This file is indexed.

/usr/share/doc/libghc-bifunctors-doc/html/bifunctors.txt is in libghc-bifunctors-doc 5.4.2-1build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Bifunctors
--   
--   Bifunctors
@package bifunctors
@version 5.4.2

module Data.Bifunctor.Functor

-- | Using parametricity as an approximation of a natural transformation in
--   two arguments.
type (:->) p q = forall a b. p a b -> q a b
class BifunctorFunctor t
bifmap :: BifunctorFunctor t => (p :-> q) -> t p :-> t q
class BifunctorFunctor t => BifunctorMonad t where bibind f = bijoin . bifmap f bijoin = bibind id
bireturn :: BifunctorMonad t => p :-> t p
bibind :: BifunctorMonad t => (p :-> t q) -> t p :-> t q
bijoin :: BifunctorMonad t => t (t p) :-> t p
biliftM :: BifunctorMonad t => (p :-> q) -> t p :-> t q
class BifunctorFunctor t => BifunctorComonad t where biextend f = bifmap f . biduplicate biduplicate = biextend id
biextract :: BifunctorComonad t => t p :-> p
biextend :: BifunctorComonad t => (t p :-> q) -> t p :-> t q
biduplicate :: BifunctorComonad t => t p :-> t (t p)
biliftW :: BifunctorComonad t => (p :-> q) -> t p :-> t q


module Data.Bifoldable

-- | <a>Bifoldable</a> identifies foldable structures with two different
--   varieties of elements (as opposed to <a>Foldable</a>, which has one
--   variety of element). Common examples are <a>Either</a> and '(,)':
--   
--   <pre>
--   instance Bifoldable Either where
--     bifoldMap f _ (Left  a) = f a
--     bifoldMap _ g (Right b) = g b
--   
--   instance Bifoldable (,) where
--     bifoldr f g z (a, b) = f a (g b z)
--   </pre>
--   
--   A minimal <a>Bifoldable</a> definition consists of either
--   <a>bifoldMap</a> or <a>bifoldr</a>. When defining more than this
--   minimal set, one should ensure that the following identities hold:
--   
--   <pre>
--   <a>bifold</a> ≡ <a>bifoldMap</a> <a>id</a> <a>id</a>
--   <a>bifoldMap</a> f g ≡ <a>bifoldr</a> (<a>mappend</a> . f) (<a>mappend</a> . g) <a>mempty</a>
--   <a>bifoldr</a> f g z t ≡ <a>appEndo</a> (<a>bifoldMap</a> (Endo . f) (Endo . g) t) z
--   </pre>
--   
--   If the type is also a <tt>Bifunctor</tt> instance, it should satisfy:
--   
--   <pre>
--   'bifoldMap' f g ≡ 'bifold' . 'bimap' f g
--   </pre>
--   
--   which implies that
--   
--   <pre>
--   'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i)
--   </pre>
class Bifoldable p where bifold = bifoldMap id id bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty bifoldr f g z t = appEndo (bifoldMap (Endo #. f) (Endo #. g) t) z bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f) (Dual . Endo . flip g) t)) z

-- | Combines the elements of a structure using a monoid.
--   
--   <pre>
--   <a>bifold</a> ≡ <a>bifoldMap</a> <a>id</a> <a>id</a>
--   </pre>
bifold :: (Bifoldable p, Monoid m) => p m m -> m

-- | Combines the elements of a structure, given ways of mapping them to a
--   common monoid.
--   
--   <pre>
--   <a>bifoldMap</a> f g ≡ <a>bifoldr</a> (<a>mappend</a> . f) (<a>mappend</a> . g) <a>mempty</a>
--   </pre>
bifoldMap :: (Bifoldable p, Monoid m) => (a -> m) -> (b -> m) -> p a b -> m

-- | Combines the elements of a structure in a right associative manner.
--   Given a hypothetical function <tt>toEitherList :: p a b -&gt; [Either
--   a b]</tt> yielding a list of all elements of a structure in order, the
--   following would hold:
--   
--   <pre>
--   <a>bifoldr</a> f g z ≡ <a>foldr</a> (<a>either</a> f g) z . toEitherList
--   </pre>
bifoldr :: Bifoldable p => (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c

-- | Combines the elments of a structure in a left associative manner.
--   Given a hypothetical function <tt>toEitherList :: p a b -&gt; [Either
--   a b]</tt> yielding a list of all elements of a structure in order, the
--   following would hold:
--   
--   <pre>
--   <a>bifoldl</a> f g z ≡ <a>foldl</a> (acc -&gt; <a>either</a> (f acc) (g acc)) z .  toEitherList
--   </pre>
--   
--   Note that if you want an efficient left-fold, you probably want to use
--   <a>bifoldl'</a> instead of <a>bifoldl</a>. The reason is that the
--   latter does not force the "inner" results, resulting in a thunk chain
--   which then must be evaluated from the outside-in.
bifoldl :: Bifoldable p => (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c

-- | As <a>bifoldr</a>, but strict in the result of the reduction functions
--   at each step.
bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c

-- | A variant of <a>bifoldr</a> that has no base case, and thus may only
--   be applied to non-empty structures.
bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a

-- | Right associative monadic bifold over a structure.
bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c

-- | As <a>bifoldl</a>, but strict in the result of the reduction functions
--   at each step.
--   
--   This ensures that each step of the bifold is forced to weak head
--   normal form before being applied, avoiding the collection of thunks
--   that would otherwise occur. This is often what you want to strictly
--   reduce a finite structure to a single, monolithic result (e.g.,
--   <a>bilength</a>).
bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a

-- | A variant of <a>bifoldl</a> that has no base case, and thus may only
--   be applied to non-empty structures.
bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a

-- | Left associative monadic bifold over a structure.
bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a

-- | Map each element of a structure using one of two actions, evaluate
--   these actions from left to right, and ignore the results. For a
--   version that doesn't ignore the results, see <a>bitraverse</a>.
bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f ()

-- | As <a>bitraverse_</a>, but with the structure as the primary argument.
--   For a version that doesn't ignore the results, see <a>bifor</a>.
--   
--   <pre>
--   &gt;&gt;&gt; &gt; bifor_ ('a', "bc") print (print . reverse)
--   'a'
--   "cb"
--   </pre>
bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f ()

-- | As <a>bimapM</a>, but ignores the results of the functions, merely
--   performing the "actions".
bimapM_ :: (Bifoldable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m ()

-- | As <a>bimapM_</a>, but with the structure as the primary argument.
biforM_ :: (Bifoldable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m ()

-- | The sum of a collection of actions, generalizing <a>biconcat</a>.
bimsum :: (Bifoldable t, MonadPlus m) => t (m a) (m a) -> m a

-- | As <a>bisequenceA</a>, but ignores the results of the actions.
bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()

-- | Evaluate each action in the structure from left to right, and ignore
--   the results. For a version that doesn't ignore the results, see
--   <a>bisequence</a>.
bisequence_ :: (Bifoldable t, Monad m) => t (m a) (m b) -> m ()

-- | The sum of a collection of actions, generalizing <a>biconcat</a>.
biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a

-- | Collects the list of elements of a structure, from left to right.
biList :: Bifoldable t => t a a -> [a]

-- | Test whether the structure is empty.
binull :: Bifoldable t => t a b -> Bool

-- | Returns the size/length of a finite structure as an <a>Int</a>.
bilength :: Bifoldable t => t a b -> Int

-- | Does the element occur in the structure?
bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool

-- | The largest element of a non-empty structure.
bimaximum :: forall t a. (Bifoldable t, Ord a) => t a a -> a

-- | The least element of a non-empty structure.
biminimum :: forall t a. (Bifoldable t, Ord a) => t a a -> a

-- | The <a>bisum</a> function computes the sum of the numbers of a
--   structure.
bisum :: (Bifoldable t, Num a) => t a a -> a

-- | The <a>biproduct</a> function computes the product of the numbers of a
--   structure.
biproduct :: (Bifoldable t, Num a) => t a a -> a

-- | Reduces a structure of lists to the concatenation of those lists.
biconcat :: Bifoldable t => t [a] [a] -> [a]

-- | Given a means of mapping the elements of a structure to lists,
--   computes the concatenation of all such lists in order.
biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c]

-- | <a>biand</a> returns the conjunction of a container of Bools. For the
--   result to be <a>True</a>, the container must be finite; <a>False</a>,
--   however, results from a <a>False</a> value finitely far from the left
--   end.
biand :: Bifoldable t => t Bool Bool -> Bool

-- | <a>bior</a> returns the disjunction of a container of Bools. For the
--   result to be <a>False</a>, the container must be finite; <a>True</a>,
--   however, results from a <a>True</a> value finitely far from the left
--   end.
bior :: Bifoldable t => t Bool Bool -> Bool

-- | Determines whether any element of the structure satisfies the
--   appropriate predicate.
biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool

-- | Determines whether all elements of the structure satisfy the
--   appropriate predicate.
biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool

-- | The largest element of a non-empty structure with respect to the given
--   comparison function.
bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a

-- | The least element of a non-empty structure with respect to the given
--   comparison function.
biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a

-- | <a>binotElem</a> is the negation of <a>bielem</a>.
binotElem :: (Bifoldable t, Eq a) => a -> t a a -> Bool

-- | The <a>bifind</a> function takes a predicate and a structure and
--   returns the leftmost element of the structure matching the predicate,
--   or <a>Nothing</a> if there is no such element.
bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a
instance Data.Bifoldable.Bifoldable Data.Semigroup.Arg
instance Data.Bifoldable.Bifoldable (,)
instance Data.Bifoldable.Bifoldable Data.Functor.Const.Const
instance Data.Bifoldable.Bifoldable Data.Functor.Constant.Constant
instance Data.Bifoldable.Bifoldable (GHC.Generics.K1 i)
instance Data.Bifoldable.Bifoldable ((,,) x)
instance Data.Bifoldable.Bifoldable ((,,,) x y)
instance Data.Bifoldable.Bifoldable ((,,,,) x y z)
instance Data.Bifoldable.Bifoldable ((,,,,,) x y z w)
instance Data.Bifoldable.Bifoldable ((,,,,,,) x y z w v)
instance Data.Bifoldable.Bifoldable Data.Tagged.Tagged
instance Data.Bifoldable.Bifoldable Data.Either.Either
instance GHC.Classes.Ord a => GHC.Base.Monoid (Data.Bifoldable.Max a)
instance GHC.Classes.Ord a => GHC.Base.Monoid (Data.Bifoldable.Min a)


module Data.Bitraversable

-- | <a>Bitraversable</a> identifies bifunctorial data structures whose
--   elements can be traversed in order, performing <a>Applicative</a> or
--   <a>Monad</a> actions at each element, and collecting a result
--   structure with the same shape.
--   
--   As opposed to <a>Traversable</a> data structures, which have one
--   variety of element on which an action can be performed,
--   <a>Bitraversable</a> data structures have two such varieties of
--   elements.
--   
--   A definition of <a>bitraverse</a> must satisfy the following laws:
--   
--   <ul>
--   <li><i><i>naturality</i></i> <tt><a>bitraverse</a> (t . f) (t . g) ≡ t
--   . <a>bitraverse</a> f g</tt> for every applicative transformation
--   <tt>t</tt></li>
--   <li><i><i>identity</i></i> <tt><a>bitraverse</a> <a>Identity</a>
--   <a>Identity</a> ≡ <a>Identity</a></tt></li>
--   <li><i><i>composition</i></i> <tt><tt>Compose</tt> . <a>fmap</a>
--   (<a>bitraverse</a> g1 g2) . <a>bitraverse</a> f1 f2 ≡ <a>traverse</a>
--   (<tt>Compose</tt> . <a>fmap</a> g1 . f1) (<tt>Compose</tt> .
--   <a>fmap</a> g2 . f2)</tt></li>
--   </ul>
--   
--   where an <i>applicative transformation</i> is a function
--   
--   <pre>
--   t :: (<a>Applicative</a> f, <a>Applicative</a> g) =&gt; f a -&gt; g a
--   </pre>
--   
--   preserving the <a>Applicative</a> operations:
--   
--   <pre>
--   t (<a>pure</a> x) = <a>pure</a> x
--   t (f <a>&lt;*&gt;</a> x) = t f <a>&lt;*&gt;</a> t x
--   </pre>
--   
--   and the identity functor <a>Identity</a> and composition functors
--   <tt>Compose</tt> are defined as
--   
--   <pre>
--   newtype Identity a = Identity { runIdentity :: a }
--   
--   instance Functor Identity where
--     fmap f (Identity x) = Identity (f x)
--   
--   instance Applicative Identity where
--     pure = Identity
--     Identity f &lt;*&gt; Identity x = Identity (f x)
--   
--   newtype Compose f g a = Compose (f (g a))
--   
--   instance (Functor f, Functor g) =&gt; Functor (Compose f g) where
--     fmap f (Compose x) = Compose (fmap (fmap f) x)
--   
--   instance (Applicative f, Applicative g) =&gt; Applicative (Compose f g) where
--     pure = Compose . pure . pure
--     Compose f &lt;*&gt; Compose x = Compose ((&lt;*&gt;) &lt;$&gt; f &lt;*&gt; x)
--   </pre>
--   
--   Some simple examples are <a>Either</a> and '(,)':
--   
--   <pre>
--   instance Bitraversable Either where
--     bitraverse f _ (Left x) = Left &lt;$&gt; f x
--     bitraverse _ g (Right y) = Right &lt;$&gt; g y
--   
--   instance Bitraversable (,) where
--     bitraverse f g (x, y) = (,) &lt;$&gt; f x &lt;*&gt; g y
--   </pre>
--   
--   <a>Bitraversable</a> relates to its superclasses in the following
--   ways:
--   
--   <pre>
--   <a>bimap</a> f g ≡ <a>runIdentity</a> . <a>bitraverse</a> (<a>Identity</a> . f) (<a>Identity</a> . g)
--   <a>bifoldMap</a> f g = <a>getConst</a> . <a>bitraverse</a> (<a>Const</a> . f) (<a>Const</a> . g)
--   </pre>
--   
--   These are available as <a>bimapDefault</a> and <a>bifoldMapDefault</a>
--   respectively.
class (Bifunctor t, Bifoldable t) => Bitraversable t where bitraverse f g = bisequenceA . bimap f g

-- | Evaluates the relevant functions at each element in the structure,
--   running the action, and builds a new structure with the same shape,
--   using the elements produced from sequencing the actions.
--   
--   <pre>
--   <a>bitraverse</a> f g ≡ <a>bisequenceA</a> . <a>bimap</a> f g
--   </pre>
--   
--   For a version that ignores the results, see <a>bitraverse_</a>.
bitraverse :: (Bitraversable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f (t c d)

-- | Sequences all the actions in a structure, building a new structure
--   with the same shape using the results of the actions. For a version
--   that ignores the results, see <a>bisequenceA_</a>.
--   
--   <pre>
--   <a>bisequenceA</a> ≡ <a>bitraverse</a> <a>id</a> <a>id</a>
--   </pre>
bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)

-- | As <a>bisequenceA</a>, but uses evidence that <tt>m</tt> is a
--   <a>Monad</a> rather than an <a>Applicative</a>. For a version that
--   ignores the results, see <a>bisequence_</a>.
--   
--   <pre>
--   <a>bisequence</a> ≡ <a>bimapM</a> <a>id</a> <a>id</a>
--   <a>bisequence</a> ≡ <a>unwrapMonad</a> . <a>bisequenceA</a> . <a>bimap</a> <a>WrapMonad</a> <a>WrapMonad</a>
--   </pre>
bisequence :: (Bitraversable t, Monad m) => t (m a) (m b) -> m (t a b)

-- | As <a>bitraverse</a>, but uses evidence that <tt>m</tt> is a
--   <a>Monad</a> rather than an <a>Applicative</a>. For a version that
--   ignores the results, see <a>bimapM_</a>.
--   
--   <pre>
--   <a>bimapM</a> f g ≡ <a>bisequence</a> . <a>bimap</a> f g
--   <a>bimapM</a> f g ≡ <a>unwrapMonad</a> . <a>bitraverse</a> (<a>WrapMonad</a> . f) (<a>WrapMonad</a> . g)
--   </pre>
bimapM :: (Bitraversable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m (t c d)

-- | <a>bifor</a> is <a>bitraverse</a> with the structure as the first
--   argument. For a version that ignores the results, see <a>bifor_</a>.
bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d)

-- | <a>biforM</a> is <a>bimapM</a> with the structure as the first
--   argument. For a version that ignores the results, see <a>biforM_</a>.
biforM :: (Bitraversable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m (t c d)

-- | The <a>bimapAccumL</a> function behaves like a combination of
--   <a>bimap</a> and <a>bifoldl</a>; it traverses a structure from left to
--   right, threading a state of type <tt>a</tt> and using the given
--   actions to compute new elements for the structure.
bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e)

-- | The <a>bimapAccumR</a> function behaves like a combination of
--   <a>bimap</a> and <a>bifoldl</a>; it traverses a structure from right
--   to left, threading a state of type <tt>a</tt> and using the given
--   actions to compute new elements for the structure.
bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e)

-- | A default definition of <a>bimap</a> in terms of the
--   <a>Bitraversable</a> operations.
--   
--   <pre>
--   <a>bimapDefault</a> f g ≡
--        <a>runIdentity</a> . <a>bitraverse</a> (<a>Identity</a> . f) (<a>Identity</a> . g)
--   </pre>
bimapDefault :: forall t a b c d. Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d

-- | A default definition of <a>bifoldMap</a> in terms of the
--   <a>Bitraversable</a> operations.
--   
--   <pre>
--   <a>bifoldMapDefault</a> f g ≡
--       <a>getConst</a> . <a>bitraverse</a> (<a>Const</a> . f) (<a>Const</a> . g)
--   </pre>
bifoldMapDefault :: forall t m a b. (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m
instance Data.Bitraversable.Bitraversable Data.Semigroup.Arg
instance Data.Bitraversable.Bitraversable (,)
instance Data.Bitraversable.Bitraversable ((,,) x)
instance Data.Bitraversable.Bitraversable ((,,,) x y)
instance Data.Bitraversable.Bitraversable ((,,,,) x y z)
instance Data.Bitraversable.Bitraversable ((,,,,,) x y z w)
instance Data.Bitraversable.Bitraversable ((,,,,,,) x y z w v)
instance Data.Bitraversable.Bitraversable Data.Either.Either
instance Data.Bitraversable.Bitraversable Data.Functor.Const.Const
instance Data.Bitraversable.Bitraversable Data.Functor.Constant.Constant
instance Data.Bitraversable.Bitraversable (GHC.Generics.K1 i)
instance Data.Bitraversable.Bitraversable Data.Tagged.Tagged
instance GHC.Base.Functor (Data.Bitraversable.StateL s)
instance GHC.Base.Applicative (Data.Bitraversable.StateL s)
instance GHC.Base.Functor (Data.Bitraversable.StateR s)
instance GHC.Base.Applicative (Data.Bitraversable.StateR s)

module Data.Bifunctor.Sum
data Sum p q a b
L2 :: (p a b) -> Sum p q a b
R2 :: (q a b) -> Sum p q a b
instance forall k (p :: k -> * -> *) (q :: k -> * -> *) (a :: k). GHC.Generics.Generic1 (Data.Bifunctor.Sum.Sum p q a)
instance forall k k1 (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Generics.Generic (Data.Bifunctor.Sum.Sum p q a b)
instance forall k k1 (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Read.Read (q a b), GHC.Read.Read (p a b)) => GHC.Read.Read (Data.Bifunctor.Sum.Sum p q a b)
instance forall k k1 (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Show.Show (q a b), GHC.Show.Show (p a b)) => GHC.Show.Show (Data.Bifunctor.Sum.Sum p q a b)
instance forall k k1 (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Classes.Ord (q a b), GHC.Classes.Ord (p a b)) => GHC.Classes.Ord (Data.Bifunctor.Sum.Sum p q a b)
instance forall k k1 (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Classes.Eq (q a b), GHC.Classes.Eq (p a b)) => GHC.Classes.Eq (Data.Bifunctor.Sum.Sum p q a b)
instance (Data.Bifunctor.Bifunctor p, Data.Bifunctor.Bifunctor q) => Data.Bifunctor.Bifunctor (Data.Bifunctor.Sum.Sum p q)
instance (Data.Bifoldable.Bifoldable p, Data.Bifoldable.Bifoldable q) => Data.Bifoldable.Bifoldable (Data.Bifunctor.Sum.Sum p q)
instance (Data.Bitraversable.Bitraversable p, Data.Bitraversable.Bitraversable q) => Data.Bitraversable.Bitraversable (Data.Bifunctor.Sum.Sum p q)
instance forall k k1 (p :: k1 -> k -> *). Data.Bifunctor.Functor.BifunctorFunctor (Data.Bifunctor.Sum.Sum p)
instance forall k k1 (p :: k1 -> k -> *). Data.Bifunctor.Functor.BifunctorMonad (Data.Bifunctor.Sum.Sum p)


-- | Functions to mechanically derive <a>Bifunctor</a>, <a>Bifoldable</a>,
--   or <a>Bitraversable</a> instances, or to splice their functions
--   directly into source code. You need to enable the
--   <tt>TemplateHaskell</tt> language extension in order to use this
--   module.
module Data.Bifunctor.TH

-- | Generates a <a>Bifunctor</a> instance declaration for the given data
--   type or data family instance.
deriveBifunctor :: Name -> Q [Dec]

-- | Generates a lambda expression which behaves like <tt>bimap</tt>
--   (without requiring a <a>Bifunctor</a> instance).
makeBimap :: Name -> Q Exp

-- | Generates a <a>Bifoldable</a> instance declaration for the given data
--   type or data family instance.
deriveBifoldable :: Name -> Q [Dec]

-- | Generates a lambda expression which behaves like <tt>bifold</tt>
--   (without requiring a <a>Bifoldable</a> instance).
makeBifold :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bifoldMap</tt>
--   (without requiring a <a>Bifoldable</a> instance).
makeBifoldMap :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bifoldr</tt>
--   (without requiring a <a>Bifoldable</a> instance).
makeBifoldr :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bifoldl</tt>
--   (without requiring a <a>Bifoldable</a> instance).
makeBifoldl :: Name -> Q Exp

-- | Generates a <a>Bitraversable</a> instance declaration for the given
--   data type or data family instance.
deriveBitraversable :: Name -> Q [Dec]

-- | Generates a lambda expression which behaves like <tt>bitraverse</tt>
--   (without requiring a <a>Bitraversable</a> instance).
makeBitraverse :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bisequenceA</tt>
--   (without requiring a <a>Bitraversable</a> instance).
makeBisequenceA :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bimapM</tt>
--   (without requiring a <a>Bitraversable</a> instance).
makeBimapM :: Name -> Q Exp

-- | Generates a lambda expression which behaves like <tt>bisequence</tt>
--   (without requiring a <a>Bitraversable</a> instance).
makeBisequence :: Name -> Q Exp
instance GHC.Classes.Eq Data.Bifunctor.TH.BiFun


module Data.Biapplicative
class Bifunctor p => Biapplicative p where a *>> b = bimap (const id) (const id) <<$>> a <<*>> b a <<* b = bimap const const <<$>> a <<*>> b
bipure :: Biapplicative p => a -> b -> p a b
(<<*>>) :: Biapplicative p => p (a -> b) (c -> d) -> p a c -> p b d

-- | <pre>
--   a <a>*&gt;&gt;</a> b ≡ <a>bimap</a> (<a>const</a> <a>id</a>) (<a>const</a> <a>id</a>) <a>&lt;&lt;$&gt;&gt;</a> a <a>&lt;&lt;*&gt;&gt;</a> b
--   </pre>
(*>>) :: Biapplicative p => p a b -> p c d -> p c d

-- | <pre>
--   a <a>&lt;&lt;*</a> b ≡ <a>bimap</a> <a>const</a> <a>const</a> <a>&lt;&lt;$&gt;&gt;</a> a <a>&lt;&lt;*&gt;&gt;</a> b
--   </pre>
(<<*) :: Biapplicative p => p a b -> p c d -> p a b
(<<$>>) :: (a -> b) -> a -> b
infixl 4 <<$>>
(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d
infixl 4 <<**>>

-- | Lift binary functions
biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f

-- | Lift ternary functions
biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
instance Data.Biapplicative.Biapplicative (,)
instance Data.Biapplicative.Biapplicative Data.Semigroup.Arg
instance GHC.Base.Monoid x => Data.Biapplicative.Biapplicative ((,,) x)
instance (GHC.Base.Monoid x, GHC.Base.Monoid y) => Data.Biapplicative.Biapplicative ((,,,) x y)
instance (GHC.Base.Monoid x, GHC.Base.Monoid y, GHC.Base.Monoid z) => Data.Biapplicative.Biapplicative ((,,,,) x y z)
instance (GHC.Base.Monoid x, GHC.Base.Monoid y, GHC.Base.Monoid z, GHC.Base.Monoid w) => Data.Biapplicative.Biapplicative ((,,,,,) x y z w)
instance (GHC.Base.Monoid x, GHC.Base.Monoid y, GHC.Base.Monoid z, GHC.Base.Monoid w, GHC.Base.Monoid v) => Data.Biapplicative.Biapplicative ((,,,,,,) x y z w v)
instance Data.Biapplicative.Biapplicative Data.Tagged.Tagged
instance Data.Biapplicative.Biapplicative Data.Functor.Const.Const


module Data.Bifunctor.Biff

-- | Compose two <a>Functor</a>s on the inside of a <a>Bifunctor</a>.
newtype Biff p f g a b
Biff :: p (f a) (g b) -> Biff p f g a b
[runBiff] :: Biff p f g a b -> p (f a) (g b)
instance forall k k1 (p :: k -> k1 -> *) k2 (f :: k2 -> k) k3 (g :: k3 -> k1) (a :: k2) (b :: k3). GHC.Generics.Generic (Data.Bifunctor.Biff.Biff p f g a b)
instance forall k k1 (p :: k -> k1 -> *) k2 (f :: k2 -> k) k3 (g :: k3 -> k1) (a :: k2) (b :: k3). GHC.Read.Read (p (f a) (g b)) => GHC.Read.Read (Data.Bifunctor.Biff.Biff p f g a b)
instance forall k k1 (p :: k -> k1 -> *) k2 (f :: k2 -> k) k3 (g :: k3 -> k1) (a :: k2) (b :: k3). GHC.Show.Show (p (f a) (g b)) => GHC.Show.Show (Data.Bifunctor.Biff.Biff p f g a b)
instance forall k k1 (p :: k -> k1 -> *) k2 (f :: k2 -> k) k3 (g :: k3 -> k1) (a :: k2) (b :: k3). GHC.Classes.Ord (p (f a) (g b)) => GHC.Classes.Ord (Data.Bifunctor.Biff.Biff p f g a b)
instance forall k k1 (p :: k -> k1 -> *) k2 (f :: k2 -> k) k3 (g :: k3 -> k1) (a :: k2) (b :: k3). GHC.Classes.Eq (p (f a) (g b)) => GHC.Classes.Eq (Data.Bifunctor.Biff.Biff p f g a b)
instance forall k k1 (p :: k1 -> * -> *) (f :: k -> k1) (a :: k) (g :: GHC.Types.* -> *). GHC.Base.Functor (p (f a)) => GHC.Generics.Generic1 (Data.Bifunctor.Biff.Biff p f g a)
instance (Data.Bifunctor.Bifunctor p, GHC.Base.Functor f, GHC.Base.Functor g) => Data.Bifunctor.Bifunctor (Data.Bifunctor.Biff.Biff p f g)
instance forall k (p :: * -> * -> *) (g :: * -> *) (f :: k -> *) (a :: k). (Data.Bifunctor.Bifunctor p, GHC.Base.Functor g) => GHC.Base.Functor (Data.Bifunctor.Biff.Biff p f g a)
instance (Data.Biapplicative.Biapplicative p, GHC.Base.Applicative f, GHC.Base.Applicative g) => Data.Biapplicative.Biapplicative (Data.Bifunctor.Biff.Biff p f g)
instance forall k (p :: * -> * -> *) (g :: * -> *) (f :: k -> *) (a :: k). (Data.Bifoldable.Bifoldable p, Data.Foldable.Foldable g) => Data.Foldable.Foldable (Data.Bifunctor.Biff.Biff p f g a)
instance (Data.Bifoldable.Bifoldable p, Data.Foldable.Foldable f, Data.Foldable.Foldable g) => Data.Bifoldable.Bifoldable (Data.Bifunctor.Biff.Biff p f g)
instance forall k (p :: * -> * -> *) (g :: * -> *) (f :: k -> *) (a :: k). (Data.Bitraversable.Bitraversable p, Data.Traversable.Traversable g) => Data.Traversable.Traversable (Data.Bifunctor.Biff.Biff p f g a)
instance (Data.Bitraversable.Bitraversable p, Data.Traversable.Traversable f, Data.Traversable.Traversable g) => Data.Bitraversable.Bitraversable (Data.Bifunctor.Biff.Biff p f g)


-- | From the Functional Pearl "Clowns to the Left of me, Jokers to the
--   Right: Dissecting Data Structures" by Conor McBride.
module Data.Bifunctor.Clown

-- | Make a <a>Functor</a> over the first argument of a <a>Bifunctor</a>.
--   
--   Mnemonic: C<b>l</b>owns to the <b>l</b>eft (parameter of the
--   Bifunctor), joke<b>r</b>s to the <b>r</b>ight.
newtype Clown f a b
Clown :: f a -> Clown f a b
[runClown] :: Clown f a b -> f a
instance forall k (f :: k -> *) (a :: k). GHC.Generics.Generic1 (Data.Bifunctor.Clown.Clown f a)
instance forall k (f :: k -> *) (a :: k) k1 (b :: k1). GHC.Generics.Generic (Data.Bifunctor.Clown.Clown f a b)
instance forall k (f :: k -> *) (a :: k) k1 (b :: k1). GHC.Read.Read (f a) => GHC.Read.Read (Data.Bifunctor.Clown.Clown f a b)
instance forall k (f :: k -> *) (a :: k) k1 (b :: k1). GHC.Show.Show (f a) => GHC.Show.Show (Data.Bifunctor.Clown.Clown f a b)
instance forall k (f :: k -> *) (a :: k) k1 (b :: k1). GHC.Classes.Ord (f a) => GHC.Classes.Ord (Data.Bifunctor.Clown.Clown f a b)
instance forall k (f :: k -> *) (a :: k) k1 (b :: k1). GHC.Classes.Eq (f a) => GHC.Classes.Eq (Data.Bifunctor.Clown.Clown f a b)
instance GHC.Base.Functor f => Data.Bifunctor.Bifunctor (Data.Bifunctor.Clown.Clown f)
instance forall k (f :: k -> *) (a :: k). GHC.Base.Functor (Data.Bifunctor.Clown.Clown f a)
instance GHC.Base.Applicative f => Data.Biapplicative.Biapplicative (Data.Bifunctor.Clown.Clown f)
instance Data.Foldable.Foldable f => Data.Bifoldable.Bifoldable (Data.Bifunctor.Clown.Clown f)
instance forall k (f :: k -> *) (a :: k). Data.Foldable.Foldable (Data.Bifunctor.Clown.Clown f a)
instance Data.Traversable.Traversable f => Data.Bitraversable.Bitraversable (Data.Bifunctor.Clown.Clown f)
instance forall k (f :: k -> *) (a :: k). Data.Traversable.Traversable (Data.Bifunctor.Clown.Clown f a)


module Data.Bifunctor.Fix

-- | Greatest fixpoint of a <a>Bifunctor</a> (a <a>Functor</a> over the
--   first argument with zipping).
newtype Fix p a
In :: p (Fix p a) a -> Fix p a
[out] :: Fix p a -> p (Fix p a) a
instance forall k (p :: * -> k -> *) (a :: k). GHC.Generics.Generic (Data.Bifunctor.Fix.Fix p a)
instance forall k (p :: * -> k -> *) (a :: k). GHC.Classes.Eq (p (Data.Bifunctor.Fix.Fix p a) a) => GHC.Classes.Eq (Data.Bifunctor.Fix.Fix p a)
instance forall k (p :: * -> k -> *) (a :: k). GHC.Classes.Ord (p (Data.Bifunctor.Fix.Fix p a) a) => GHC.Classes.Ord (Data.Bifunctor.Fix.Fix p a)
instance forall k (p :: * -> k -> *) (a :: k). GHC.Show.Show (p (Data.Bifunctor.Fix.Fix p a) a) => GHC.Show.Show (Data.Bifunctor.Fix.Fix p a)
instance forall k (p :: * -> k -> *) (a :: k). GHC.Read.Read (p (Data.Bifunctor.Fix.Fix p a) a) => GHC.Read.Read (Data.Bifunctor.Fix.Fix p a)
instance Data.Bifunctor.Bifunctor p => GHC.Base.Functor (Data.Bifunctor.Fix.Fix p)
instance Data.Biapplicative.Biapplicative p => GHC.Base.Applicative (Data.Bifunctor.Fix.Fix p)
instance Data.Bifoldable.Bifoldable p => Data.Foldable.Foldable (Data.Bifunctor.Fix.Fix p)
instance Data.Bitraversable.Bitraversable p => Data.Traversable.Traversable (Data.Bifunctor.Fix.Fix p)


module Data.Bifunctor.Flip

-- | Make a <a>Bifunctor</a> flipping the arguments of a <a>Bifunctor</a>.
newtype Flip p a b
Flip :: p b a -> Flip p a b
[runFlip] :: Flip p a b -> p b a
instance forall k k1 (p :: k1 -> k -> *) (a :: k) (b :: k1). GHC.Generics.Generic (Data.Bifunctor.Flip.Flip p a b)
instance forall k k1 (p :: k1 -> k -> *) (a :: k) (b :: k1). GHC.Read.Read (p b a) => GHC.Read.Read (Data.Bifunctor.Flip.Flip p a b)
instance forall k k1 (p :: k1 -> k -> *) (a :: k) (b :: k1). GHC.Show.Show (p b a) => GHC.Show.Show (Data.Bifunctor.Flip.Flip p a b)
instance forall k k1 (p :: k1 -> k -> *) (a :: k) (b :: k1). GHC.Classes.Ord (p b a) => GHC.Classes.Ord (Data.Bifunctor.Flip.Flip p a b)
instance forall k k1 (p :: k1 -> k -> *) (a :: k) (b :: k1). GHC.Classes.Eq (p b a) => GHC.Classes.Eq (Data.Bifunctor.Flip.Flip p a b)
instance Data.Bifunctor.Bifunctor p => Data.Bifunctor.Bifunctor (Data.Bifunctor.Flip.Flip p)
instance Data.Bifunctor.Bifunctor p => GHC.Base.Functor (Data.Bifunctor.Flip.Flip p a)
instance Data.Biapplicative.Biapplicative p => Data.Biapplicative.Biapplicative (Data.Bifunctor.Flip.Flip p)
instance Data.Bifoldable.Bifoldable p => Data.Bifoldable.Bifoldable (Data.Bifunctor.Flip.Flip p)
instance Data.Bifoldable.Bifoldable p => Data.Foldable.Foldable (Data.Bifunctor.Flip.Flip p a)
instance Data.Bitraversable.Bitraversable p => Data.Bitraversable.Bitraversable (Data.Bifunctor.Flip.Flip p)
instance Data.Bitraversable.Bitraversable p => Data.Traversable.Traversable (Data.Bifunctor.Flip.Flip p a)
instance Data.Bifunctor.Functor.BifunctorFunctor Data.Bifunctor.Flip.Flip


module Data.Bifunctor.Join

-- | Make a <a>Functor</a> over both arguments of a <a>Bifunctor</a>.
newtype Join p a
Join :: p a a -> Join p a
[runJoin] :: Join p a -> p a a
instance forall k (p :: k -> k -> *) (a :: k). GHC.Generics.Generic (Data.Bifunctor.Join.Join p a)
instance forall k (p :: k -> k -> *) (a :: k). GHC.Classes.Eq (p a a) => GHC.Classes.Eq (Data.Bifunctor.Join.Join p a)
instance forall k (p :: k -> k -> *) (a :: k). GHC.Classes.Ord (p a a) => GHC.Classes.Ord (Data.Bifunctor.Join.Join p a)
instance forall k (p :: k -> k -> *) (a :: k). GHC.Show.Show (p a a) => GHC.Show.Show (Data.Bifunctor.Join.Join p a)
instance forall k (p :: k -> k -> *) (a :: k). GHC.Read.Read (p a a) => GHC.Read.Read (Data.Bifunctor.Join.Join p a)
instance Data.Bifunctor.Bifunctor p => GHC.Base.Functor (Data.Bifunctor.Join.Join p)
instance Data.Biapplicative.Biapplicative p => GHC.Base.Applicative (Data.Bifunctor.Join.Join p)
instance Data.Bifoldable.Bifoldable p => Data.Foldable.Foldable (Data.Bifunctor.Join.Join p)
instance Data.Bitraversable.Bitraversable p => Data.Traversable.Traversable (Data.Bifunctor.Join.Join p)


-- | From the Functional Pearl "Clowns to the Left of me, Jokers to the
--   Right: Dissecting Data Structures" by Conor McBride.
module Data.Bifunctor.Joker

-- | Make a <a>Functor</a> over the second argument of a <a>Bifunctor</a>.
--   
--   Mnemonic: C<b>l</b>owns to the <b>l</b>eft (parameter of the
--   Bifunctor), joke<b>r</b>s to the <b>r</b>ight.
newtype Joker g a b
Joker :: g b -> Joker g a b
[runJoker] :: Joker g a b -> g b
instance forall (g :: * -> *) k (a :: k). GHC.Generics.Generic1 (Data.Bifunctor.Joker.Joker g a)
instance forall k (g :: k -> *) k1 (a :: k1) (b :: k). GHC.Generics.Generic (Data.Bifunctor.Joker.Joker g a b)
instance forall k (g :: k -> *) k1 (a :: k1) (b :: k). GHC.Read.Read (g b) => GHC.Read.Read (Data.Bifunctor.Joker.Joker g a b)
instance forall k (g :: k -> *) k1 (a :: k1) (b :: k). GHC.Show.Show (g b) => GHC.Show.Show (Data.Bifunctor.Joker.Joker g a b)
instance forall k (g :: k -> *) k1 (a :: k1) (b :: k). GHC.Classes.Ord (g b) => GHC.Classes.Ord (Data.Bifunctor.Joker.Joker g a b)
instance forall k (g :: k -> *) k1 (a :: k1) (b :: k). GHC.Classes.Eq (g b) => GHC.Classes.Eq (Data.Bifunctor.Joker.Joker g a b)
instance GHC.Base.Functor g => Data.Bifunctor.Bifunctor (Data.Bifunctor.Joker.Joker g)
instance forall k (g :: * -> *) (a :: k). GHC.Base.Functor g => GHC.Base.Functor (Data.Bifunctor.Joker.Joker g a)
instance GHC.Base.Applicative g => Data.Biapplicative.Biapplicative (Data.Bifunctor.Joker.Joker g)
instance Data.Foldable.Foldable g => Data.Bifoldable.Bifoldable (Data.Bifunctor.Joker.Joker g)
instance forall k (g :: * -> *) (a :: k). Data.Foldable.Foldable g => Data.Foldable.Foldable (Data.Bifunctor.Joker.Joker g a)
instance Data.Traversable.Traversable g => Data.Bitraversable.Bitraversable (Data.Bifunctor.Joker.Joker g)
instance forall k (g :: * -> *) (a :: k). Data.Traversable.Traversable g => Data.Traversable.Traversable (Data.Bifunctor.Joker.Joker g a)


-- | The product of two bifunctors.
module Data.Bifunctor.Product

-- | Form the product of two bifunctors
data Product f g a b
Pair :: (f a b) -> (g a b) -> Product f g a b
instance forall k (f :: k -> * -> *) (g :: k -> * -> *) (a :: k). GHC.Generics.Generic1 (Data.Bifunctor.Product.Product f g a)
instance forall k k1 (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Generics.Generic (Data.Bifunctor.Product.Product f g a b)
instance forall k k1 (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Read.Read (g a b), GHC.Read.Read (f a b)) => GHC.Read.Read (Data.Bifunctor.Product.Product f g a b)
instance forall k k1 (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Show.Show (g a b), GHC.Show.Show (f a b)) => GHC.Show.Show (Data.Bifunctor.Product.Product f g a b)
instance forall k k1 (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Classes.Ord (g a b), GHC.Classes.Ord (f a b)) => GHC.Classes.Ord (Data.Bifunctor.Product.Product f g a b)
instance forall k k1 (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k) (b :: k1). (GHC.Classes.Eq (g a b), GHC.Classes.Eq (f a b)) => GHC.Classes.Eq (Data.Bifunctor.Product.Product f g a b)
instance (Data.Bifunctor.Bifunctor f, Data.Bifunctor.Bifunctor g) => Data.Bifunctor.Bifunctor (Data.Bifunctor.Product.Product f g)
instance (Data.Biapplicative.Biapplicative f, Data.Biapplicative.Biapplicative g) => Data.Biapplicative.Biapplicative (Data.Bifunctor.Product.Product f g)
instance (Data.Bifoldable.Bifoldable f, Data.Bifoldable.Bifoldable g) => Data.Bifoldable.Bifoldable (Data.Bifunctor.Product.Product f g)
instance (Data.Bitraversable.Bitraversable f, Data.Bitraversable.Bitraversable g) => Data.Bitraversable.Bitraversable (Data.Bifunctor.Product.Product f g)
instance forall k k1 (p :: k1 -> k -> *). Data.Bifunctor.Functor.BifunctorFunctor (Data.Bifunctor.Product.Product p)
instance forall k k1 (p :: k1 -> k -> *). Data.Bifunctor.Functor.BifunctorComonad (Data.Bifunctor.Product.Product p)


module Data.Bifunctor.Tannen

-- | Compose a <a>Functor</a> on the outside of a <a>Bifunctor</a>.
newtype Tannen f p a b
Tannen :: f (p a b) -> Tannen f p a b
[runTannen] :: Tannen f p a b -> f (p a b)
instance forall k (f :: k -> *) k1 k2 (p :: k1 -> k2 -> k) (a :: k1) (b :: k2). GHC.Generics.Generic (Data.Bifunctor.Tannen.Tannen f p a b)
instance forall k (f :: k -> *) k1 k2 (p :: k1 -> k2 -> k) (a :: k1) (b :: k2). GHC.Read.Read (f (p a b)) => GHC.Read.Read (Data.Bifunctor.Tannen.Tannen f p a b)
instance forall k (f :: k -> *) k1 k2 (p :: k1 -> k2 -> k) (a :: k1) (b :: k2). GHC.Show.Show (f (p a b)) => GHC.Show.Show (Data.Bifunctor.Tannen.Tannen f p a b)
instance forall k (f :: k -> *) k1 k2 (p :: k1 -> k2 -> k) (a :: k1) (b :: k2). GHC.Classes.Ord (f (p a b)) => GHC.Classes.Ord (Data.Bifunctor.Tannen.Tannen f p a b)
instance forall k (f :: k -> *) k1 k2 (p :: k1 -> k2 -> k) (a :: k1) (b :: k2). GHC.Classes.Eq (f (p a b)) => GHC.Classes.Eq (Data.Bifunctor.Tannen.Tannen f p a b)
instance forall k (f :: * -> *) (p :: k -> GHC.Types.* -> *) (a :: k). GHC.Base.Functor f => GHC.Generics.Generic1 (Data.Bifunctor.Tannen.Tannen f p a)
instance GHC.Base.Functor f => Data.Bifunctor.Functor.BifunctorFunctor (Data.Bifunctor.Tannen.Tannen f)
instance (GHC.Base.Functor f, GHC.Base.Monad f) => Data.Bifunctor.Functor.BifunctorMonad (Data.Bifunctor.Tannen.Tannen f)
instance Control.Comonad.Comonad f => Data.Bifunctor.Functor.BifunctorComonad (Data.Bifunctor.Tannen.Tannen f)
instance (GHC.Base.Functor f, Data.Bifunctor.Bifunctor p) => Data.Bifunctor.Bifunctor (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Functor f, Data.Bifunctor.Bifunctor p) => GHC.Base.Functor (Data.Bifunctor.Tannen.Tannen f p a)
instance (GHC.Base.Applicative f, Data.Biapplicative.Biapplicative p) => Data.Biapplicative.Biapplicative (Data.Bifunctor.Tannen.Tannen f p)
instance (Data.Foldable.Foldable f, Data.Bifoldable.Bifoldable p) => Data.Foldable.Foldable (Data.Bifunctor.Tannen.Tannen f p a)
instance (Data.Foldable.Foldable f, Data.Bifoldable.Bifoldable p) => Data.Bifoldable.Bifoldable (Data.Bifunctor.Tannen.Tannen f p)
instance (Data.Traversable.Traversable f, Data.Bitraversable.Bitraversable p) => Data.Traversable.Traversable (Data.Bifunctor.Tannen.Tannen f p a)
instance (Data.Traversable.Traversable f, Data.Bitraversable.Bitraversable p) => Data.Bitraversable.Bitraversable (Data.Bifunctor.Tannen.Tannen f p)
instance forall k (f :: * -> *) (p :: k -> k -> *). (GHC.Base.Applicative f, Control.Category.Category p) => Control.Category.Category (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Applicative f, Control.Arrow.Arrow p) => Control.Arrow.Arrow (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Applicative f, Control.Arrow.ArrowChoice p) => Control.Arrow.ArrowChoice (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Applicative f, Control.Arrow.ArrowLoop p) => Control.Arrow.ArrowLoop (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Applicative f, Control.Arrow.ArrowZero p) => Control.Arrow.ArrowZero (Data.Bifunctor.Tannen.Tannen f p)
instance (GHC.Base.Applicative f, Control.Arrow.ArrowPlus p) => Control.Arrow.ArrowPlus (Data.Bifunctor.Tannen.Tannen f p)


module Data.Bifunctor.Wrapped

-- | Make a <a>Functor</a> over the second argument of a <a>Bifunctor</a>.
newtype WrappedBifunctor p a b
WrapBifunctor :: p a b -> WrappedBifunctor p a b
[unwrapBifunctor] :: WrappedBifunctor p a b -> p a b
instance forall k (p :: k -> * -> *) (a :: k). GHC.Generics.Generic1 (Data.Bifunctor.Wrapped.WrappedBifunctor p a)
instance forall k k1 (p :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Generics.Generic (Data.Bifunctor.Wrapped.WrappedBifunctor p a b)
instance forall k k1 (p :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Read.Read (p a b) => GHC.Read.Read (Data.Bifunctor.Wrapped.WrappedBifunctor p a b)
instance forall k k1 (p :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Show.Show (p a b) => GHC.Show.Show (Data.Bifunctor.Wrapped.WrappedBifunctor p a b)
instance forall k k1 (p :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Classes.Ord (p a b) => GHC.Classes.Ord (Data.Bifunctor.Wrapped.WrappedBifunctor p a b)
instance forall k k1 (p :: k -> k1 -> *) (a :: k) (b :: k1). GHC.Classes.Eq (p a b) => GHC.Classes.Eq (Data.Bifunctor.Wrapped.WrappedBifunctor p a b)
instance Data.Bifunctor.Bifunctor p => Data.Bifunctor.Bifunctor (Data.Bifunctor.Wrapped.WrappedBifunctor p)
instance Data.Bifunctor.Bifunctor p => GHC.Base.Functor (Data.Bifunctor.Wrapped.WrappedBifunctor p a)
instance Data.Biapplicative.Biapplicative p => Data.Biapplicative.Biapplicative (Data.Bifunctor.Wrapped.WrappedBifunctor p)
instance Data.Bifoldable.Bifoldable p => Data.Foldable.Foldable (Data.Bifunctor.Wrapped.WrappedBifunctor p a)
instance Data.Bifoldable.Bifoldable p => Data.Bifoldable.Bifoldable (Data.Bifunctor.Wrapped.WrappedBifunctor p)
instance Data.Bitraversable.Bitraversable p => Data.Traversable.Traversable (Data.Bifunctor.Wrapped.WrappedBifunctor p a)
instance Data.Bitraversable.Bitraversable p => Data.Bitraversable.Bitraversable (Data.Bifunctor.Wrapped.WrappedBifunctor p)