This file is indexed.

/usr/include/polymake/fan/hasse_diagram.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_FAN_HASSE_DIAGRAM_H
#define POLYMAKE_FAN_HASSE_DIAGRAM_H

#include "polymake/PowerSet.h"
#include "polymake/graph/Closure.h"
#include "polymake/graph/Lattice.h"
#include "polymake/graph/BasicLatticeTypes.h"
#include "polymake/graph/lattice_builder.h"

namespace polymake { namespace fan { 
   
   namespace lattice {
  

      using namespace graph::lattice;
      /*
       * Given a closure operator, this can iterate over all closed sets lying above a given set.
       */
      template <typename ClosureOperator>
         class complex_closures_above_iterator {

            public:
               typedef typename ClosureOperator::ClosureData ClosureData;
               typedef std::forward_iterator_tag iterator_category;
               typedef ClosureData value_type;
               typedef const value_type& reference;
               typedef const value_type* pointer;
               typedef ptrdiff_t difference_type;

               complex_closures_above_iterator() {}

               template <typename Iterator>
                  complex_closures_above_iterator(const ClosureOperator& cop, const ClosureData& H, 
                        Iterator inter_it) : CO(&cop) {
                     bool empty_set_occured = false;
                     const Set<int>& dual_face = H.get_dual_face();
                     const int df_size = dual_face.size();
                     if(df_size) {
                        FacetList flist(CO->total_set_size());
                        for(; !inter_it.at_end(); ++inter_it) {
                           const Set<int> hc = dual_face * (*inter_it);
                           const int hc_size = hc.size();
                           if(hc_size == 0)
                              empty_set_occured = true;
                           else if(hc_size != df_size)
                              flist.replaceMax(hc);
                        }
                        for(auto mf = entire(flist); !mf.at_end(); ++mf) {
                           data.push_back(ClosureData(*CO, *mf));
                        }
                        if(flist.size() == 0 && empty_set_occured)
                           data.push_back(ClosureData(*CO,Set<int>()));
                     }
                     it = entire(data);
                  }

               // The following are only for dual mode:

               // Iterator for 1- and 2-dimensional cones: We don't need to intersect
               complex_closures_above_iterator(const ClosureOperator& cop, const Set<int>& dual_face) : CO(&cop) {
                  for(auto subface = entire(Subsets_less_1< Set<int> >(dual_face)); !subface.at_end();
                        ++subface) {
                     data.push_back(ClosureData(*CO, *subface));
                  }
                  it = entire(data);
               }

               // Iterator for maximal cones: Just list them
               complex_closures_above_iterator(const ClosureOperator& cop) : CO(&cop) {
                  auto cone_it = ensure(rows(CO->get_maximal_cones()),
                        (pm::cons<pm::indexed,pm::end_sensitive>*)0).begin();
                  for(;!cone_it.at_end(); ++cone_it)
                     data.push_back(ClosureData(*cone_it, cone_it.index()));
                  it = entire(data);
               }

               //Iterator for facets of a maximal cone
               complex_closures_above_iterator(const ClosureOperator& cop, const IncidenceMatrix<>& facets) : CO(&cop) {
                  for(auto fc = entire(rows(facets)); !fc.at_end(); ++fc) 
                     data.push_back(ClosureData(*CO, *fc));
                  it = entire(data);
               }


               reference operator* () const { return it.operator*(); }
               pointer operator->() const { return it.operator->(); }
               complex_closures_above_iterator& operator++ () { ++it; return *this; }
               const complex_closures_above_iterator operator++ (int) { complex_closures_above_iterator copy = *this; operator++(); return copy; }
               bool at_end() const { return it.at_end(); }

            protected:
               const ClosureOperator* CO;
               std::list<ClosureData> data;
               typename Entire<std::list<ClosureData> >::const_iterator it;
         };

      //To preserve the artificial node in dual mode, the closure of the empty set needs to be redefined.
      //In primal mode, the intersection of all cones might be a vertex, but the closure of the
      //empty set is still the empty set, representing the empty fan.
      template <typename Decoration = BasicDecoration>
         class ComplexClosure : public BasicClosureOperator<Decoration> {
            public:
               typedef typename BasicClosureOperator<Decoration>::ClosureData ParentClosureData;
               class ClosureData : public ParentClosureData {
                  protected:
                     bool is_artificial;
                     bool is_maximal;
                  public:
                     ClosureData(const ComplexClosure<Decoration>& parent, const Set<int>& df) : ParentClosureData(parent,df), is_artificial(false), is_maximal(false) {}
                     template <typename TSet1, typename TSet2>
                        ClosureData(const GenericSet<TSet1,int>& f, const GenericSet<TSet2,int>& df) : ParentClosureData(f,df), is_artificial(false), is_maximal(false) {}
                     template <typename TSet>
                        ClosureData(const GenericSet<TSet,int> &df, const int index) :
                           ParentClosureData(scalar2set(index), df), is_artificial(false), is_maximal(true) {}
                     template <typename TSet>
                        ClosureData(const GenericSet<TSet,int> &df) : ParentClosureData( Set<int>(), df), is_artificial(true), is_maximal(false) {}
                     ClosureData(const ParentClosureData& p) : ParentClosureData(p) {}
                     const bool inline is_artificial_node() const { return is_artificial; } 
                     const bool inline is_maximal_face() const { return is_maximal; }
               };

               ComplexClosure() { }

               const ClosureData compute_closure_data(const Decoration &face) const {
                  return ClosureData( BasicClosureOperator<Decoration>::compute_closure_data(face));
               }
         };

      template <typename Decoration = BasicDecoration>
         class ComplexDualClosure : public ComplexClosure<Decoration> {
             public:
               typedef typename ComplexClosure<Decoration>::ClosureData ClosureData;
              
               ComplexDualClosure() {}
               ComplexDualClosure(const IncidenceMatrix<>& maximal_cones, const Array<IncidenceMatrix<> >& maximal_vifs, const FacetList& facet_data) : 
                  maximal_cones(maximal_cones), 
                  maximal_cones_as_list(maximal_cones.cols(), entire(rows(maximal_cones))),
                  non_redundant_facets(facet_data),
                  is_complete(non_redundant_facets.size() == 0),
                  maximal_vifs(maximal_vifs),
                  default_intersector(is_complete? maximal_cones_as_list: non_redundant_facets) {
                     BasicClosureOperator<Decoration>::total_size = maximal_cones.cols();
                     BasicClosureOperator<Decoration>::total_set = 
                        sequence(0,BasicClosureOperator<Decoration>::total_size); 
                     BasicClosureOperator<Decoration>::total_data = 
                        ClosureData(BasicClosureOperator<Decoration>::total_set, Set<int>());
                  }

               const ClosureData closure_of_empty_set() const {
                  return ClosureData(sequence(0, get_maximal_cones().cols()+1));
               }

               const ClosureData compute_closure_data(const Decoration& face) const {
                  if(face.face.contains(-1))
                     return closure_of_empty_set();
                  else return ComplexClosure<Decoration>::compute_closure_data(face);
               }

               complex_closures_above_iterator<ComplexDualClosure> get_closure_iterator(const ClosureData& face) const {
                  const int df_size = face.get_dual_face().size();
                  //Default iterator
                  if(__builtin_expect(!face.is_artificial_node() && (!face.is_maximal_face() || is_complete) && !(df_size <= 2),1))
                     return complex_closures_above_iterator<ComplexDualClosure>(*this,face, 
                           entire(default_intersector));
                  //Artificial node
                  if(__builtin_expect(face.is_artificial_node(),0))
                     return complex_closures_above_iterator<ComplexDualClosure>(*this);
                  //Iterator for rays and twodimensional cones
                  if(__builtin_expect(df_size <= 2,0))
                     return complex_closures_above_iterator<ComplexDualClosure>(*this,face.get_dual_face());
                  //Iterator for facets of maximal cones
                  return complex_closures_above_iterator<ComplexDualClosure>(*this,
                        maximal_vifs[face.get_face().front()]);
               }

               const IncidenceMatrix<>& get_maximal_cones() const { return maximal_cones; }
               const FacetList& get_non_redundant_facets() const { return non_redundant_facets; }

             protected:
               const IncidenceMatrix<> maximal_cones;
               FacetList maximal_cones_as_list;
               const FacetList& non_redundant_facets;
               const bool is_complete;
               const Array<IncidenceMatrix<> > maximal_vifs;
               const FacetList& default_intersector;
         };

      template <typename Decoration = BasicDecoration>
         class ComplexPrimalClosure : public ComplexClosure<Decoration> {
            public:
               typedef typename ComplexClosure<Decoration>::ClosureData ClosureData;
              
               ComplexPrimalClosure() {}

               ComplexPrimalClosure(const IncidenceMatrix<>& complete_incidence) {
                     BasicClosureOperator<Decoration>::facets = complete_incidence;
                     BasicClosureOperator<Decoration>::total_size = complete_incidence.rows();
                     BasicClosureOperator<Decoration>::total_set = 
                        sequence(0,BasicClosureOperator<Decoration>::total_size); 
                     BasicClosureOperator<Decoration>::total_data = 
                        ClosureData(BasicClosureOperator<Decoration>::total_set, Set<int>());
                  }

               const ClosureData closure_of_empty_set() const {
                  return ClosureData(Set<int>(), sequence(0,BasicClosureOperator<Decoration>::facets.rows() + 1));
               }

               const ClosureData compute_closure_data(const Decoration& face) const {
                  if(face.face.size() == 0)
                     return closure_of_empty_set();
                  else return ComplexClosure<Decoration>::compute_closure_data(face);
               }

               complex_closures_above_iterator<ComplexPrimalClosure> get_closure_iterator(const ClosureData& face) const {
                  return complex_closures_above_iterator<ComplexPrimalClosure>(*this,face, entire(cols(BasicClosureOperator<Decoration>::facets)));
               }
         };

      //Complex decorator
      class BasicComplexDecorator : public BasicDecorator<ComplexClosure<>::ClosureData> {
         protected:
            const int artificial_rank;
            Map< Set<int>, int> max_combinatorial_dims;
            const bool full_set_is_artificial;
            const int n_vertices;
            const bool is_pure;
         public:
            typedef ComplexClosure<>::ClosureData FaceData;
            typedef BasicDecorator<FaceData> ParentType;
            using ParentType::total_size;
            using ParentType::initial_rank;
            using ParentType::built_dually;
            using ParentType::artificial_set;

            //Primal version
            BasicComplexDecorator(int comb_dim, const Set<int> artificial, bool full_set_is_artificial,
                  int n_vertices) :
               ParentType(0, artificial), artificial_rank(comb_dim +2),
               full_set_is_artificial(full_set_is_artificial),n_vertices(n_vertices), is_pure(false) {}

            //Dual version
            BasicComplexDecorator(IncidenceMatrix<> maximal_cones,
                  int comb_dim,
                  const Array<int>& max_comb_dims,
                  const Set<int> artificial, bool is_pure)
               : ParentType(maximal_cones.cols(), comb_dim+2, artificial), artificial_rank(0),
               full_set_is_artificial(false), n_vertices(0), is_pure(is_pure) {
                  if(!is_pure) {
                     auto md = entire(max_comb_dims);
                     for(auto mc = entire(rows(maximal_cones)); !mc.at_end(); ++mc, ++md) {
                        max_combinatorial_dims[*mc] = *md;
                     }
                  }
               }

            const BasicDecoration compute_initial_decoration(const FaceData &face) const {
               BasicDecoration data;
               data.rank = initial_rank;
               data.face = built_dually? artificial_set : face.get_face();
               return data;
            }

            const BasicDecoration compute_decoration(const FaceData& face,
                  const BasicDecoration& predecessor_data) const {
               BasicDecoration data;
               data.face = built_dually? face.get_dual_face() : face.get_face();
               if(full_set_is_artificial && data.face.size() == n_vertices) {
                  data.face = artificial_set;
                  data.rank = artificial_rank;
                  return data;
               }
               if(predecessor_data.rank == initial_rank && built_dually && !is_pure) data.rank = max_combinatorial_dims[data.face] + 1;
               else data.rank = predecessor_data.rank + (built_dually? -1 : 1);
               return data;
            }

            const BasicDecoration compute_artificial_decoration(const NodeMap<Directed, BasicDecoration> &decor,
                  const std::list<int>& max_nodes) const {
               if(built_dually)
                  return BasicDecoration( Set<int>(),0);
               else
                  return ParentType::compute_artificial_decoration(decor,max_nodes);
            }

      };


      struct TopologicalType {
         bool is_pure;                 // All maximal cells have the same dimension
         bool is_complete;             // Essentially means coatomic: Every cell is an intersection of maximal cells..
         TopologicalType() : is_pure(false), is_complete(false) {}
         TopologicalType(bool p_arg, bool c_arg) : is_pure(p_arg), is_complete(c_arg) {}
      };

   }//END namespace lattice

   perl::Object lower_hasse_diagram(perl::Object fan, int boundary_rank, bool is_pure, bool is_complete);

   /*
    * @brief Computes the Hasse diagram of a fan, polyhedral complex or simplicial complex
    * @param IncidenceMatrix maximal_cones The maximal cells
    * @param Array<InicidenceMatrix> maximal_vifs The facets of each maximal cell. Can be empty, if tt.is_complete is true
    * @param int top_combinatorial_dim The combinatorial dim of the (artificial) top face. Needed if built dually.
    * @param Array<int> maximal_dims The ranks of the maximal cells. Can be empty if tt.pure = true
    * @param RankRestriction rr. Whether the hasse diagram should only partially be computed (upwards or downwards) up to a certain dimension.
    * @param TopologicalType tt. Indicates whether the complex is pure and/or complete (the latter meaning, that the intersections of the maximal cells generate the full Hasse diagram).
    * @param Set<int> far_vertices. If not trivial, only the faces not intersecting this set are computed.
    */
   template <typename IMatrix>
      graph::Lattice<graph::lattice::BasicDecoration> hasse_diagram_general(
            const GenericIncidenceMatrix<IMatrix>& maximal_cones,
            const Array<IncidenceMatrix<> >& maximal_vifs,
            const int top_combinatorial_dim,
            const Array<int>& maximal_dims,
            lattice::RankRestriction rr,
            lattice::TopologicalType tt,
            const Set<int>& far_vertices) {
         using namespace graph::lattice_builder;
         using namespace fan::lattice;

         //Detect trivial rank restriction
         if(rr.rank_restricted)
            if( (rr.rank_restriction_type == lattice::RankCutType::GreaterEqual && rr.boundary_rank <= 0) ||
                  (rr.rank_restriction_type == lattice::RankCutType::LesserEqual && rr.boundary_rank >= top_combinatorial_dim + 2))
               rr.rank_restricted = false;         
         
         const int n_vertices = maximal_cones.cols();

         FacetList non_redundant_facets(n_vertices);
         if(!tt.is_complete)
            for(auto mvf : maximal_vifs) 
               for(auto fct = entire(rows(mvf)); !fct.at_end(); ++fct)
                  non_redundant_facets.replaceMax(*fct);
         const bool is_dual = 
            !(rr.rank_restricted && rr.rank_restriction_type == lattice::RankCutType::LesserEqual)
            && far_vertices.size() == 0;
         
         RestrictedIncidenceMatrix<> building_matrix;
         if(!is_dual) {
            building_matrix /= maximal_cones;
            for(auto nrf = entire(non_redundant_facets); !nrf.at_end(); ++nrf)
               building_matrix /= *nrf;
         }

         const ComplexPrimalClosure<> primal_cop(IncidenceMatrix<>(std::move(building_matrix)));
         const ComplexDualClosure<> dual_cop(maximal_cones, maximal_vifs, non_redundant_facets);
         
         const Set<int> artificial_set = scalar2set(-1);
         const lattice::BasicComplexDecorator dec = is_dual?
            lattice::BasicComplexDecorator(maximal_cones, top_combinatorial_dim, maximal_dims, scalar2set(-1), tt.is_pure) :
            lattice::BasicComplexDecorator(top_combinatorial_dim, artificial_set, maximal_cones.rows() > 1 && far_vertices.size() == 0, n_vertices);





         //Plain version
         if(!rr.rank_restricted && far_vertices.size() == 0) {
            //For a complete complex in dual mode, we need an artificial final (i.e. bottom) node, if the
            //intersection of all cones is a vertex.
            //Note that in primal mode, if there are at least two maximal cones,
            //the artificial top node is created automatically as a closure.
            bool need_artificial_node = is_dual?
               tt.is_complete && !accumulate(rows(maximal_cones), operations::mul()).empty() :
               maximal_cones.rows() == 1;
            return is_dual? 
               compute_lattice_from_closure<lattice::BasicDecoration>(dual_cop,
                  lattice::TrivialCut<lattice::BasicDecoration>(),
                  dec, need_artificial_node, Dual()) :
               compute_lattice_from_closure<lattice::BasicDecoration>(primal_cop,
                     lattice::TrivialCut<lattice::BasicDecoration>(),
                     dec, need_artificial_node, Primal());
         }
         //Bounded version
         if(far_vertices.size() > 0) {
            typedef lattice::SetAvoidingCut<lattice::BasicDecoration> setcut;
            typedef lattice::RankCut<lattice::BasicDecoration, lattice::RankCutType::LesserEqual> rankcut;
            setcut bounded_cut(far_vertices);
            rankcut rank_cut(rr.boundary_rank);
            lattice::CutAnd<setcut, rankcut> combined_cut(bounded_cut, rank_cut);
            if(rr.rank_restricted)
               return compute_lattice_from_closure<lattice::BasicDecoration>(primal_cop,
                     combined_cut, dec, true, Primal());
            else
               return compute_lattice_from_closure<lattice::BasicDecoration>(primal_cop,
                     bounded_cut, dec, true, Primal());

         }
         //Rank-restricted version
			typedef lattice::NotFullSetCut<lattice::BasicDecoration> NFSCut;
			typedef lattice::RankCut<lattice::BasicDecoration, lattice::RankCutType::LesserEqual> LCut;
			typedef lattice::RankCut<lattice::BasicDecoration, lattice::RankCutType::GreaterEqual> GCut;
         NFSCut nfSetCut(n_vertices);
			LCut lesser_cut(rr.boundary_rank);
         GCut greater_cut(rr.boundary_rank);
         return rr.rank_restriction_type == lattice::RankCutType::GreaterEqual?
            compute_lattice_from_closure<lattice::BasicDecoration>(dual_cop,
                  lattice::CutAnd<NFSCut, GCut>(nfSetCut,greater_cut), dec, true, Dual()) :
            compute_lattice_from_closure<lattice::BasicDecoration>(primal_cop,
                  lattice::CutAnd<NFSCut, LCut>(nfSetCut,lesser_cut), dec, true, Primal());
      }

}}

#endif