/usr/share/gravit/spawn/merging-galaxies.gravitspawn is in gravit-data 0.5.1+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382  | -- vim:syntax=lua tabstop=4
load("functions.lua")
load("constants.lua")
load("physics.lua")
-- this spawn script is "proper physics ready".
function describe()
    log("some merging galaxies")
end
-- ----------------------------------------------------------------
-- ----------------------------------------------------------------
function rotatevect3(pos, alpha, beta)
    local result=rotatevector(pos, alpha, v(1, 0, 0))   
    return rotatevector(result, beta, v(0, 0, 1))
end
-- ----------------------------------------------------------------
function makeball_orbit(galpos, galvel, galradius, startradius, startmass, massmin, massmax, mass_sign, firstparticle, particles)		
	local massrange = math.abs(massmax - massmin)
	local estmass = startmass + ((massmin + massrange/2 ) * particles)
	local totalmass=0.0
	local pos
	local vel
	local mass
	local radius
	local speed
	local angle
	local innermass
	local tocenter
	local xmass_sign=mass_sign
	local endparticle = firstparticle+particles-1
	-- ball volume = 4/3 * math.pi * r^3 ; ball surface=4*math.pi*r^2
	-- desity = totalmass/totalvolume
	local density= (estmass-startmass) / (4/3 * math.pi * (galradius^3 - startradius^3))
	for i=firstparticle, endparticle do
       	    radius = randomfloat(0.1,galradius-startradius)
	    if gravit_physics < PH_PROPER then
            	mass = randomfloat(massmin,massmax)
	    else
            	mass = (randomfloat(massmin,massmax)+randomfloat(massmin,massmax))/2.0
	    end
	    totalmass=totalmass+mass
	    -- makes ball with uniform mass distribution -- and correct by 1/sqrt(2), to include "outbound" orbits
	    if gravit_physics < PH_PROPER then
            	pos = randomrange((galradius-startradius) * 0.9)
	    else
            	pos = randomrange((galradius-startradius) * 0.707)
	    end
	    -- move pos so ball starts at "startradius" instead of (0,0,0)
	    radius=distance(v(0,0,0), pos)
	    tocenter=pos * (1/radius) * startradius
	    pos=pos+tocenter
	    radius=distance(v(0,0,0), pos)
	    if gravit_physics < PH_PROPER then
	    	-- estimate enclosed mass; uniform mass distribution
	    	innermass = startmass + ((radius-startradius)^3/(galradius-startradius)^3)*(estmass-startmass)
            else
	    	-- 2nd try: estimate enclosed mass; uniform mass distribution
	    	-- proper mass estimation would be:
            	-- mass of enclosed CIRCLE (2dim) = 2* pi * r^2 * 
            	-- raduis * 
	    	-- 	 (-1/r^3 - -1/1^3) = (-1/r^3 + 1) = (1 - 1/r^3) 
	    	innermass= 2 * math.pi * (radius^2 - startradius^2) * density
	    	innermass= startmass + innermass * radius * math.pi/2.1 * (1 - 1/(radius-startradius)^3)
            end
	    if (startmass > 0) then
            	speed = orbit_velocity(innermass, radius) * randomfloat(0.9, 1.1)
	        if gravit_physics == PH_CLASSIC then
		   speed = speed * math.sqrt(mass * 0.5)
	        end
	    	tocenter=pos * (1/radius) * speed
		vel=randomortho(pos, speed)
	    else
            	speed = - ((massmin+massmax)/2)/24
	        if gravit_physics == PH_CLASSIC then
		   speed = speed * math.sqrt(mass * 0.5)
	        end
	    	tocenter=pos * (1/radius) * speed
	    	vel=tocenter
	    end
	    if (mass_sign ==2) then
		xmass_sign= 1 - 2 * randomint(0,1)
	    end
            particle(i, galpos + pos, galvel + vel, mass * xmass_sign)
	    -- enhance stability by enforcing symetry
	    if (gravit_physics == PH_PROPER) and (i<endparticle-1) then
	        i=i+1
	        pos = v(-pos.x, -pos.y, -pos.z)
	        vel = v(-vel.x, -vel.y, -vel.z)
            	particle(i, galpos + pos, galvel + vel, mass * xmass_sign)
	    end
	end
	return totalmass
end
-- ----------------------------------------------------------------
function makespiral_orbit_2(galpos, galvel, galradius, startradius, startmass, massmin, massmax, mass_sign, firstparticle, particles, ang_end)
	local totalmass=0.0
	local massrange = math.abs(massmax - massmin)
	local estmass = startmass + ((massmin + massrange/2 ) * particles)
    	local galaxyalpha = randomfloat(0, ang_end * math.pi)
    	local galaxybeta  = randomfloat(0, ang_end * math.pi)
	local hotv=0.25
	local hotmax=math.max(galradius*0.05, startradius*randomfloat(0.25,1.1))
	local hotp= 0.0
	local pos
	local vel
	local pos2
	local vel2
	local mass
	local radius
	local speed
	local angle
	local innermass
	local tocenter
	local endparticle = firstparticle+particles-1
	local density = (estmass-startmass) / (galradius-startradius)
	local xmass_sign=mass_sign
	local antirotation_mode=randomint(0,1)
	for i=firstparticle, endparticle do
       	    radius = randomfloat(startradius, galradius)
            angle = randomfloat(0,2*math.pi)
	    if gravit_physics < PH_PROPER then
            	mass = randomfloat(massmin,massmax)
	    else
            	mass = (randomfloat(massmin,massmax)+randomfloat(massmin,massmax))/2.0
	    end
	    totalmass=totalmass+mass
	    hotp = hotmax / galradius * (galradius - radius)
            pos = v(math.cos(angle)*radius, math.sin(angle)*radius, randomfloat(-hotp,hotp))
            
	    -- estimate enclosed mass; linear mass distribution over all radii
	    innermass = startmass + ((radius-startradius)/(galradius-startradius))*(estmass-startmass)
	    radius=distance(v(0,0,0), pos)
	    speed = orbit_velocity(innermass, radius) * randomfloat(0.9, 1.1)
	    if (gravit_physics == PH_PROPER) then
	          speed = speed / math.sqrt(radius * 0.8 )
	    end
	    if gravit_physics == PH_CLASSIC then
	       speed = speed * math.sqrt(mass * 0.5)
	    end
	    tocenter=pos * (1/radius) * speed
            vel = v(-tocenter.y, tocenter.x, -tocenter.z + randomfloat(-(speed*hotv), speed*hotv) )
	    if (antirotation_mode == 1) then
	    	-- if (randomint(0,1)==0) then
	    	    vel = vel * -1
	    	    pos = v(pos.x,pos.y,-pos.z)
	    	-- end
	    end
	    pos2 = rotatevect3(pos, galaxyalpha, galaxybeta)
	    vel2 = rotatevect3(vel, galaxyalpha, galaxybeta)
	    if (mass_sign ==2) then
		xmass_sign= 1 - 2 * randomint(0,1)
	    end
            particle(i, galpos + pos2, galvel + vel2, mass * xmass_sign)
	
	    if (gravit_physics == PH_PROPER) and (i<endparticle-1) then
	        i=i+1
	        pos = v(-pos.x, -pos.y, -pos.z)
	        vel = v(-vel.x, -vel.y, -vel.z)
	    	pos2 = rotatevect3(pos, galaxyalpha, galaxybeta)
	    	vel2 = rotatevect3(vel, galaxyalpha, galaxybeta)
            	particle(i, galpos + pos2, galvel + vel2, mass * xmass_sign)
	    end
	end
	return totalmass
end
-- ----------------------------------------------------------------
function makegalaxy_orbit_2(galpos, galvel, galradius, massmin, massmax, firstparticle, particles, ang_end)
	local kind=randomint(1, 3)
	local mass_sign = 1
	if randomint(0,1) == 1 then kind = 2 end
	if (massmin > massmax) then
	   massmin = -massmin
	   massmax = -massmax
	   mass_sign = -1
	end
	local startmass
	-- central supermassive black hole = 1% of total mass
	if gravit_physics < PH_PROPER then
	    startmass = (massmax - massmin) * particles * randomfloat(0.005, 0.05)
	else
	    startmass = (massmax - massmin) * particles * randomfloat(0.001, 0.02)
	end
	local ball_particles=math.floor(particles/(randomfloat(2,8)))
	local ball_radius = galradius / randomfloat(3,9)
	local angular_vel=48
	local startradius=math.pow(gravit_g * 2 * startmass, 1/3) * math.pow(angular_vel, 2/3) / math.pow (2*math.pi, 2/3)
	-- allow the center bulge to have different masses
        local factor_center=randomfloat(0.6, 2)
	local haloparticles=0
	local halofactor=1
	local halostart =galradius * 1.3
	local haloend   =galradius * 2
	if randomint(0, 2) == 0 then
	    -- no central SMBH
	    startmass=randomfloat(massmin,massmax)
	end
	if (gravit_physics == PH_CLASSIC) then
	    -- no central SMBH
	    startmass=randomfloat(massmin,massmax)
            -- no surrounding massive particles
	end
	particle(firstparticle, galpos, galvel, startmass * mass_sign)
	if kind == 1 then
	   makespiral_orbit_2(galpos, galvel, galradius, startradius, startmass, massmin, massmax, mass_sign, firstparticle+1, particles-1, ang_end)
	else
	   local do_halo=randomint(0, 3)
	   if (gravit_physics == PH_CLASSIC) then
	      -- no surrounding massive particles
	      do_halo=randomint(0, 2)
	   end
	   if randomint(0,1) == 1 then do_halo = 0 end
	   if kind == 3 then do_halo = 0 end
	   if do_halo == 3 then
	   -- type 1 : a few massive objects at long distances
	      halofactor =randomfloat(1,10)
	      haloparticles = math.floor((particles-ball_particles)/(halofactor+4))
	      halostart    = galradius * randomfloat(0.8,1.1)
	      haloend      = galradius * randomfloat(1.2,2)
	   end
	   if do_halo == 2 then
	   -- type 3 : cloud of dust
	      halofactor =randomfloat(0.1,0.6)
	      haloparticles= randomint(math.floor((particles-ball_particles)/4), math.floor((particles-ball_particles)/1.5))
	      halostart    = galradius * randomfloat(0.5,0.7)
	      haloend      = galradius * randomfloat(0.9,1.5)
	   end
	   -- bulge
	   startmass = startmass + makeball_orbit(galpos, galvel, ball_radius, startradius, startmass, massmin*factor_center, massmax*factor_center, mass_sign, firstparticle+1, ball_particles)
	   -- disk
	   if gravit_physics < PH_PROPER then
	      startmass = startmass + 1.1 * makespiral_orbit_2(galpos, galvel, galradius, startradius+ball_radius, startmass, massmin, massmax, mass_sign, firstparticle+ball_particles+haloparticles+1, particles-ball_particles-haloparticles-1, ang_end)
	   else
	      startmass = startmass + 1.1 * makespiral_orbit_3(galpos, galvel, galradius, startradius+ball_radius, startmass, massmin, massmax, mass_sign, firstparticle+ball_particles+haloparticles+1, particles-ball_particles-haloparticles-1, ang_end)
	   end
	   -- halo
	   if (do_halo > 1) then
	      makeball_orbit(galpos, galvel, haloend, halostart, startmass, massmin*halofactor, massmax*halofactor, mass_sign, firstparticle+ball_particles+1, haloparticles)
	   end
	end
end
function makegalaxy_orbit(galpos, galvel, galradius, massmin, massmax, firstparticle, particles)
	makegalaxy_orbit_2(galpos, galvel, galradius, massmin, massmax, firstparticle, particles,2)
end
-- ----------------------------------------------------------------
-- ----------------------------------------------------------------
function spawn()
   -- work out a number of galaxies based on spawnparticles
     local biggalaxysize = randomint(spawnparticles/4,spawnparticles/1.5)
     local num_small_objects=randomint(1,3)
     local smallgalaxysize = spawnparticles-biggalaxysize
     smallgalaxysize = math.floor(smallgalaxysize / num_small_objects)
     biggalaxysize = spawnparticles - (smallgalaxysize * num_small_objects);
     local faster=2.0
     local maxangle = 0.17
     -- first galaxy
     local rad = 10.0+randomfloat(350, 1200)
     local massmin = faster * randomfloat(0.1,10)
     local massmax = faster * randomfloat(massmin+2, massmin+20)
     if gravit_physics < PH_PROPER then
	rad= 10.0+randomfloat(200, 700)
	massmin = faster * 0.7 * randomfloat(1,45)
	massmax = faster * 0.7 * randomfloat(massmin+5, massmin*2+10)
	maxangle = 0.36
     end
     if (gravit_physics == PH_CLASSIC) then
	massmin=massmin*5
	massmax=massmax*10
	rad=rad * 2.2
	maxangle = 0.6
     end
     makegalaxy_orbit_2(v(0,0,0), v(0,0,0), rad, massmin, massmax, 0, biggalaxysize, maxangle)
     -- more galaxies
     for i=1, num_small_objects do
	massmin = faster * randomfloat(0.1,10)
	massmax = faster * randomfloat(massmin+2, massmin+20)
	local speed2 = randomfloat(2,8)
	local target=randomrange(rad/4)
	if gravit_physics < PH_PROPER then
	   massmin = faster * 0.7 * randomfloat(1,45)
	   massmax = faster * 0.7 * randomfloat(massmin+5, massmin*2+10)
	   target=randomrange(rad/3)
	end
	if (gravit_physics == PH_CLASSIC) then
	   massmin=massmin*5
	   massmax=massmax*10
	   target=randomrange(rad * 2)
	   speed2=speed2 * 2
	end
	-- local rad2=randomfloat(rad*0.6, rad*1.5)
	local rad2=randomfloat(rad*0.4, rad*1.2)
	local y_offset=randomfloat(-300,300)
	local pos2=randomrange(-200,200)
	pos2.x=pos2.x * 1.5
	if (gravit_physics == PH_CLASSIC) then
	   rad2 = rad2 * 1.3
	   y_offset=y_offset * 4
	   pos2=pos2 * 14
	end
	if gravit_physics == PH_PROPER then
	   pos2.y=pos2.y + y_offset
	   pos2.x = pos2.x + rad2 + rad
	else
	   pos2.y=pos2.y + y_offset
	   pos2.x = pos2.x + rad2 + rad/2
	end
	target.y = target.y * 1.5
	local direction=speed2/distance(target, pos2)
	local vel2= (pos2 - target) * direction
	makegalaxy_orbit_2(pos2*1.4, vel2 * -1.3, rad2, massmin, massmax, biggalaxysize+((i-1)*smallgalaxysize), smallgalaxysize, maxangle)
     end
end
 |