This file is indexed.

/usr/share/gocode/src/github.com/dlclark/regexp2/syntax/writer.go is in golang-github-dlclark-regexp2-dev 1.1.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
package syntax

import (
	"bytes"
	"fmt"
	"math"
	"os"
)

func Write(tree *RegexTree) (*Code, error) {
	w := writer{
		intStack:   make([]int, 0, 32),
		emitted:    make([]int, 2),
		stringhash: make(map[string]int),
		sethash:    make(map[string]int),
	}

	code, err := w.codeFromTree(tree)

	if tree.options&Debug > 0 && code != nil {
		os.Stdout.WriteString(code.Dump())
		os.Stdout.WriteString("\n")
	}

	return code, err
}

type writer struct {
	emitted []int

	intStack    []int
	curpos      int
	stringhash  map[string]int
	stringtable [][]rune
	sethash     map[string]int
	settable    []*CharSet
	counting    bool
	count       int
	trackcount  int
	caps        map[int]int
}

const (
	beforeChild nodeType = 64
	afterChild           = 128
	//MaxPrefixSize is the largest number of runes we'll use for a BoyerMoyer prefix
	MaxPrefixSize = 50
)

// The top level RegexCode generator. It does a depth-first walk
// through the tree and calls EmitFragment to emits code before
// and after each child of an interior node, and at each leaf.
//
// It runs two passes, first to count the size of the generated
// code, and second to generate the code.
//
// We should time it against the alternative, which is
// to just generate the code and grow the array as we go.
func (w *writer) codeFromTree(tree *RegexTree) (*Code, error) {
	var (
		curNode  *regexNode
		curChild int
		capsize  int
	)
	// construct sparse capnum mapping if some numbers are unused

	if tree.capnumlist == nil || tree.captop == len(tree.capnumlist) {
		capsize = tree.captop
		w.caps = nil
	} else {
		capsize = len(tree.capnumlist)
		w.caps = tree.caps
		for i := 0; i < len(tree.capnumlist); i++ {
			w.caps[tree.capnumlist[i]] = i
		}
	}

	w.counting = true

	for {
		if !w.counting {
			w.emitted = make([]int, w.count)
		}

		curNode = tree.root
		curChild = 0

		w.emit1(Lazybranch, 0)

		for {
			if len(curNode.children) == 0 {
				w.emitFragment(curNode.t, curNode, 0)
			} else if curChild < len(curNode.children) {
				w.emitFragment(curNode.t|beforeChild, curNode, curChild)

				curNode = curNode.children[curChild]

				w.pushInt(curChild)
				curChild = 0
				continue
			}

			if w.emptyStack() {
				break
			}

			curChild = w.popInt()
			curNode = curNode.next

			w.emitFragment(curNode.t|afterChild, curNode, curChild)
			curChild++
		}

		w.patchJump(0, w.curPos())
		w.emit(Stop)

		if !w.counting {
			break
		}

		w.counting = false
	}

	fcPrefix := getFirstCharsPrefix(tree)
	prefix := getPrefix(tree)
	rtl := (tree.options & RightToLeft) != 0

	var bmPrefix *BmPrefix
	//TODO: benchmark string prefixes
	if prefix != nil && len(prefix.PrefixStr) > 0 && MaxPrefixSize > 0 {
		if len(prefix.PrefixStr) > MaxPrefixSize {
			// limit prefix changes to 10k
			prefix.PrefixStr = prefix.PrefixStr[:MaxPrefixSize]
		}
		bmPrefix = newBmPrefix(prefix.PrefixStr, prefix.CaseInsensitive, rtl)
	} else {
		bmPrefix = nil
	}

	return &Code{
		Codes:       w.emitted,
		Strings:     w.stringtable,
		Sets:        w.settable,
		TrackCount:  w.trackcount,
		Caps:        w.caps,
		Capsize:     capsize,
		FcPrefix:    fcPrefix,
		BmPrefix:    bmPrefix,
		Anchors:     getAnchors(tree),
		RightToLeft: rtl,
	}, nil
}

// The main RegexCode generator. It does a depth-first walk
// through the tree and calls EmitFragment to emits code before
// and after each child of an interior node, and at each leaf.
func (w *writer) emitFragment(nodetype nodeType, node *regexNode, curIndex int) error {
	bits := InstOp(0)

	if nodetype <= ntRef {
		if (node.options & RightToLeft) != 0 {
			bits |= Rtl
		}
		if (node.options & IgnoreCase) != 0 {
			bits |= Ci
		}
	}
	ntBits := nodeType(bits)

	switch nodetype {
	case ntConcatenate | beforeChild, ntConcatenate | afterChild, ntEmpty:
		break

	case ntAlternate | beforeChild:
		if curIndex < len(node.children)-1 {
			w.pushInt(w.curPos())
			w.emit1(Lazybranch, 0)
		}

	case ntAlternate | afterChild:
		if curIndex < len(node.children)-1 {
			lbPos := w.popInt()
			w.pushInt(w.curPos())
			w.emit1(Goto, 0)
			w.patchJump(lbPos, w.curPos())
		} else {
			for i := 0; i < curIndex; i++ {
				w.patchJump(w.popInt(), w.curPos())
			}
		}
		break

	case ntTestref | beforeChild:
		if curIndex == 0 {
			w.emit(Setjump)
			w.pushInt(w.curPos())
			w.emit1(Lazybranch, 0)
			w.emit1(Testref, w.mapCapnum(node.m))
			w.emit(Forejump)
		}

	case ntTestref | afterChild:
		if curIndex == 0 {
			branchpos := w.popInt()
			w.pushInt(w.curPos())
			w.emit1(Goto, 0)
			w.patchJump(branchpos, w.curPos())
			w.emit(Forejump)
			if len(node.children) <= 1 {
				w.patchJump(w.popInt(), w.curPos())
			}
		} else if curIndex == 1 {
			w.patchJump(w.popInt(), w.curPos())
		}

	case ntTestgroup | beforeChild:
		if curIndex == 0 {
			w.emit(Setjump)
			w.emit(Setmark)
			w.pushInt(w.curPos())
			w.emit1(Lazybranch, 0)
		}

	case ntTestgroup | afterChild:
		if curIndex == 0 {
			w.emit(Getmark)
			w.emit(Forejump)
		} else if curIndex == 1 {
			Branchpos := w.popInt()
			w.pushInt(w.curPos())
			w.emit1(Goto, 0)
			w.patchJump(Branchpos, w.curPos())
			w.emit(Getmark)
			w.emit(Forejump)
			if len(node.children) <= 2 {
				w.patchJump(w.popInt(), w.curPos())
			}
		} else if curIndex == 2 {
			w.patchJump(w.popInt(), w.curPos())
		}

	case ntLoop | beforeChild, ntLazyloop | beforeChild:

		if node.n < math.MaxInt32 || node.m > 1 {
			if node.m == 0 {
				w.emit1(Nullcount, 0)
			} else {
				w.emit1(Setcount, 1-node.m)
			}
		} else if node.m == 0 {
			w.emit(Nullmark)
		} else {
			w.emit(Setmark)
		}

		if node.m == 0 {
			w.pushInt(w.curPos())
			w.emit1(Goto, 0)
		}
		w.pushInt(w.curPos())

	case ntLoop | afterChild, ntLazyloop | afterChild:

		startJumpPos := w.curPos()
		lazy := (nodetype - (ntLoop | afterChild))

		if node.n < math.MaxInt32 || node.m > 1 {
			if node.n == math.MaxInt32 {
				w.emit2(InstOp(Branchcount+lazy), w.popInt(), math.MaxInt32)
			} else {
				w.emit2(InstOp(Branchcount+lazy), w.popInt(), node.n-node.m)
			}
		} else {
			w.emit1(InstOp(Branchmark+lazy), w.popInt())
		}

		if node.m == 0 {
			w.patchJump(w.popInt(), startJumpPos)
		}

	case ntGroup | beforeChild, ntGroup | afterChild:

	case ntCapture | beforeChild:
		w.emit(Setmark)

	case ntCapture | afterChild:
		w.emit2(Capturemark, w.mapCapnum(node.m), w.mapCapnum(node.n))

	case ntRequire | beforeChild:
		// NOTE: the following line causes lookahead/lookbehind to be
		// NON-BACKTRACKING. It can be commented out with (*)
		w.emit(Setjump)

		w.emit(Setmark)

	case ntRequire | afterChild:
		w.emit(Getmark)

		// NOTE: the following line causes lookahead/lookbehind to be
		// NON-BACKTRACKING. It can be commented out with (*)
		w.emit(Forejump)

	case ntPrevent | beforeChild:
		w.emit(Setjump)
		w.pushInt(w.curPos())
		w.emit1(Lazybranch, 0)

	case ntPrevent | afterChild:
		w.emit(Backjump)
		w.patchJump(w.popInt(), w.curPos())
		w.emit(Forejump)

	case ntGreedy | beforeChild:
		w.emit(Setjump)

	case ntGreedy | afterChild:
		w.emit(Forejump)

	case ntOne, ntNotone:
		w.emit1(InstOp(node.t|ntBits), int(node.ch))

	case ntNotoneloop, ntNotonelazy, ntOneloop, ntOnelazy:
		if node.m > 0 {
			if node.t == ntOneloop || node.t == ntOnelazy {
				w.emit2(Onerep|bits, int(node.ch), node.m)
			} else {
				w.emit2(Notonerep|bits, int(node.ch), node.m)
			}
		}
		if node.n > node.m {
			if node.n == math.MaxInt32 {
				w.emit2(InstOp(node.t|ntBits), int(node.ch), math.MaxInt32)
			} else {
				w.emit2(InstOp(node.t|ntBits), int(node.ch), node.n-node.m)
			}
		}

	case ntSetloop, ntSetlazy:
		if node.m > 0 {
			w.emit2(Setrep|bits, w.setCode(node.set), node.m)
		}
		if node.n > node.m {
			if node.n == math.MaxInt32 {
				w.emit2(InstOp(node.t|ntBits), w.setCode(node.set), math.MaxInt32)
			} else {
				w.emit2(InstOp(node.t|ntBits), w.setCode(node.set), node.n-node.m)
			}
		}

	case ntMulti:
		w.emit1(InstOp(node.t|ntBits), w.stringCode(node.str))

	case ntSet:
		w.emit1(InstOp(node.t|ntBits), w.setCode(node.set))

	case ntRef:
		w.emit1(InstOp(node.t|ntBits), w.mapCapnum(node.m))

	case ntNothing, ntBol, ntEol, ntBoundary, ntNonboundary, ntECMABoundary, ntNonECMABoundary, ntBeginning, ntStart, ntEndZ, ntEnd:
		w.emit(InstOp(node.t))

	default:
		return fmt.Errorf("unexpected opcode in regular expression generation: %v", nodetype)
	}

	return nil
}

// To avoid recursion, we use a simple integer stack.
// This is the push.
func (w *writer) pushInt(i int) {
	w.intStack = append(w.intStack, i)
}

// Returns true if the stack is empty.
func (w *writer) emptyStack() bool {
	return len(w.intStack) == 0
}

// This is the pop.
func (w *writer) popInt() int {
	//get our item
	idx := len(w.intStack) - 1
	i := w.intStack[idx]
	//trim our slice
	w.intStack = w.intStack[:idx]
	return i
}

// Returns the current position in the emitted code.
func (w *writer) curPos() int {
	return w.curpos
}

// Fixes up a jump instruction at the specified offset
// so that it jumps to the specified jumpDest.
func (w *writer) patchJump(offset, jumpDest int) {
	w.emitted[offset+1] = jumpDest
}

// Returns an index in the set table for a charset
// uses a map to eliminate duplicates.
func (w *writer) setCode(set *CharSet) int {
	if w.counting {
		return 0
	}

	buf := &bytes.Buffer{}

	set.mapHashFill(buf)
	hash := buf.String()
	i, ok := w.sethash[hash]
	if !ok {
		i = len(w.sethash)
		w.sethash[hash] = i
		w.settable = append(w.settable, set)
	}
	return i
}

// Returns an index in the string table for a string.
// uses a map to eliminate duplicates.
func (w *writer) stringCode(str []rune) int {
	if w.counting {
		return 0
	}

	hash := string(str)
	i, ok := w.stringhash[hash]
	if !ok {
		i = len(w.stringhash)
		w.stringhash[hash] = i
		w.stringtable = append(w.stringtable, str)
	}

	return i
}

// When generating code on a regex that uses a sparse set
// of capture slots, we hash them to a dense set of indices
// for an array of capture slots. Instead of doing the hash
// at match time, it's done at compile time, here.
func (w *writer) mapCapnum(capnum int) int {
	if capnum == -1 {
		return -1
	}

	if w.caps != nil {
		return w.caps[capnum]
	}

	return capnum
}

// Emits a zero-argument operation. Note that the emit
// functions all run in two modes: they can emit code, or
// they can just count the size of the code.
func (w *writer) emit(op InstOp) {
	if w.counting {
		w.count++
		if opcodeBacktracks(op) {
			w.trackcount++
		}
		return
	}
	w.emitted[w.curpos] = int(op)
	w.curpos++
}

// Emits a one-argument operation.
func (w *writer) emit1(op InstOp, opd1 int) {
	if w.counting {
		w.count += 2
		if opcodeBacktracks(op) {
			w.trackcount++
		}
		return
	}
	w.emitted[w.curpos] = int(op)
	w.curpos++
	w.emitted[w.curpos] = opd1
	w.curpos++
}

// Emits a two-argument operation.
func (w *writer) emit2(op InstOp, opd1, opd2 int) {
	if w.counting {
		w.count += 3
		if opcodeBacktracks(op) {
			w.trackcount++
		}
		return
	}
	w.emitted[w.curpos] = int(op)
	w.curpos++
	w.emitted[w.curpos] = opd1
	w.curpos++
	w.emitted[w.curpos] = opd2
	w.curpos++
}