></quote> option to calculate
       the inverse discrete fourier transform
       f<subscript>t</subscript> of the given sequence
       F<subscript>s</subscript> of real numbers</para> <note><para>If
       the number of terms in the given sequence is not
       a power of 2 (i.e.  2, 4, 8, 16, 32, 64, 128, etc.), this tool
       will append zeros to reach such a power of 2!</para></note>
     
     <para>Specify the cells containing the datasets in the
     <quote><guilabel>Input Range</guilabel></quote> entry. The
     entered range or ranges are grouped into sequences either by rows
     or by columns.</para>

     <para>If you have labels
     in the first cell of each data set, select the
     <quote><guilabel>Labels</guilabel></quote> option.</para>

  <figure id="fourier-tool-formula">
    <title>Fourier Analysis Formulae</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-fourier-formula.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>The formulae used in a fourier analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <note>
       <para>Before using the numbers obtained by this tool, ensure
       that these are in fact the correct formulae for your
       discipline. In the physical sciences this fourier transform
       tends to be called the inverse fourier transform and vice
       versa. Moreover, frequently the scaling factor varies.</para>
       <para>For example <application>Mathematica</application> uses
       the terms fourier transform and inverse fourier transform with
       the reversed meaning than &gnum;
       and it uses a scaling factor of
       <parameter>1/SQRT(N)</parameter> rather than
       <parameter>1/N</parameter>.</para></note>
  </sect2>

  <sect2 id="kaplan-meier-tool">
      <title>Kaplan Meier Estimates Tool</title>
      <para/>

  <sect3 id="kaplan-meier-tool-inputtab">
     <title>The <quote><guilabel>Input</guilabel></quote> Tab</title>

     <para>The <quote><guilabel>Input</guilabel></quote> tab shown in 
        <xref linkend="kaplan-meier-tool-dialog" /> contains
        the fields specifying the data to be used for the
        Kaplan Meier Estimates. The time column contains the times or dates 
        at which the subjects died or were censored. If any of the subjects
        were censored, the <guilabel>Permit censorship</guilabel> checkbox is
        checked and the Censor column contained the censorship marks. Censorship
        marks are typically 0s or 1s. The range of censor marks or labels can be 
        set using the 
        remaining two spinboxes.</para>

 <figure id="kaplan-meier-tool-dialog">
    <title>Kaplan-Meier Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-kaplan.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the .Kaplan-Meier tool dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  <sect3 id="kaplan-meier-tool-group-tab">
     <title>The <quote><guilabel>Groups</guilabel></quote> Tab</title>

    <para>
        If the subjects belong to several groups and the groups are supposed to be
        analyzed separately, the groups tab can be used. 
    </para>

 <figure id="kaplan-meier-tool-dialog-groups">
    <title>Kaplan-Meier Tool Dialog Groups Tab</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-kaplan-groups.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the Kaplan-Meier tool dialog groups tab.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

    <para>
        The groups tab can be enabled via the <guilabel>Define multiple groups
        </guilabel> checkbox. The groups column entry contains the address of 
        the column specifying the group membership. Groups can then be defined 
        or deleted via the <guilabel>Add</guilabel> and <guilabel>Remove
        </guilabel> buttons.
    </para>

  </sect3>

  <sect3 id="kaplan-meier-tool-optionstab">
     <title>The <quote><guilabel>Options</guilabel></quote> Tab</title>

    <para>The options tab of the Kaplan-Meier tools dialog is used to set 
        various options of the Kaplan-Meier tool.
    </para>

 <figure id="kaplan-meier-tool-dialog-options">
    <title>Kaplan-Meier Tool Dialog Options Tab</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-kaplan-options.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the Kaplan-Meier tool dialog options tab.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  <sect3 id="kaplan-meier-tool-outputtab">
     <title>The <quote><guilabel>Output</guilabel></quote> Tab</title>

      <para>
        The Output tab contains the standard output options and fields
        described in <xref linkend="sect-stat-analysis-overview" />.
      </para>
  </sect3>

  <sect3 id="kaplan-meier-tool-example">
    <title>A Kaplan-Meier Example</title>

      <figure id="kaplan-meier-tool-example-1">
	<title>Kaplan-Meier Tool Example Input</title>
	<screenshot>
	    <mediaobject>
		<imageobject>
		  <imagedata fileref="figures/analysistools-kaplan-ex1.png" 
		      format="PNG" />
		</imageobject>
		<textobject>
		  <phrase>An image of the input to the Kaplan-Meier estimate example 
            and of the input 
		  tab of the Kaplan-Meier analysis tool.</phrase>
		</textobject>
	       </mediaobject>
	</screenshot>
      </figure>

    <example id="usingkaplan-meiertool">
      <title>Using the Kaplan-Meier Tool</title>
      <para>
        Suppose you want to calculate Kaplan-Meier Estimates 
        for the as given in <xref linkend="kaplan-meier-tool-example-1" />. Each 
        row contains the data for one subject. Column A contains the survival time,
        i.e. the time until death or censure. Column B contains the group number, 
        we are considering two groups of subjects. Column C indicates whether the 
        subject died (0) or was censured (1).
        </para>
        <para>
        We complete the fields of the <guilabel>Input</guilabel> tab as shown in 
        <xref linkend="kaplan-meier-tool-example-1" />. The time column is A2:A21
        and the censure column is C2:C21.
        </para>
        <para>
        Since we have two groups of subjects, on the <guilabel>Groups</guilabel> 
        tab we check the  <guilabel>Define multiple groups</guilabel> check box and 
        set up two groups with identifiers 1 and 2 in column B2:B21:
      <figure id="kaplan-meier-tool-tool-example-3">
	 <title>Kaplan-Meier Tool Example Group Tab</title>
	 <screenshot>
	     <mediaobject>
		 <imageobject>
		   <imagedata fileref="figures/analysistools-kaplan-ex3.png" 
		       format="PNG" />
		 </imageobject>
		 <textobject>
		   <phrase>An image of the group tab of the Kaplan-Meier
		   analysis tool.</phrase>
		 </textobject>
		</mediaobject>
	 </screenshot>
       </figure>
      </para>
    <para>On the <guilabel>Options</guilabel> tab all checkboxes are pre-checked
     and we leave them that way to obtain a maximum amount of information.
    </para>
    <para>On the output tab we choose where we would like the output to be placed. For 
    the purposes of this example we retain the <guilabel>New Sheet</guilabel> target. 
    After clicking <guilabel>OK</guilabel> we get the output shown in 
    <xref linkend="kaplan-meier-tool-example-2" />. Note that the graph initially 
        always appears on top of the numerical result and was moved for the 
        screen shot.
    </para>
    <para>
        B1:F17 shows the results of the first group, G1 to K17 the results of the 
        second group. The graph shows the Kaplan-Meier survival curves for both 
        groups.
    </para>
    <para>
        M4:N7 shows the result of the Mantel-Haenszel Log-Rank Test. In this case 
        the p-value is larger than 0.3 and we would fail to reject the Null 
        hypothesis. There is no evidence that the survival times differ.
    </para>
    </example>

      <figure id="kaplan-meier-tool-example-2">
	 <title>Kaplan-Meier Tool Example Output</title>
	 <screenshot>
	     <mediaobject>
		 <imageobject>
		   <imagedata fileref="figures/analysistools-kaplan-ex2.png" 
		       format="PNG" />
		 </imageobject>
		 <textobject>
		   <phrase>An image of the output of the Kaplan-Meier
		   analysis tool.</phrase>
		 </textobject>
		</mediaobject>
	 </screenshot>
       </figure>
  </sect3>
  </sect2>

  <sect2 id="principal-component-tool">
      <title>Principal Component Analysis</title>
   <figure id="pcanalysis-tool-dialog">
    <title>Principal Component Analysis Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-pcanalysis.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the principal component analysis tool dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>Principal Component Analysis Tool performs a principal component analysis (PCA). 
           PCA is a useful statistical technique with application in
	   fields such as face recognition and image compression. It is a common technique for
           finding patterns in data of high dimension.
     </para>

     <para>Specify the cells containing the datasets in the
     <quote><guilabel>Input Range</guilabel></quote> entry. The
     entered range or ranges are grouped into the factors either by rows
     or by columns.</para>

     <para>If you have labels
     in the first cell of each factor, select the
     <quote><guilabel>Labels</guilabel></quote> option.</para>

 <figure id="pcanalysis-example-1">
    <title>Principal Component Analysis Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-pcanalysis-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use with the
               principal component analysis tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <example id="usingpcanalysistool">
 <title>Using the Principal Component Analysis Tool</title>
 <para>
    Suppose you want to perform a principal component analysis on the data
    given in <xref linkend="pcanalysis-example-1" /> having the two dimensions (factors) 
    <inlineequation><mathphrase>x</mathphrase></inlineequation> and 
    <inlineequation><mathphrase>y</mathphrase></inlineequation>.</para>
<orderedlist>
     <listitem><para>
     Enter Sheet1!$A$1:$B$11 (or just A1:B11) in the <quote><guilabel>Input Range:</guilabel></quote> 
     entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting the range on the sheet.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains labels. (see 
     <xref linkend="pcanalysis-tool-dialog" />).</para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para> The output of this principal component analysis is shown in
     <xref linkend="regression-example-3" />. The output shows the covariance matrix,
     the eigenvalues and corresponding eigenvectors. The principal component is the 
     constructed factor with the highest percent of trace, 
     <inlineequation><mathphrase>&#x03be;1</mathphrase></inlineequation>.</para>
 </example>

   <figure id="pcanalysis-example-2">
    <title>Principal Component Analysis Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-pcanalysis-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a principal component
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect2>



  <sect2 id="regression-tool">
     <title>Regression Tool</title>
  <figure id="regression-tool-dialog">
    <title>Regression Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-regression.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the regression tool dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <para>The regression tool performs a multiple regression analysis.</para>
  <para>Enter a range or list of ranges containing the independent variables 
  into the <quote><guilabel>X Variables:</guilabel></quote> entry.</para>
  <para>Enter a single range containing the dependent variable into the
   <quote><guilabel>Y Variable:</guilabel></quote> entry.</para>
  <para>If the ranges for the independent and dependent variables also contains 
  labels in the first field of each row, column or area, select the <quote>
  <guilabel>Labels</guilabel></quote> option.</para>
  <para> Specify the confidence level in the <quote><guilabel>Confidence
  Level:</guilabel></quote> entry. The default is 95&#037;.</para>
  <para>To force the regression line or plane to pass through the origin, select the
  <quote><guilabel>Force Intercept To Be Zero</guilabel></quote> option.</para>
  <para>Specify the output options as described above. If the output is directed 
  into a specific output range, that
  range should contain at least seven columns and 17 rows more than there are 
  independent variables.</para>

  <figure id="regression-example-1">
    <title>Regression Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-regression-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use with the
              regression tool.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <example id="usingregressiontool">
 <title>Using the Regression Tool</title>

  <para>
    Suppose you want to perform a regression analysis on the data
    given in <xref linkend="regression-example-1" /> using
    <parameter>v</parameter> and <parameter>y</parameter> as
    independent variables and <parameter>u</parameter> as dependent
    variable.</para>
<orderedlist>
     <listitem><para>
     Enter B1:C11 in the <quote><guilabel>X Variables:</guilabel></quote> 
     entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting the range on the sheet.</para></listitem>
     <listitem><para>
     Enter A1:A11  in the <quote><guilabel>Y Variable:</guilabel></quote> 
     entry. </para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains labels. (see 
     <xref linkend="regression-example-2" />).</para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para> The output of this regression analysis is shown in
     <xref linkend="regression-example-3" />.</para>
 </example>
  <figure id="regression-example-2">
    <title>Completed Regression Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-regression-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the regression tool dialog with the
              required fields completed.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="regression-example-3">
    <title>Regression Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-regression-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a regression
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect2>
</sect1>

<sect1 id="one_sample_tests">
  <title>One Sample Tests</title>

  <sect2 id="normality-tool">
      <title>Normality Tests</title>
<para>The normality test tool provides for four tests of normality.</para>
<orderedlist spacing="compact">
     <listitem><para>Anderson Darling Test</para></listitem>
     <listitem><para>Cram&#xe9;r-von Mises Test</para></listitem>
     <listitem><para>Lilliefors (Kolmogorov-Smirnov) Test</para></listitem>
     <listitem><para>Shapiro-Francia Test</para></listitem>
</orderedlist>
   <figure id="normality-tool-dialog">
    <title>Normality Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the normality test dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
      <para>The data range is specified via the <quote><guilabel>Input
      Range:</guilabel></quote> entry 
      (see <xref linkend="normality-tool-dialog" />).  The given range 
      or list of ranges can be grouped into 
      separate data sets by columns, rows, or areas. The tool performs a
      separate test for each data set.</para>
   <figure id="normality-tool-testspec-dialog">
    <title>Test Tab of the Normality Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality-testspec.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the test tab of the normality 
	      test dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
      <para>On the test tab one specifies which of the four tests to
      perform, the significance level for the test and whether to include
      a normal probability plot of the data 
      (see <xref linkend="normality-tool-testspec-dialog" />).</para>
   <figure id="normality-example-1">
    <title>Normality Test Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for a normality test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

 <example id="usingnormalitytesttool">
 <title>Using the Normality Test Tool</title>

  <para>
    Suppose you want to perform a Lilliefors (Kolmogorov-Smirnov) Test
    for Normality on the data
    given in <xref linkend="normality-example-1" />.</para>
<orderedlist>
     <listitem><para>
     Enter A1:A50 (or Sheet1!$A$1:$A$50) in the 
     <quote><guilabel>Input Range:</guilabel></quote> 
     entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting the range on the sheet.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains a label (see 
     <xref linkend="normality-example-2" />).</para></listitem>
     <listitem><para> On the test tab of the dialog
     (see <xref linkend="normality-example-3" />) select the
     Lilliefors (Kolmogorov-Smirnov) Test.</para></listitem>
     <listitem><para> Specify an appropriate significance level
     Alpha, say 0.05.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Create Normal 
     Probability Plot</guibutton></quote>
     option to include a normal 
     probability plot in the output.</para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para> The output of this normality test is shown in
     <xref linkend="normality-example-4" />. Note that the graph appears 
     initially on top of the output data and needs to be moved to make 
     the data visible.</para>
 </example>

   <figure id="normality-example-2">
    <title>Completed Input Tab of the Normality Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the completed input tab of the normality 
	      test dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
   <figure id="normality-example-3">
    <title>Completed Test Tab of the Normality Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the completed test tab of the normality 
	      test dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
   <figure id="normality-example-4">
    <title>Normality Test Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-normality-ex4.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a normality test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 </sect2>


  <sect2 id="one-median-tool">
      <title>One Median</title>
  
      <para>The One Median test tool provides two non-parametric
      tests that test the null hypothesis that the sample comes from a 
      population with a given median:</para>
      <orderedlist spacing="compact">
	<listitem><para>Sign Test</para></listitem>
	<listitem><para>Wilcoxon Signed Rank Test</para></listitem>
      </orderedlist>
      <para>Selecting the appropriate submenu item opens the dialog with
      the respective test preselected.</para>

  <sect3 id="sign-test-tool">
      <title>Sign Test</title>
  <note>
    <para>
      This section describes the one sample sign test to test the 
      null hypothesis that the sample comes from a 
      population with the given median. The tool to perform a sign test to
      test the null hypothesis that two paired samples come from populations 
      with the same median is in section  
      <xref linkend="two-median-sign-test-tool" />.
    </para>
  </note>
   <figure id="one-median-tool-dialog">
    <title>One-Median Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-signtest.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the one-median test dialog used by 
	      the Sign Test and the Wilcoxon Signed Rank Test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
      <para>The Sign Test tool performs a one-sample sign test whether
      the sample comes from a  population with a given median.</para>
      <para>The sample data range is specified via the <quote><guilabel>Input
      Range:</guilabel></quote> entry 
      (see <xref linkend="one-median-tool-dialog" />).  The given range 
      or list of ranges can be grouped into 
      separate data sets by columns, rows, or areas. The tool performs a
      separate test for each data set.</para>
      <para>On the <quote><guilabel>Test</guilabel></quote>tab of the dialog
      (see <xref linkend="one-median-tool-dialog-test-tab" />) the predicted 
      median as well as the significance level are specified.</para>
   <figure id="one-median-tool-dialog-test-tab">
    <title>The Test Tab of the One-Median Test Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-signtest-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the test tab of the one-median test 
	      dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

<example id="usingsigntesttool">
 <title>Using the Sign Test Tool</title>

  <para>
    Suppose you want to perform a Sign Test
    on the data
    given in <xref linkend="one-median-tool-dialog" /> to determine whether
    the sample comes from a population of mean 3.</para>
<orderedlist>
     <listitem><para>
     Enter A1:A19 (or Sheet1!$A$1:$A$19) in the 
     <quote><guilabel>Input Range:</guilabel></quote> 
     entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting the range on the sheet.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains a label. (see 
     <xref linkend="one-median-tool-dialog" />).</para></listitem>
     <listitem><para> On the <quote><guibutton>Test</guibutton></quote> tab 
     of the dialog
     (see <xref linkend="one-median-tool-dialog-test-tab" />) select the
     Sign Test.</para></listitem>
     <listitem><para> Specify an appropriate significance level
     Alpha, say 0.05.</para></listitem>
     <listitem><para> Select thepecify the median of the null hypothesis (3)
     in the <quote><guibutton>Predicted Median</guibutton></quote> entry.
     </para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para> The output of this sign test is shown in
     <xref linkend="sign-test-dialog-output" />.</para>
 </example>

   <figure id="sign-test-dialog-output">
    <title>Output of a Sign Test</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-signtest-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of a Sign Test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  <sect3 id="wilcoxon-sign-test-tool">
      <title>Wilcoxon Signed Rank Test</title>
  <note>
    <para>
      This section describes the one sample Wilcoxon signed rank test to 
      test the 
      null hypothesis that the sample comes from a 
      population with the given median. The tool to perform a Wilcoxon
      signed rank test to
      test the null hypothesis that two paired samples come from populations 
      with the same median is in section  
      <xref linkend="two-median-wilcoxon-sign-test-tool" />.
    </para>
  </note>
       <para>The  Wilcoxon Signed Rank TTest tool performs a one-sample 
      sign test whether
      the sample comes from a  population with a given median.</para>
      <para>The sample data range is specified via the <quote><guilabel>Input
      Range:</guilabel></quote> entry 
      (see <xref linkend="one-median-tool-dialog" />).  The given range 
      or list of ranges can be grouped into 
      separate data sets by columns, rows, or areas. The tool performs a
      separate test for each data set.</para>
      <para>On the <quote><guilabel>Test</guilabel></quote>tab of the dialog
      (see <xref linkend="one-median-tool-dialog-test-tab" />) the predicted 
      median as well as the significance level are specified.</para>
 
  <note>
    <para>
      The p-values given by this tool are determined using a normal
      approximation. This approximation is only valid if the sample 
      size is at least 12.
    </para>
  </note>

<example id="usingwilcoxonsignedranktesttool">
 <title>Using the Wilcoxon Signed Rank Test Tool</title>
  <para>
    Suppose you want to perform a Wilcoxon Signed Rank Test
    on the data
    given in <xref linkend="one-median-tool-dialog" /> to determine whether
    the sample comes from a population of mean 3.</para>
<orderedlist>
     <listitem><para>
     Enter A1:A19 (or Sheet1!$A$1:$A$19) in the 
     <quote><guilabel>Input Range:</guilabel></quote> 
     entry by typing 
     this directly into the entry or clicking in the entry field and 
     then selecting the range on the sheet.</para></listitem>
     <listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
     option since the first row contains a label. (see 
     <xref linkend="one-median-tool-dialog" />).</para></listitem>
     <listitem><para> On the <quote><guibutton>Test</guibutton></quote> tab 
     of the dialog
     (see <xref linkend="one-median-tool-dialog-test-tab" />) select the
     Wilcoxon Signed Rank Test.</para></listitem>
     <listitem><para> Specify an appropriate significance level
     Alpha, say 0.05.</para></listitem>
     <listitem><para> Select thepecify the median of the null hypothesis (3)
     in the <quote><guibutton>Predicted Median</guibutton></quote> entry.
     </para></listitem>
     <listitem><para> Specify the output 
     options as described above.</para></listitem>
     <listitem><para> Press the OK button. </para></listitem>
</orderedlist>
     <para> The output of this sign test is shown in
     <xref linkend="wilcoxon-sign-test-dialog-output" />.</para>
 </example>


   <figure id="wilcoxon-sign-test-dialog-output">
    <title>Output of a Wilcoxon Signed Rank Test</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-signtest-ex3.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of a Wilcoxon Signed Rank 
	      Test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  </sect2>

</sect1>

<sect1 id="two_sample_tests">
  <title>Two Sample Tests</title>

<sect2 id="t-test-tool">
     <title>Comparing Means of Two Populations</title>
     <para>&gnum; provides four similar
     tools to test whether the difference of two population means is
     equal to a hypothesized value. These four tools use the same
     dialog (see <xref linkend="ttest-dialog" />).</para>

  <figure id="ttest-dialog">
    <title><parameter>t</parameter>- and <parameter>z</parameter>-Test
    Tool Dialog</title>

    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ttest.png" format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the t-test and z-test dialog.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

     <para>Depending on the options settings, the appropriate test
     will be performed. The entries in the
     <quote><guilabel>Input</guilabel></quote>,
     <quote><guilabel>Test</guilabel></quote>, and
     <quote><guilabel>Output</guilabel></quote> frames are independent
     from the specific test.</para>

     <para>Enter the first variable in the <quote><guilabel>Variable 1
     Range</guilabel></quote> entry and the second variable in the
     <quote><guilabel>Variable 2 Range</guilabel></quote>
     entry.</para> <para>Enter the hypothesized difference between the
     population means in the <quote><guilabel>Hypothesized Mean
     Difference</guilabel></quote> entry, which has a default of 0.
     Enter the significance level in the
     <quote><guilabel>Alpha</guilabel></quote> entry, which has a
     default of 5 &#037;.</para> <para> Specify the output options as
     described above. If the output is printed into a range, it should
     have at least three columns and ten rows.</para>

     <para>There are up to three possible options that can be selected:</para>
     <variablelist>
     <varlistentry><term><quote><guilabel>Paired</guilabel></quote> versus <quote><guilabel>Unpaired</guilabel></quote>
     </term><listitem><para>
     If the variables are dependent (or paired) select the <quote><guilabel>Paired</guilabel></quote>
     option.
     </para></listitem>
     </varlistentry>
     <varlistentry><term><quote><guilabel>Known</guilabel></quote> versus <quote><guilabel>Unknown</guilabel></quote>
     </term><listitem><para>
     For unpaired or independent variables, the population variances may be known 
     or unknown. In the latter case they will be estimated using the sample variances.
     Select the <quote><guilabel>Known</guilabel></quote> option if you in fact know the population 
     variances prior to collecting the sample.
     </para></listitem>
     </varlistentry>
     <varlistentry><term><quote><guilabel>Equal</guilabel></quote> versus <quote><guilabel>Unequal</guilabel></quote>
     </term><listitem><para>
     For paired variables with unknown population variances, we may either assume 
     that the population variances are equal or not. If the population variances are
     assumed to be equal, &gnum; will estimate the common variance by pooling the 
     sample variances. Select the <quote><guilabel>Equal</guilabel></quote> option to assume that
     the population variances are equal.
     </para></listitem>
     </varlistentry>
     </variablelist>

  <sect3 id="t-test-paired-two-samples-for-means-tool">
     <title><parameter>t</parameter>-Test: Paired Two Sample for Means Tool</title>
  <figure id="ttest-dialog-paired">
    <title><parameter>t</parameter>-Test (Paired) Tool Dialog Options</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ttest-paired.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options for the t-test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>For paired variables, when you click on 
     <quote><guibutton>OK</guibutton></quote>, &gnum; will test whether the 
     mean of the difference between the paired variables is equal to 
     the given hypothesized mean difference.</para>

 <example id="usingttestpairedtool">
 <title>Using the <parameter>t</parameter>-Test (Paired) Tool</title>
     <para>See <xref linkend="ttest-paired-tool-ex1" /> for an example 
     of a completed dialog and <xref linkend="ttest-paired-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="ttest-paired-tool-ex1">
    <title><parameter>t</parameter>-Test (Paired) Example Data</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ttest-paired-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the example for a t-test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="ttest-paired-tool-ex2">
    <title>Output from the <parameter>t</parameter>-Test (Paired) Tool</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ttest-paired-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output results from a t-test.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>

  </sect3>

  <sect3 id="t-test-two-sample-equal-variances-tool">
     <title><parameter>t</parameter>-Test: Two-Sample Assuming Equal Variances Tool</title>
  <figure id="ttest-dialog-equal">
    <title><parameter>t</parameter>-Test (Equal Variances) Tool Dialog
    Options</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ttest-equal.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options for a t-test
              analysis of two samples with equal variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>For unpaired variables with unknown but assumed equal population variances,
     when you click on <quote><guibutton>OK</guibutton></quote>, &gnum; will test whether the 
     mean of the difference between the paired variables is equal to the given hypothesized
     mean difference.</para>

 <example id="usingttestequaltool">
 <title>Using the <parameter>t</parameter>-Test (Unknown but Equal Variances) Tool</title>
     <para>See <xref linkend="ttest-equal-tool-ex1" /> for an example 
     of a completed dialog and <xref linkend="ttest-equal-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="ttest-equal-tool-ex1">
    <title><parameter>t</parameter>-Test (Unknown but Equal Variances) Example Data</title>
    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ttest-equal-ex1.png" 
              format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use with a t-test
              with unknown but equal variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="ttest-equal-tool-ex2">
    <title>Output from the <parameter>t</parameter>-Test (Unknown but Equal Variances) Tool</title>
    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ttest-equal-ex2.png" 
              format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a t-test
              with unknown but equal variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  <sect3 id="t-test-two-samples-unequal-variances">
     <title><parameter>t</parameter>-Test: Two-Sample Assuming Unequal Variances Tool</title>
  <figure id="ttest-dialog-unequal">
    <title><parameter>t</parameter>-Test (Unknown and Unequal Variances) Tool 
    Dialog Options</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ttest-unequal.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options in a t-test of two
              samples with unknown and possibly unequal
              variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>For unpaired  variables with unknown and assumed unequal population variances,
     when you click on <quote><guibutton>OK</guibutton></quote>, &gnum; will test whether the 
     mean of the difference between the paired variables is equal to the given hypothesized
     mean difference.</para> 

 <example id="usingttestunwqualtool">
 <title>Using the <parameter>t</parameter>-Test (Unknown and Unequal Variances) Tool</title>
     <para>See <xref linkend="ttest-unequal-tool-ex1" /> for an example 
     of a completed dialog and <xref linkend="ttest-unequal-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="ttest-unequal-tool-ex1">
    <title><parameter>t</parameter>-Test (Unknown and Unequal Variances) Example Data</title>
    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ttest-unequal-ex1.png" 
              format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use in a t-test of two
              samples with unknown and possibly unequal
              variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="ttest-unequal-tool-ex2">
    <title>Output from the <parameter>t</parameter>-Test (Unknown and Unequal Variances) 
    Tool</title>
    <screenshot>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ttest-unequal-ex2.png" 
              format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of a t-test of two
              samples with unknown and possibly unequal
              variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect3>

  <sect3 id="ztest-two-samples-for-means-tool">
     <title><parameter>z</parameter>-Test: Two Samples for Means Tool</title>
  <figure id="ztest-dialog">
    <title><parameter>z</parameter>-Test Tool Dialog Options</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ztest.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the options in a z-test of two
              samples.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>For unpaired  variables with known population variances, enter those variances 
     in the <quote><guilabel>Variable 1 Pop. Variance</guilabel></quote> and 
     <quote><guilabel>Variable 2 Pop. Variance</guilabel></quote> entries.
     When you click on <quote><guibutton>OK</guibutton></quote>, &gnum; will test whether the 
     mean of the difference between the paired variables is equal to the given hypothesized
     mean difference.</para> 

 <example id="usingztesttool">
 <title>Using the <parameter>z</parameter>-Test Tool</title>
     <para>See <xref linkend="ztest-tool-ex1" /> for an example 
     of a completed dialog and <xref linkend="ztest-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="ztest-tool-ex1">
    <title><parameter>z</parameter>-Test Example Data</title>
    <screenshot>
      <mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ztest-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of example data for use in a z-test of two
              samples.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="ztest-tool-ex2">
    <title>Output from the <parameter>z</parameter>-Test Tool</title>
    <screenshot>
      <screeninfo>Output from the <parameter>z</parameter>-Test
              Tools
      </screeninfo>
      <mediaobject>
        <imageobject>
          <imagedata fileref="figures/analysistools-ztest-ex2.png" 
              format="PNG" />
          </imageobject>
          <textobject>
            <phrase>An image of the output from a z-test of two
            samples.</phrase>
          </textobject>
      </mediaobject>
    </screenshot>
  </figure>
  </sect3>
</sect2>

  <sect2 id="two-medians-tool">
      <title>Comparing Medians of Two Populations</title>

      <para>&gnum; provides three non-parametric tests to test the null 
      hypothesis that the two samples come from 
      populations with the same median. Two tests, performed through the same
      tool, apply in the case of paired samples:</para>
      <itemizedlist spacing="compact">
 	<listitem><para>Sign Test</para></listitem>
	<listitem><para>Wilcoxon Signed Rank Test</para></listitem>
      </itemizedlist>
      <para>One test applies in the case of unpaired samples:</para>
      <itemizedlist spacing="compact">
 	<listitem><para>Wilcoxon-Mann-Whitney Test</para></listitem>
      </itemizedlist>

      <para></para>
  <sect3 id="two-median-sign-test-tool">
      <title>Sign Test</title>
  <note>
    <para>
      This section describes the two sample (paired) sign test to test the 
      null hypothesis that the two samples come from 
      populations with the same median. The tool to perform a sign test to
      test the null hypothesis that the single sample comes from a  population 
      with a given median is in section  <xref linkend="sign-test-tool" />.
    </para>
  </note>
  <note>
      <para>This section needs to be written.</para>
  </note>
  </sect3>
  <sect3 id="two-median-wilcoxon-sign-test-tool">
      <title>Wilcoxon Signed Rank Test</title>
  <note>
    <para>
      This section describes the two sample (paired) Wilcoxon signed rank
      test to test the 
      null hypothesis that the two samples come from 
      populations with the same median. The tool to perform a Wilcoxon 
      signed rank test to
      test the null hypothesis that the single sample comes from a  population 
      with a given median is in section  
      <xref linkend="wilcoxon-sign-test-tool" />.
    </para>
  </note>
  <note>
      <para>This section needs to be written.</para>
  </note>
  </sect3>
  <sect3 id="two-median-wilcoxon-mann-whitney-test-tool">
      <title>Wilcoxon-Mann-Whitney Test</title>
  <note>
      <para>This section needs to be written.</para>
  </note>
  </sect3>

  </sect2>

  <sect2 id="ftest-two-sample-for-variances-tool">
     <title>F-Test: Two-Sample for Variances Tool</title>

  <figure id="ftest-tool-dialog">
    <title>F-Test Tool Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ftest.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the dialog for an F-test analysis of
              the equality of two variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     <para>Use the F-Test tool to test whether two population  
     variances are different against the null hypothesis that
     they are not.</para>

     <para>Specify the variables in the <quote><guilabel>Variable 1 Range:</guilabel></quote>
     and <quote><guilabel>Variable 2 Range:</guilabel></quote> entries. The <quote><guilabel>Alpha:</guilabel></quote> 
     entry contains the 
     significance level which is by default 5&#037;.</para>

     <para>If the first field of each range contains labels, 
     select the <quote><guibutton>Labels</guibutton></quote> option. The names of 
     the variables will be included in the  output table.</para>

     <para>The results are given in a table.  This table contains
     the mean, variance, count of observations and the degree
     of freedom for both variables. The output table also includes the F-value,
     the one-tailed probability for the F-value, and the F Critical
     value for one-tailed test and the corresponding values for a two 
     tailed test. The one-tailed probability for the
     F-value (<quote><inlineequation><mathphrase>P(F≤f)</mathphrase></inlineequation> one-tail</quote> row) is the probability of making a
     Type I error in the one-tailed test. Similarly, the two-tailed 
     probability for the F-value (<quote><guilabel>P two-tail</guilabel></quote> row)
     is the probability of making a Type I error in the two-tailed test.
     Since in the two-tailed F-Test both critical values are positive, the
     <quote><guilabel>F Critical two-tail</guilabel></quote> row contains two numbers.</para>

     <para>If the output is directed into a specific output range, that
     range should contain at least three columns and eight rows.</para>

   <figure id="ftest-example-1">
    <title>Some Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ftest-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of some example data for an F-test of
              the equality of two variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
 <example id="usingftesttool"><title>Using the F-Test Tool</title>
     <para><xref linkend="ftest-example-1" /> shows some example data and 
     <xref linkend="ftest-example-2" /> the corresponding output.
     </para>
</example>
  <figure id="ftest-example-2">
    <title>F-Test Tool Output</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ftest-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output of an F-test analysis of
              the equality of two variances.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
    
  </sect2>

</sect1>

<sect1 id="multiple_sample_tests">
  <title>Multiple Sample Tests</title>
<sect2 id="anova">
  <title>Analysis of Variance</title>

  <sect3 id="anova-single-factor-tool">
     <title>ANOVA: Single Factor Tool</title>

     <para>
       Use this tool to perform a single factor analysis of the
       variances of given variables. The variables are specified by
       the <quote><guilabel>Input Range:</guilabel></quote> entry.
       The given range can be grouped into the variables either by
       columns, by rows or by areas.  The
       <quote><guilabel>Alpha:</guilabel></quote> entry specifies the
       significance level which is by default 5&#037;.
     </para>

     <para>If the first row or first column of the given range, or the 
     first field of each area contains labels, select the <quote><guibutton>Labels
     </guibutton></quote> option. The names of 
     the variables will be included in the  output table.</para>

     <para>The results of this analysis of variance are presented in 
     a standard ANOVA table. The <quote><guilabel>F critical</guilabel></quote>
     value is the largest value of F that is statistically significant
     using the given significance level (<quote><guilabel>Alpha</guilabel></quote>).</para>

     <para>This tool also calculates the count, sum, average,
     and the variance of each variable.</para>

   <figure id="anova-one-factor-tool-ex1">
    <title>1-factor ANOVA Dialog and Example Data</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA1-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of a multilevel single factor ANOVA
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
<example id="usinganovaonefactortool">
 <title>Using the single factor ANOVA</title>
     <para>See <xref linkend="anova-one-factor-tool-ex1" /> for an example 
     of a completed dialog and <xref
     linkend="anova-one-factor-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="anova-one-factor-tool-ex2">
    <title>Output From a 1-factor ANOVA</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA1-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a multilevel single
              factor ANOVA analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     

  </sect3>

  <sect3 id="anova-two-factor-tool">
     <title>ANOVA: Two-Factor Tool</title>

     <para>&gnum; can perform two factor fixed effects ANOVAs with and 
     without replication. The same dialog is used and the 
     appropriate tool is selected depending on whether the number of rows 
     per sample is 1 or larger than 1.</para> 

  <sect4 id="anova-two-factor-without-tool">
     <title>ANOVA: Two-Factor Without Replication Tool</title>

     <para>If the number of rows per sample is given as 1, &gnum; 
     performs a two factor fixed effects ANOVA without replication. Each
     column of the input range is interpreted as a level of the first 
     factor while each row is interpreted as a level of the second factor.
     </para>
     <para>The first row and column of the range may contain labels for 
     these levels. In this case the <quote><guibutton>Labels</guibutton></quote> option should be selected.
     </para>
     <para> The <quote><guilabel>Alpha:</guilabel></quote> entry specifies the 
     significance level which is by default 5&#037;.</para>
 <example id="usinganovatwofactorwotool">
 <title>Using the 2-factor ANOVA Without Replication Tool</title>
     <para>See <xref linkend="anova-two-factor-without-tool-ex1" /> for an example 
     of a completed dialog and <xref
     linkend="anova-two-factor-without-tool-ex2" />
     for the corresponding output.
     </para>
 </example>
  <figure id="anova-two-factor-without-tool-ex1">
    <title>2-factor ANOVA Without Replication Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA2wo-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of a two factor ANOVA without
              replication analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="anova-two-factor-without-tool-ex2">
    <title>Output From a 2-factor ANOVA Without Replication</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA2wo-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a two factor ANOVA without
              replication analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  </sect4>

  <sect4 id="anova-two-factor-with-tool">
     <title>ANOVA: Two-Factor With Replication Tool</title>
     <para>If the number of rows per sample is larger than 1, &gnum; 
     performs a two factor fixed effects ANOVA with replication. Each
     column of the input range is interpreted as a level of the first 
     factor while groups of rows (the number of rows in each group given 
     by the <quote><guilabel>number of rows per sample</guilabel></quote> value) are interpreted as levels 
     of the second factor.
     </para>
     <para>The first row and column of the range may contain labels for 
     these levels. In this case the <quote><guibutton>Labels</guibutton></quote> option should be selected.
     </para>
     <para> The <quote><guilabel>Alpha:</guilabel></quote> entry specifies the 
     significance level which is by default 5&#037;.</para>
     <para>See <xref linkend="anova-two-factor-with-tool-ex1" /> for an example 
     of a completed dialog and <xref
     linkend="anova-two-factor-with-tool-ex2" />
     for the corresponding output.
     </para>
  <figure id="anova-two-factor-with-tool-ex1">
    <title>2-factor ANOVA With Replication Dialog</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA2w-ex1.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of a two factor ANOVA with replication
              analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
  <figure id="anova-two-factor-with-tool-ex2">
    <title>Output From a 2-factor ANOVA With Replication</title>
    <screenshot>
	<mediaobject>
            <imageobject>
              <imagedata fileref="figures/analysistools-ANOVA2w-ex2.png" 
                  format="PNG" />
            </imageobject>
            <textobject>
              <phrase>An image of the output from a two factor ANOVA
              with replication analysis.</phrase>
            </textobject>
           </mediaobject>
    </screenshot>
  </figure>
     
     <para>&gnum; will estimate missing
     values for each level combination as the mean of the existing
     values in that combination. The degrees of freedom are adjusted
     appropriately. </para>

  </sect4>
  </sect3>

</sect2>

  <sect2 id="chi-square-tool">
      <title>Tests for a Contingency Table</title>

  <sect3 id="homogeneity-tool">
      <title>Test of Homogeneity</title>
      <para></para>
  </sect3>
  <sect3 id="independence-tool">
      <title>Test of Independence</title>
      <para></para>
  </sect3>

  </sect2>
</sect1>