This file is indexed.

/usr/share/gocode/src/github.com/hashicorp/memberlist/state.go is in golang-github-hashicorp-memberlist-dev 0.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
package memberlist

import (
	"bytes"
	"fmt"
	"math"
	"math/rand"
	"net"
	"sync/atomic"
	"time"

	"github.com/armon/go-metrics"
)

type nodeStateType int

const (
	stateAlive nodeStateType = iota
	stateSuspect
	stateDead
)

// Node represents a node in the cluster.
type Node struct {
	Name string
	Addr net.IP
	Port uint16
	Meta []byte // Metadata from the delegate for this node.
	PMin uint8  // Minimum protocol version this understands
	PMax uint8  // Maximum protocol version this understands
	PCur uint8  // Current version node is speaking
	DMin uint8  // Min protocol version for the delegate to understand
	DMax uint8  // Max protocol version for the delegate to understand
	DCur uint8  // Current version delegate is speaking
}

// Address returns the host:port form of a node's address, suitable for use
// with a transport.
func (n *Node) Address() string {
	return joinHostPort(n.Addr.String(), n.Port)
}

// NodeState is used to manage our state view of another node
type nodeState struct {
	Node
	Incarnation uint32        // Last known incarnation number
	State       nodeStateType // Current state
	StateChange time.Time     // Time last state change happened
}

// Address returns the host:port form of a node's address, suitable for use
// with a transport.
func (n *nodeState) Address() string {
	return n.Node.Address()
}

// ackHandler is used to register handlers for incoming acks and nacks.
type ackHandler struct {
	ackFn  func([]byte, time.Time)
	nackFn func()
	timer  *time.Timer
}

// NoPingResponseError is used to indicate a 'ping' packet was
// successfully issued but no response was received
type NoPingResponseError struct {
	node string
}

func (f NoPingResponseError) Error() string {
	return fmt.Sprintf("No response from node %s", f.node)
}

// Schedule is used to ensure the Tick is performed periodically. This
// function is safe to call multiple times. If the memberlist is already
// scheduled, then it won't do anything.
func (m *Memberlist) schedule() {
	m.tickerLock.Lock()
	defer m.tickerLock.Unlock()

	// If we already have tickers, then don't do anything, since we're
	// scheduled
	if len(m.tickers) > 0 {
		return
	}

	// Create the stop tick channel, a blocking channel. We close this
	// when we should stop the tickers.
	stopCh := make(chan struct{})

	// Create a new probeTicker
	if m.config.ProbeInterval > 0 {
		t := time.NewTicker(m.config.ProbeInterval)
		go m.triggerFunc(m.config.ProbeInterval, t.C, stopCh, m.probe)
		m.tickers = append(m.tickers, t)
	}

	// Create a push pull ticker if needed
	if m.config.PushPullInterval > 0 {
		go m.pushPullTrigger(stopCh)
	}

	// Create a gossip ticker if needed
	if m.config.GossipInterval > 0 && m.config.GossipNodes > 0 {
		t := time.NewTicker(m.config.GossipInterval)
		go m.triggerFunc(m.config.GossipInterval, t.C, stopCh, m.gossip)
		m.tickers = append(m.tickers, t)
	}

	// If we made any tickers, then record the stopTick channel for
	// later.
	if len(m.tickers) > 0 {
		m.stopTick = stopCh
	}
}

// triggerFunc is used to trigger a function call each time a
// message is received until a stop tick arrives.
func (m *Memberlist) triggerFunc(stagger time.Duration, C <-chan time.Time, stop <-chan struct{}, f func()) {
	// Use a random stagger to avoid syncronizing
	randStagger := time.Duration(uint64(rand.Int63()) % uint64(stagger))
	select {
	case <-time.After(randStagger):
	case <-stop:
		return
	}
	for {
		select {
		case <-C:
			f()
		case <-stop:
			return
		}
	}
}

// pushPullTrigger is used to periodically trigger a push/pull until
// a stop tick arrives. We don't use triggerFunc since the push/pull
// timer is dynamically scaled based on cluster size to avoid network
// saturation
func (m *Memberlist) pushPullTrigger(stop <-chan struct{}) {
	interval := m.config.PushPullInterval

	// Use a random stagger to avoid syncronizing
	randStagger := time.Duration(uint64(rand.Int63()) % uint64(interval))
	select {
	case <-time.After(randStagger):
	case <-stop:
		return
	}

	// Tick using a dynamic timer
	for {
		tickTime := pushPullScale(interval, m.estNumNodes())
		select {
		case <-time.After(tickTime):
			m.pushPull()
		case <-stop:
			return
		}
	}
}

// Deschedule is used to stop the background maintenance. This is safe
// to call multiple times.
func (m *Memberlist) deschedule() {
	m.tickerLock.Lock()
	defer m.tickerLock.Unlock()

	// If we have no tickers, then we aren't scheduled.
	if len(m.tickers) == 0 {
		return
	}

	// Close the stop channel so all the ticker listeners stop.
	close(m.stopTick)

	// Explicitly stop all the tickers themselves so they don't take
	// up any more resources, and get rid of the list.
	for _, t := range m.tickers {
		t.Stop()
	}
	m.tickers = nil
}

// Tick is used to perform a single round of failure detection and gossip
func (m *Memberlist) probe() {
	// Track the number of indexes we've considered probing
	numCheck := 0
START:
	m.nodeLock.RLock()

	// Make sure we don't wrap around infinitely
	if numCheck >= len(m.nodes) {
		m.nodeLock.RUnlock()
		return
	}

	// Handle the wrap around case
	if m.probeIndex >= len(m.nodes) {
		m.nodeLock.RUnlock()
		m.resetNodes()
		m.probeIndex = 0
		numCheck++
		goto START
	}

	// Determine if we should probe this node
	skip := false
	var node nodeState

	node = *m.nodes[m.probeIndex]
	if node.Name == m.config.Name {
		skip = true
	} else if node.State == stateDead {
		skip = true
	}

	// Potentially skip
	m.nodeLock.RUnlock()
	m.probeIndex++
	if skip {
		numCheck++
		goto START
	}

	// Probe the specific node
	m.probeNode(&node)
}

// probeNode handles a single round of failure checking on a node.
func (m *Memberlist) probeNode(node *nodeState) {
	defer metrics.MeasureSince([]string{"memberlist", "probeNode"}, time.Now())

	// We use our health awareness to scale the overall probe interval, so we
	// slow down if we detect problems. The ticker that calls us can handle
	// us running over the base interval, and will skip missed ticks.
	probeInterval := m.awareness.ScaleTimeout(m.config.ProbeInterval)
	if probeInterval > m.config.ProbeInterval {
		metrics.IncrCounter([]string{"memberlist", "degraded", "probe"}, 1)
	}

	// Prepare a ping message and setup an ack handler.
	ping := ping{SeqNo: m.nextSeqNo(), Node: node.Name}
	ackCh := make(chan ackMessage, m.config.IndirectChecks+1)
	nackCh := make(chan struct{}, m.config.IndirectChecks+1)
	m.setProbeChannels(ping.SeqNo, ackCh, nackCh, probeInterval)

	// Send a ping to the node. If this node looks like it's suspect or dead,
	// also tack on a suspect message so that it has a chance to refute as
	// soon as possible.
	deadline := time.Now().Add(probeInterval)
	addr := node.Address()
	if node.State == stateAlive {
		if err := m.encodeAndSendMsg(addr, pingMsg, &ping); err != nil {
			m.logger.Printf("[ERR] memberlist: Failed to send ping: %s", err)
			return
		}
	} else {
		var msgs [][]byte
		if buf, err := encode(pingMsg, &ping); err != nil {
			m.logger.Printf("[ERR] memberlist: Failed to encode ping message: %s", err)
			return
		} else {
			msgs = append(msgs, buf.Bytes())
		}
		s := suspect{Incarnation: node.Incarnation, Node: node.Name, From: m.config.Name}
		if buf, err := encode(suspectMsg, &s); err != nil {
			m.logger.Printf("[ERR] memberlist: Failed to encode suspect message: %s", err)
			return
		} else {
			msgs = append(msgs, buf.Bytes())
		}

		compound := makeCompoundMessage(msgs)
		if err := m.rawSendMsgPacket(addr, &node.Node, compound.Bytes()); err != nil {
			m.logger.Printf("[ERR] memberlist: Failed to send compound ping and suspect message to %s: %s", addr, err)
			return
		}
	}

	// Mark the sent time here, which should be after any pre-processing and
	// system calls to do the actual send. This probably under-reports a bit,
	// but it's the best we can do.
	sent := time.Now()

	// Arrange for our self-awareness to get updated. At this point we've
	// sent the ping, so any return statement means the probe succeeded
	// which will improve our health until we get to the failure scenarios
	// at the end of this function, which will alter this delta variable
	// accordingly.
	awarenessDelta := -1
	defer func() {
		m.awareness.ApplyDelta(awarenessDelta)
	}()

	// Wait for response or round-trip-time.
	select {
	case v := <-ackCh:
		if v.Complete == true {
			if m.config.Ping != nil {
				rtt := v.Timestamp.Sub(sent)
				m.config.Ping.NotifyPingComplete(&node.Node, rtt, v.Payload)
			}
			return
		}

		// As an edge case, if we get a timeout, we need to re-enqueue it
		// here to break out of the select below.
		if v.Complete == false {
			ackCh <- v
		}
	case <-time.After(m.config.ProbeTimeout):
		// Note that we don't scale this timeout based on awareness and
		// the health score. That's because we don't really expect waiting
		// longer to help get UDP through. Since health does extend the
		// probe interval it will give the TCP fallback more time, which
		// is more active in dealing with lost packets, and it gives more
		// time to wait for indirect acks/nacks.
		m.logger.Printf("[DEBUG] memberlist: Failed ping: %v (timeout reached)", node.Name)
	}

	// Get some random live nodes.
	m.nodeLock.RLock()
	kNodes := kRandomNodes(m.config.IndirectChecks, m.nodes, func(n *nodeState) bool {
		return n.Name == m.config.Name ||
			n.Name == node.Name ||
			n.State != stateAlive
	})
	m.nodeLock.RUnlock()

	// Attempt an indirect ping.
	expectedNacks := 0
	ind := indirectPingReq{SeqNo: ping.SeqNo, Target: node.Addr, Port: node.Port, Node: node.Name}
	for _, peer := range kNodes {
		// We only expect nack to be sent from peers who understand
		// version 4 of the protocol.
		if ind.Nack = peer.PMax >= 4; ind.Nack {
			expectedNacks++
		}

		if err := m.encodeAndSendMsg(peer.Address(), indirectPingMsg, &ind); err != nil {
			m.logger.Printf("[ERR] memberlist: Failed to send indirect ping: %s", err)
		}
	}

	// Also make an attempt to contact the node directly over TCP. This
	// helps prevent confused clients who get isolated from UDP traffic
	// but can still speak TCP (which also means they can possibly report
	// misinformation to other nodes via anti-entropy), avoiding flapping in
	// the cluster.
	//
	// This is a little unusual because we will attempt a TCP ping to any
	// member who understands version 3 of the protocol, regardless of
	// which protocol version we are speaking. That's why we've included a
	// config option to turn this off if desired.
	fallbackCh := make(chan bool, 1)
	if (!m.config.DisableTcpPings) && (node.PMax >= 3) {
		go func() {
			defer close(fallbackCh)
			didContact, err := m.sendPingAndWaitForAck(node.Address(), ping, deadline)
			if err != nil {
				m.logger.Printf("[ERR] memberlist: Failed fallback ping: %s", err)
			} else {
				fallbackCh <- didContact
			}
		}()
	} else {
		close(fallbackCh)
	}

	// Wait for the acks or timeout. Note that we don't check the fallback
	// channel here because we want to issue a warning below if that's the
	// *only* way we hear back from the peer, so we have to let this time
	// out first to allow the normal UDP-based acks to come in.
	select {
	case v := <-ackCh:
		if v.Complete == true {
			return
		}
	}

	// Finally, poll the fallback channel. The timeouts are set such that
	// the channel will have something or be closed without having to wait
	// any additional time here.
	for didContact := range fallbackCh {
		if didContact {
			m.logger.Printf("[WARN] memberlist: Was able to connect to %s but other probes failed, network may be misconfigured", node.Name)
			return
		}
	}

	// Update our self-awareness based on the results of this failed probe.
	// If we don't have peers who will send nacks then we penalize for any
	// failed probe as a simple health metric. If we do have peers to nack
	// verify, then we can use that as a more sophisticated measure of self-
	// health because we assume them to be working, and they can help us
	// decide if the probed node was really dead or if it was something wrong
	// with ourselves.
	awarenessDelta = 0
	if expectedNacks > 0 {
		if nackCount := len(nackCh); nackCount < expectedNacks {
			awarenessDelta += (expectedNacks - nackCount)
		}
	} else {
		awarenessDelta += 1
	}

	// No acks received from target, suspect it as failed.
	m.logger.Printf("[INFO] memberlist: Suspect %s has failed, no acks received", node.Name)
	s := suspect{Incarnation: node.Incarnation, Node: node.Name, From: m.config.Name}
	m.suspectNode(&s)
}

// Ping initiates a ping to the node with the specified name.
func (m *Memberlist) Ping(node string, addr net.Addr) (time.Duration, error) {
	// Prepare a ping message and setup an ack handler.
	ping := ping{SeqNo: m.nextSeqNo(), Node: node}
	ackCh := make(chan ackMessage, m.config.IndirectChecks+1)
	m.setProbeChannels(ping.SeqNo, ackCh, nil, m.config.ProbeInterval)

	// Send a ping to the node.
	if err := m.encodeAndSendMsg(addr.String(), pingMsg, &ping); err != nil {
		return 0, err
	}

	// Mark the sent time here, which should be after any pre-processing and
	// system calls to do the actual send. This probably under-reports a bit,
	// but it's the best we can do.
	sent := time.Now()

	// Wait for response or timeout.
	select {
	case v := <-ackCh:
		if v.Complete == true {
			return v.Timestamp.Sub(sent), nil
		}
	case <-time.After(m.config.ProbeTimeout):
		// Timeout, return an error below.
	}

	m.logger.Printf("[DEBUG] memberlist: Failed UDP ping: %v (timeout reached)", node)
	return 0, NoPingResponseError{ping.Node}
}

// resetNodes is used when the tick wraps around. It will reap the
// dead nodes and shuffle the node list.
func (m *Memberlist) resetNodes() {
	m.nodeLock.Lock()
	defer m.nodeLock.Unlock()

	// Move dead nodes, but respect gossip to the dead interval
	deadIdx := moveDeadNodes(m.nodes, m.config.GossipToTheDeadTime)

	// Deregister the dead nodes
	for i := deadIdx; i < len(m.nodes); i++ {
		delete(m.nodeMap, m.nodes[i].Name)
		m.nodes[i] = nil
	}

	// Trim the nodes to exclude the dead nodes
	m.nodes = m.nodes[0:deadIdx]

	// Update numNodes after we've trimmed the dead nodes
	atomic.StoreUint32(&m.numNodes, uint32(deadIdx))

	// Shuffle live nodes
	shuffleNodes(m.nodes)
}

// gossip is invoked every GossipInterval period to broadcast our gossip
// messages to a few random nodes.
func (m *Memberlist) gossip() {
	defer metrics.MeasureSince([]string{"memberlist", "gossip"}, time.Now())

	// Get some random live, suspect, or recently dead nodes
	m.nodeLock.RLock()
	kNodes := kRandomNodes(m.config.GossipNodes, m.nodes, func(n *nodeState) bool {
		if n.Name == m.config.Name {
			return true
		}

		switch n.State {
		case stateAlive, stateSuspect:
			return false

		case stateDead:
			return time.Since(n.StateChange) > m.config.GossipToTheDeadTime

		default:
			return true
		}
	})
	m.nodeLock.RUnlock()

	// Compute the bytes available
	bytesAvail := m.config.UDPBufferSize - compoundHeaderOverhead
	if m.config.EncryptionEnabled() {
		bytesAvail -= encryptOverhead(m.encryptionVersion())
	}

	for _, node := range kNodes {
		// Get any pending broadcasts
		msgs := m.getBroadcasts(compoundOverhead, bytesAvail)
		if len(msgs) == 0 {
			return
		}

		addr := node.Address()
		if len(msgs) == 1 {
			// Send single message as is
			if err := m.rawSendMsgPacket(addr, &node.Node, msgs[0]); err != nil {
				m.logger.Printf("[ERR] memberlist: Failed to send gossip to %s: %s", addr, err)
			}
		} else {
			// Otherwise create and send a compound message
			compound := makeCompoundMessage(msgs)
			if err := m.rawSendMsgPacket(addr, &node.Node, compound.Bytes()); err != nil {
				m.logger.Printf("[ERR] memberlist: Failed to send gossip to %s: %s", addr, err)
			}
		}
	}
}

// pushPull is invoked periodically to randomly perform a complete state
// exchange. Used to ensure a high level of convergence, but is also
// reasonably expensive as the entire state of this node is exchanged
// with the other node.
func (m *Memberlist) pushPull() {
	// Get a random live node
	m.nodeLock.RLock()
	nodes := kRandomNodes(1, m.nodes, func(n *nodeState) bool {
		return n.Name == m.config.Name ||
			n.State != stateAlive
	})
	m.nodeLock.RUnlock()

	// If no nodes, bail
	if len(nodes) == 0 {
		return
	}
	node := nodes[0]

	// Attempt a push pull
	if err := m.pushPullNode(node.Address(), false); err != nil {
		m.logger.Printf("[ERR] memberlist: Push/Pull with %s failed: %s", node.Name, err)
	}
}

// pushPullNode does a complete state exchange with a specific node.
func (m *Memberlist) pushPullNode(addr string, join bool) error {
	defer metrics.MeasureSince([]string{"memberlist", "pushPullNode"}, time.Now())

	// Attempt to send and receive with the node
	remote, userState, err := m.sendAndReceiveState(addr, join)
	if err != nil {
		return err
	}

	if err := m.mergeRemoteState(join, remote, userState); err != nil {
		return err
	}
	return nil
}

// verifyProtocol verifies that all the remote nodes can speak with our
// nodes and vice versa on both the core protocol as well as the
// delegate protocol level.
//
// The verification works by finding the maximum minimum and
// minimum maximum understood protocol and delegate versions. In other words,
// it finds the common denominator of protocol and delegate version ranges
// for the entire cluster.
//
// After this, it goes through the entire cluster (local and remote) and
// verifies that everyone's speaking protocol versions satisfy this range.
// If this passes, it means that every node can understand each other.
func (m *Memberlist) verifyProtocol(remote []pushNodeState) error {
	m.nodeLock.RLock()
	defer m.nodeLock.RUnlock()

	// Maximum minimum understood and minimum maximum understood for both
	// the protocol and delegate versions. We use this to verify everyone
	// can be understood.
	var maxpmin, minpmax uint8
	var maxdmin, mindmax uint8
	minpmax = math.MaxUint8
	mindmax = math.MaxUint8

	for _, rn := range remote {
		// If the node isn't alive, then skip it
		if rn.State != stateAlive {
			continue
		}

		// Skip nodes that don't have versions set, it just means
		// their version is zero.
		if len(rn.Vsn) == 0 {
			continue
		}

		if rn.Vsn[0] > maxpmin {
			maxpmin = rn.Vsn[0]
		}

		if rn.Vsn[1] < minpmax {
			minpmax = rn.Vsn[1]
		}

		if rn.Vsn[3] > maxdmin {
			maxdmin = rn.Vsn[3]
		}

		if rn.Vsn[4] < mindmax {
			mindmax = rn.Vsn[4]
		}
	}

	for _, n := range m.nodes {
		// Ignore non-alive nodes
		if n.State != stateAlive {
			continue
		}

		if n.PMin > maxpmin {
			maxpmin = n.PMin
		}

		if n.PMax < minpmax {
			minpmax = n.PMax
		}

		if n.DMin > maxdmin {
			maxdmin = n.DMin
		}

		if n.DMax < mindmax {
			mindmax = n.DMax
		}
	}

	// Now that we definitively know the minimum and maximum understood
	// version that satisfies the whole cluster, we verify that every
	// node in the cluster satisifies this.
	for _, n := range remote {
		var nPCur, nDCur uint8
		if len(n.Vsn) > 0 {
			nPCur = n.Vsn[2]
			nDCur = n.Vsn[5]
		}

		if nPCur < maxpmin || nPCur > minpmax {
			return fmt.Errorf(
				"Node '%s' protocol version (%d) is incompatible: [%d, %d]",
				n.Name, nPCur, maxpmin, minpmax)
		}

		if nDCur < maxdmin || nDCur > mindmax {
			return fmt.Errorf(
				"Node '%s' delegate protocol version (%d) is incompatible: [%d, %d]",
				n.Name, nDCur, maxdmin, mindmax)
		}
	}

	for _, n := range m.nodes {
		nPCur := n.PCur
		nDCur := n.DCur

		if nPCur < maxpmin || nPCur > minpmax {
			return fmt.Errorf(
				"Node '%s' protocol version (%d) is incompatible: [%d, %d]",
				n.Name, nPCur, maxpmin, minpmax)
		}

		if nDCur < maxdmin || nDCur > mindmax {
			return fmt.Errorf(
				"Node '%s' delegate protocol version (%d) is incompatible: [%d, %d]",
				n.Name, nDCur, maxdmin, mindmax)
		}
	}

	return nil
}

// nextSeqNo returns a usable sequence number in a thread safe way
func (m *Memberlist) nextSeqNo() uint32 {
	return atomic.AddUint32(&m.sequenceNum, 1)
}

// nextIncarnation returns the next incarnation number in a thread safe way
func (m *Memberlist) nextIncarnation() uint32 {
	return atomic.AddUint32(&m.incarnation, 1)
}

// skipIncarnation adds the positive offset to the incarnation number.
func (m *Memberlist) skipIncarnation(offset uint32) uint32 {
	return atomic.AddUint32(&m.incarnation, offset)
}

// estNumNodes is used to get the current estimate of the number of nodes
func (m *Memberlist) estNumNodes() int {
	return int(atomic.LoadUint32(&m.numNodes))
}

type ackMessage struct {
	Complete  bool
	Payload   []byte
	Timestamp time.Time
}

// setProbeChannels is used to attach the ackCh to receive a message when an ack
// with a given sequence number is received. The `complete` field of the message
// will be false on timeout. Any nack messages will cause an empty struct to be
// passed to the nackCh, which can be nil if not needed.
func (m *Memberlist) setProbeChannels(seqNo uint32, ackCh chan ackMessage, nackCh chan struct{}, timeout time.Duration) {
	// Create handler functions for acks and nacks
	ackFn := func(payload []byte, timestamp time.Time) {
		select {
		case ackCh <- ackMessage{true, payload, timestamp}:
		default:
		}
	}
	nackFn := func() {
		select {
		case nackCh <- struct{}{}:
		default:
		}
	}

	// Add the handlers
	ah := &ackHandler{ackFn, nackFn, nil}
	m.ackLock.Lock()
	m.ackHandlers[seqNo] = ah
	m.ackLock.Unlock()

	// Setup a reaping routing
	ah.timer = time.AfterFunc(timeout, func() {
		m.ackLock.Lock()
		delete(m.ackHandlers, seqNo)
		m.ackLock.Unlock()
		select {
		case ackCh <- ackMessage{false, nil, time.Now()}:
		default:
		}
	})
}

// setAckHandler is used to attach a handler to be invoked when an ack with a
// given sequence number is received. If a timeout is reached, the handler is
// deleted. This is used for indirect pings so does not configure a function
// for nacks.
func (m *Memberlist) setAckHandler(seqNo uint32, ackFn func([]byte, time.Time), timeout time.Duration) {
	// Add the handler
	ah := &ackHandler{ackFn, nil, nil}
	m.ackLock.Lock()
	m.ackHandlers[seqNo] = ah
	m.ackLock.Unlock()

	// Setup a reaping routing
	ah.timer = time.AfterFunc(timeout, func() {
		m.ackLock.Lock()
		delete(m.ackHandlers, seqNo)
		m.ackLock.Unlock()
	})
}

// Invokes an ack handler if any is associated, and reaps the handler immediately
func (m *Memberlist) invokeAckHandler(ack ackResp, timestamp time.Time) {
	m.ackLock.Lock()
	ah, ok := m.ackHandlers[ack.SeqNo]
	delete(m.ackHandlers, ack.SeqNo)
	m.ackLock.Unlock()
	if !ok {
		return
	}
	ah.timer.Stop()
	ah.ackFn(ack.Payload, timestamp)
}

// Invokes nack handler if any is associated.
func (m *Memberlist) invokeNackHandler(nack nackResp) {
	m.ackLock.Lock()
	ah, ok := m.ackHandlers[nack.SeqNo]
	m.ackLock.Unlock()
	if !ok || ah.nackFn == nil {
		return
	}
	ah.nackFn()
}

// refute gossips an alive message in response to incoming information that we
// are suspect or dead. It will make sure the incarnation number beats the given
// accusedInc value, or you can supply 0 to just get the next incarnation number.
// This alters the node state that's passed in so this MUST be called while the
// nodeLock is held.
func (m *Memberlist) refute(me *nodeState, accusedInc uint32) {
	// Make sure the incarnation number beats the accusation.
	inc := m.nextIncarnation()
	if accusedInc >= inc {
		inc = m.skipIncarnation(accusedInc - inc + 1)
	}
	me.Incarnation = inc

	// Decrease our health because we are being asked to refute a problem.
	m.awareness.ApplyDelta(1)

	// Format and broadcast an alive message.
	a := alive{
		Incarnation: inc,
		Node:        me.Name,
		Addr:        me.Addr,
		Port:        me.Port,
		Meta:        me.Meta,
		Vsn: []uint8{
			me.PMin, me.PMax, me.PCur,
			me.DMin, me.DMax, me.DCur,
		},
	}
	m.encodeAndBroadcast(me.Addr.String(), aliveMsg, a)
}

// aliveNode is invoked by the network layer when we get a message about a
// live node.
func (m *Memberlist) aliveNode(a *alive, notify chan struct{}, bootstrap bool) {
	m.nodeLock.Lock()
	defer m.nodeLock.Unlock()
	state, ok := m.nodeMap[a.Node]

	// It is possible that during a Leave(), there is already an aliveMsg
	// in-queue to be processed but blocked by the locks above. If we let
	// that aliveMsg process, it'll cause us to re-join the cluster. This
	// ensures that we don't.
	if m.leave && a.Node == m.config.Name {
		return
	}

	// Invoke the Alive delegate if any. This can be used to filter out
	// alive messages based on custom logic. For example, using a cluster name.
	// Using a merge delegate is not enough, as it is possible for passive
	// cluster merging to still occur.
	if m.config.Alive != nil {
		node := &Node{
			Name: a.Node,
			Addr: a.Addr,
			Port: a.Port,
			Meta: a.Meta,
			PMin: a.Vsn[0],
			PMax: a.Vsn[1],
			PCur: a.Vsn[2],
			DMin: a.Vsn[3],
			DMax: a.Vsn[4],
			DCur: a.Vsn[5],
		}
		if err := m.config.Alive.NotifyAlive(node); err != nil {
			m.logger.Printf("[WARN] memberlist: ignoring alive message for '%s': %s",
				a.Node, err)
			return
		}
	}

	// Check if we've never seen this node before, and if not, then
	// store this node in our node map.
	if !ok {
		state = &nodeState{
			Node: Node{
				Name: a.Node,
				Addr: a.Addr,
				Port: a.Port,
				Meta: a.Meta,
			},
			State: stateDead,
		}

		// Add to map
		m.nodeMap[a.Node] = state

		// Get a random offset. This is important to ensure
		// the failure detection bound is low on average. If all
		// nodes did an append, failure detection bound would be
		// very high.
		n := len(m.nodes)
		offset := randomOffset(n)

		// Add at the end and swap with the node at the offset
		m.nodes = append(m.nodes, state)
		m.nodes[offset], m.nodes[n] = m.nodes[n], m.nodes[offset]

		// Update numNodes after we've added a new node
		atomic.AddUint32(&m.numNodes, 1)
	}

	// Check if this address is different than the existing node
	if !bytes.Equal([]byte(state.Addr), a.Addr) || state.Port != a.Port {
		m.logger.Printf("[ERR] memberlist: Conflicting address for %s. Mine: %v:%d Theirs: %v:%d",
			state.Name, state.Addr, state.Port, net.IP(a.Addr), a.Port)

		// Inform the conflict delegate if provided
		if m.config.Conflict != nil {
			other := Node{
				Name: a.Node,
				Addr: a.Addr,
				Port: a.Port,
				Meta: a.Meta,
			}
			m.config.Conflict.NotifyConflict(&state.Node, &other)
		}
		return
	}

	// Bail if the incarnation number is older, and this is not about us
	isLocalNode := state.Name == m.config.Name
	if a.Incarnation <= state.Incarnation && !isLocalNode {
		return
	}

	// Bail if strictly less and this is about us
	if a.Incarnation < state.Incarnation && isLocalNode {
		return
	}

	// Clear out any suspicion timer that may be in effect.
	delete(m.nodeTimers, a.Node)

	// Store the old state and meta data
	oldState := state.State
	oldMeta := state.Meta

	// If this is us we need to refute, otherwise re-broadcast
	if !bootstrap && isLocalNode {
		// Compute the version vector
		versions := []uint8{
			state.PMin, state.PMax, state.PCur,
			state.DMin, state.DMax, state.DCur,
		}

		// If the Incarnation is the same, we need special handling, since it
		// possible for the following situation to happen:
		// 1) Start with configuration C, join cluster
		// 2) Hard fail / Kill / Shutdown
		// 3) Restart with configuration C', join cluster
		//
		// In this case, other nodes and the local node see the same incarnation,
		// but the values may not be the same. For this reason, we always
		// need to do an equality check for this Incarnation. In most cases,
		// we just ignore, but we may need to refute.
		//
		if a.Incarnation == state.Incarnation &&
			bytes.Equal(a.Meta, state.Meta) &&
			bytes.Equal(a.Vsn, versions) {
			return
		}

		m.refute(state, a.Incarnation)
		m.logger.Printf("[WARN] memberlist: Refuting an alive message")
	} else {
		m.encodeBroadcastNotify(a.Node, aliveMsg, a, notify)

		// Update protocol versions if it arrived
		if len(a.Vsn) > 0 {
			state.PMin = a.Vsn[0]
			state.PMax = a.Vsn[1]
			state.PCur = a.Vsn[2]
			state.DMin = a.Vsn[3]
			state.DMax = a.Vsn[4]
			state.DCur = a.Vsn[5]
		}

		// Update the state and incarnation number
		state.Incarnation = a.Incarnation
		state.Meta = a.Meta
		if state.State != stateAlive {
			state.State = stateAlive
			state.StateChange = time.Now()
		}
	}

	// Update metrics
	metrics.IncrCounter([]string{"memberlist", "msg", "alive"}, 1)

	// Notify the delegate of any relevant updates
	if m.config.Events != nil {
		if oldState == stateDead {
			// if Dead -> Alive, notify of join
			m.config.Events.NotifyJoin(&state.Node)

		} else if !bytes.Equal(oldMeta, state.Meta) {
			// if Meta changed, trigger an update notification
			m.config.Events.NotifyUpdate(&state.Node)
		}
	}
}

// suspectNode is invoked by the network layer when we get a message
// about a suspect node
func (m *Memberlist) suspectNode(s *suspect) {
	m.nodeLock.Lock()
	defer m.nodeLock.Unlock()
	state, ok := m.nodeMap[s.Node]

	// If we've never heard about this node before, ignore it
	if !ok {
		return
	}

	// Ignore old incarnation numbers
	if s.Incarnation < state.Incarnation {
		return
	}

	// See if there's a suspicion timer we can confirm. If the info is new
	// to us we will go ahead and re-gossip it. This allows for multiple
	// independent confirmations to flow even when a node probes a node
	// that's already suspect.
	if timer, ok := m.nodeTimers[s.Node]; ok {
		if timer.Confirm(s.From) {
			m.encodeAndBroadcast(s.Node, suspectMsg, s)
		}
		return
	}

	// Ignore non-alive nodes
	if state.State != stateAlive {
		return
	}

	// If this is us we need to refute, otherwise re-broadcast
	if state.Name == m.config.Name {
		m.refute(state, s.Incarnation)
		m.logger.Printf("[WARN] memberlist: Refuting a suspect message (from: %s)", s.From)
		return // Do not mark ourself suspect
	} else {
		m.encodeAndBroadcast(s.Node, suspectMsg, s)
	}

	// Update metrics
	metrics.IncrCounter([]string{"memberlist", "msg", "suspect"}, 1)

	// Update the state
	state.Incarnation = s.Incarnation
	state.State = stateSuspect
	changeTime := time.Now()
	state.StateChange = changeTime

	// Setup a suspicion timer. Given that we don't have any known phase
	// relationship with our peers, we set up k such that we hit the nominal
	// timeout two probe intervals short of what we expect given the suspicion
	// multiplier.
	k := m.config.SuspicionMult - 2

	// If there aren't enough nodes to give the expected confirmations, just
	// set k to 0 to say that we don't expect any. Note we subtract 2 from n
	// here to take out ourselves and the node being probed.
	n := m.estNumNodes()
	if n-2 < k {
		k = 0
	}

	// Compute the timeouts based on the size of the cluster.
	min := suspicionTimeout(m.config.SuspicionMult, n, m.config.ProbeInterval)
	max := time.Duration(m.config.SuspicionMaxTimeoutMult) * min
	fn := func(numConfirmations int) {
		m.nodeLock.Lock()
		state, ok := m.nodeMap[s.Node]
		timeout := ok && state.State == stateSuspect && state.StateChange == changeTime
		m.nodeLock.Unlock()

		if timeout {
			if k > 0 && numConfirmations < k {
				metrics.IncrCounter([]string{"memberlist", "degraded", "timeout"}, 1)
			}

			m.logger.Printf("[INFO] memberlist: Marking %s as failed, suspect timeout reached (%d peer confirmations)",
				state.Name, numConfirmations)
			d := dead{Incarnation: state.Incarnation, Node: state.Name, From: m.config.Name}
			m.deadNode(&d)
		}
	}
	m.nodeTimers[s.Node] = newSuspicion(s.From, k, min, max, fn)
}

// deadNode is invoked by the network layer when we get a message
// about a dead node
func (m *Memberlist) deadNode(d *dead) {
	m.nodeLock.Lock()
	defer m.nodeLock.Unlock()
	state, ok := m.nodeMap[d.Node]

	// If we've never heard about this node before, ignore it
	if !ok {
		return
	}

	// Ignore old incarnation numbers
	if d.Incarnation < state.Incarnation {
		return
	}

	// Clear out any suspicion timer that may be in effect.
	delete(m.nodeTimers, d.Node)

	// Ignore if node is already dead
	if state.State == stateDead {
		return
	}

	// Check if this is us
	if state.Name == m.config.Name {
		// If we are not leaving we need to refute
		if !m.leave {
			m.refute(state, d.Incarnation)
			m.logger.Printf("[WARN] memberlist: Refuting a dead message (from: %s)", d.From)
			return // Do not mark ourself dead
		}

		// If we are leaving, we broadcast and wait
		m.encodeBroadcastNotify(d.Node, deadMsg, d, m.leaveBroadcast)
	} else {
		m.encodeAndBroadcast(d.Node, deadMsg, d)
	}

	// Update metrics
	metrics.IncrCounter([]string{"memberlist", "msg", "dead"}, 1)

	// Update the state
	state.Incarnation = d.Incarnation
	state.State = stateDead
	state.StateChange = time.Now()

	// Notify of death
	if m.config.Events != nil {
		m.config.Events.NotifyLeave(&state.Node)
	}
}

// mergeState is invoked by the network layer when we get a Push/Pull
// state transfer
func (m *Memberlist) mergeState(remote []pushNodeState) {
	for _, r := range remote {
		switch r.State {
		case stateAlive:
			a := alive{
				Incarnation: r.Incarnation,
				Node:        r.Name,
				Addr:        r.Addr,
				Port:        r.Port,
				Meta:        r.Meta,
				Vsn:         r.Vsn,
			}
			m.aliveNode(&a, nil, false)

		case stateDead:
			// If the remote node believes a node is dead, we prefer to
			// suspect that node instead of declaring it dead instantly
			fallthrough
		case stateSuspect:
			s := suspect{Incarnation: r.Incarnation, Node: r.Name, From: m.config.Name}
			m.suspectNode(&s)
		}
	}
}