This file is indexed.

/usr/share/gocode/src/github.com/hashicorp/hil/lex.go is in golang-github-hashicorp-hil-dev 0.0~git20160711.1e86c6b-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
package hil

import (
	"bytes"
	"fmt"
	"strconv"
	"unicode"
	"unicode/utf8"

	"github.com/hashicorp/hil/ast"
)

//go:generate go tool yacc -p parser lang.y

// The parser expects the lexer to return 0 on EOF.
const lexEOF = 0

// The parser uses the type <prefix>Lex as a lexer.  It must provide
// the methods Lex(*<prefix>SymType) int and Error(string).
type parserLex struct {
	Err   error
	Input string

	mode               parserMode
	interpolationDepth int
	pos                int
	width              int
	col, line          int
	lastLine           int
	astPos             *ast.Pos
}

// parserToken is the token yielded to the parser. The value can be
// determined within the parser type based on the enum value returned
// from Lex.
type parserToken struct {
	Value interface{}
	Pos   ast.Pos
}

// parserMode keeps track of what mode we're in for the parser. We have
// two modes: literal and interpolation. Literal mode is when strings
// don't have to be quoted, and interpolations are defined as ${foo}.
// Interpolation mode means that strings have to be quoted and unquoted
// things are identifiers, such as foo("bar").
type parserMode uint8

const (
	parserModeInvalid parserMode = 0
	parserModeLiteral            = 1 << iota
	parserModeInterpolation
)

// The parser calls this method to get each new token.
func (x *parserLex) Lex(yylval *parserSymType) int {
	// We always start in literal mode, since programs don't start
	// in an interpolation. ex. "foo ${bar}" vs "bar" (and assuming interp.)
	if x.mode == parserModeInvalid {
		x.mode = parserModeLiteral
	}

	// Defer an update to set the proper column/line we read the next token.
	defer func() {
		if yylval.token != nil && yylval.token.Pos.Column == 0 {
			yylval.token.Pos = *x.astPos
		}
	}()

	x.astPos = nil
	return x.lex(yylval)
}

func (x *parserLex) lex(yylval *parserSymType) int {
	switch x.mode {
	case parserModeLiteral:
		return x.lexModeLiteral(yylval)
	case parserModeInterpolation:
		return x.lexModeInterpolation(yylval)
	default:
		x.Error(fmt.Sprintf("Unknown parse mode: %d", x.mode))
		return lexEOF
	}
}

func (x *parserLex) lexModeLiteral(yylval *parserSymType) int {
	for {
		c := x.next()
		if c == lexEOF {
			return lexEOF
		}

		// Are we starting an interpolation?
		if c == '$' && x.peek() == '{' {
			x.next()
			x.interpolationDepth++
			x.mode = parserModeInterpolation
			return PROGRAM_BRACKET_LEFT
		}

		// We're just a normal string that isn't part of any interpolation yet.
		x.backup()
		result, terminated := x.lexString(yylval, x.interpolationDepth > 0)

		// If the string terminated and we're within an interpolation already
		// then that means that we finished a nested string, so pop
		// back out to interpolation mode.
		if terminated && x.interpolationDepth > 0 {
			x.mode = parserModeInterpolation

			// If the string is empty, just skip it. We're still in
			// an interpolation so we do this to avoid empty nodes.
			if yylval.token.Value.(string) == "" {
				return x.lex(yylval)
			}
		}

		return result
	}
}

func (x *parserLex) lexModeInterpolation(yylval *parserSymType) int {
	for {
		c := x.next()
		if c == lexEOF {
			return lexEOF
		}

		// Ignore all whitespace
		if unicode.IsSpace(c) {
			continue
		}

		// If we see a double quote then we're lexing a string since
		// we're in interpolation mode.
		if c == '"' {
			result, terminated := x.lexString(yylval, true)
			if !terminated {
				// The string didn't end, which means that we're in the
				// middle of starting another interpolation.
				x.mode = parserModeLiteral

				// If the string is empty and we're starting an interpolation,
				// then just skip it to avoid empty string AST nodes
				if yylval.token.Value.(string) == "" {
					return x.lex(yylval)
				}
			}

			return result
		}

		// If we are seeing a number, it is the start of a number. Lex it.
		if c >= '0' && c <= '9' {
			x.backup()
			return x.lexNumber(yylval)
		}

		switch c {
		case '}':
			// '}' means we ended the interpolation. Pop back into
			// literal mode and reduce our interpolation depth.
			x.interpolationDepth--
			x.mode = parserModeLiteral
			return PROGRAM_BRACKET_RIGHT
		case '(':
			return PAREN_LEFT
		case ')':
			return PAREN_RIGHT
		case '[':
			return SQUARE_BRACKET_LEFT
		case ']':
			return SQUARE_BRACKET_RIGHT
		case ',':
			return COMMA
		case '+':
			yylval.token = &parserToken{Value: ast.ArithmeticOpAdd}
			return ARITH_OP
		case '-':
			yylval.token = &parserToken{Value: ast.ArithmeticOpSub}
			return ARITH_OP
		case '*':
			yylval.token = &parserToken{Value: ast.ArithmeticOpMul}
			return ARITH_OP
		case '/':
			yylval.token = &parserToken{Value: ast.ArithmeticOpDiv}
			return ARITH_OP
		case '%':
			yylval.token = &parserToken{Value: ast.ArithmeticOpMod}
			return ARITH_OP
		default:
			x.backup()
			return x.lexId(yylval)
		}
	}
}

func (x *parserLex) lexId(yylval *parserSymType) int {
	var b bytes.Buffer
	var last rune
	for {
		c := x.next()
		if c == lexEOF {
			break
		}

		// We only allow * after a '.' for resource splast: type.name.*.id
		// Otherwise, its probably multiplication.
		if c == '*' && last != '.' {
			x.backup()
			break
		}

		// If this isn't a character we want in an ID, return out.
		// One day we should make this a regexp.
		if c != '_' &&
			c != '-' &&
			c != '.' &&
			c != '*' &&
			!unicode.IsLetter(c) &&
			!unicode.IsNumber(c) {
			x.backup()
			break
		}

		if _, err := b.WriteRune(c); err != nil {
			x.Error(err.Error())
			return lexEOF
		}

		last = c
	}

	yylval.token = &parserToken{Value: b.String()}
	return IDENTIFIER
}

// lexNumber lexes out a number: an integer or a float.
func (x *parserLex) lexNumber(yylval *parserSymType) int {
	var b bytes.Buffer
	gotPeriod := false
	for {
		c := x.next()
		if c == lexEOF {
			break
		}

		// If we see a period, we might be getting a float..
		if c == '.' {
			// If we've already seen a period, then ignore it, and
			// exit. This will probably result in a syntax error later.
			if gotPeriod {
				x.backup()
				break
			}

			gotPeriod = true
		} else if c < '0' || c > '9' {
			// If we're not seeing a number, then also exit.
			x.backup()
			break
		}

		if _, err := b.WriteRune(c); err != nil {
			x.Error(fmt.Sprintf("internal error: %s", err))
			return lexEOF
		}
	}

	// If we didn't see a period, it is an int
	if !gotPeriod {
		v, err := strconv.ParseInt(b.String(), 0, 0)
		if err != nil {
			x.Error(fmt.Sprintf("expected number: %s", err))
			return lexEOF
		}

		yylval.token = &parserToken{Value: int(v)}
		return INTEGER
	}

	// If we did see a period, it is a float
	f, err := strconv.ParseFloat(b.String(), 64)
	if err != nil {
		x.Error(fmt.Sprintf("expected float: %s", err))
		return lexEOF
	}

	yylval.token = &parserToken{Value: f}
	return FLOAT
}

func (x *parserLex) lexString(yylval *parserSymType, quoted bool) (int, bool) {
	var b bytes.Buffer
	terminated := false
	for {
		c := x.next()
		if c == lexEOF {
			if quoted {
				x.Error("unterminated string")
			}

			break
		}

		// Behavior is a bit different if we're lexing within a quoted string.
		if quoted {
			// If its a double quote, we've reached the end of the string
			if c == '"' {
				terminated = true
				break
			}

			// Let's check to see if we're escaping anything.
			if c == '\\' {
				switch n := x.next(); n {
				case '\\', '"':
					c = n
				case 'n':
					c = '\n'
				default:
					x.backup()
				}
			}
		}

		// If we hit a dollar sign, then check if we're starting
		// another interpolation. If so, then we're done.
		if c == '$' {
			n := x.peek()

			// If it is '{', then we're starting another interpolation
			if n == '{' {
				x.backup()
				break
			}

			// If it is '$', then we're escaping a dollar sign
			if n == '$' {
				x.next()
			}
		}

		if _, err := b.WriteRune(c); err != nil {
			x.Error(err.Error())
			return lexEOF, false
		}
	}

	yylval.token = &parserToken{Value: b.String()}
	return STRING, terminated
}

// Return the next rune for the lexer.
func (x *parserLex) next() rune {
	if int(x.pos) >= len(x.Input) {
		x.width = 0
		return lexEOF
	}

	r, w := utf8.DecodeRuneInString(x.Input[x.pos:])
	x.width = w
	x.pos += x.width

	if x.line == 0 {
		x.line = 1
		x.col = 1
	} else {
		x.col += 1
	}

	if r == '\n' {
		x.lastLine = x.col
		x.line += 1
		x.col = 1
	}

	if x.astPos == nil {
		x.astPos = &ast.Pos{Column: x.col, Line: x.line}
	}

	return r
}

// peek returns but does not consume the next rune in the input
func (x *parserLex) peek() rune {
	r := x.next()
	x.backup()
	return r
}

// backup steps back one rune. Can only be called once per next.
func (x *parserLex) backup() {
	x.pos -= x.width
	x.col -= 1

	// If we are at column 0, we're backing up across a line boundary
	// so we need to be careful to get the proper value.
	if x.col == 0 {
		x.col = x.lastLine
		x.line -= 1
	}
}

// The parser calls this method on a parse error.
func (x *parserLex) Error(s string) {
	x.Err = fmt.Errorf("parse error: %s", s)
}