/usr/include/polymake/graph/GraphIso.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GRAPH_GRAPHISO_H
#define POLYMAKE_GRAPH_GRAPHISO_H
#include "polymake/GenericGraph.h"
#include "polymake/GenericIncidenceMatrix.h"
#include "polymake/Array.h"
#include "polymake/Map.h"
#include "polymake/vector"
#include "polymake/list"
namespace polymake { namespace graph {
//! An opaque graph representation for libraries checking for isomorphism (nauty, bliss)
class GraphIso {
struct impl;
impl *p_impl;
int n_autom;
std::list<Array<int>> autom;
static impl *alloc_impl(int n_nodes, bool is_directed, bool is_colored=false);
void add_edge(int from, int to);
void partition(int at);
void next_color(std::pair<int, int>& c);
void copy_colors(const GraphIso& g1);
void set_node_color(int i, std::pair<int, int>& c);
void finalize(bool gather_automorphisms);
template <typename TMatrix>
void fill(const GenericIncidenceMatrix<TMatrix>& M)
{
for (auto r=entire(rows(M)); !r.at_end(); ++r)
for (auto c=entire(*r); !c.at_end(); ++c)
add_edge(r.index(), *c);
}
template <typename TMatrix, typename Iterator>
void fill_renumbered(const GenericIncidenceMatrix<TMatrix>& M, int d, Iterator iit)
{
std::vector<int> renumber(d);
for (int i=0; !iit.at_end(); ++iit, ++i)
renumber[iit.index()]=i;
for (auto r=entire(rows(M)); !r.at_end(); ++r)
for (auto c=entire(*r); !c.at_end(); ++c)
add_edge(renumber[r.index()], renumber[*c]);
}
template <typename TGraph>
void fill(const GenericGraph<TGraph>& G)
{
if (G.top().has_gaps())
fill_renumbered(adjacency_matrix(G), G.top().dim(), entire(nodes(G)));
else
fill(adjacency_matrix(G));
}
public:
GraphIso()
: p_impl(0)
, n_autom(0) {}
template <typename TGraph>
explicit GraphIso(const GenericGraph<TGraph>& G, bool gather_automorphisms=false)
: p_impl(alloc_impl(G.nodes(), G.is_directed))
, n_autom(0)
{
fill(G);
finalize(gather_automorphisms);
}
// non-symmetrical incidence matrix
template <typename TMatrix>
explicit GraphIso(const GenericIncidenceMatrix<TMatrix>& M,
typename std::enable_if<!TMatrix::is_symmetric, bool>::type gather_automorphisms=false)
: p_impl(alloc_impl(M.rows()+M.cols(), false))
, n_autom(0)
{
if (int rnode=M.cols()) {
partition(rnode);
for (auto r=entire(rows(M)); !r.at_end(); ++r, ++rnode)
for (auto c=entire(*r); !c.at_end(); ++c) {
add_edge(rnode, *c);
add_edge(*c, rnode);
}
}
finalize(gather_automorphisms);
}
// symmetrical incidence matrix
template <typename TMatrix>
explicit GraphIso(const GenericIncidenceMatrix<TMatrix>& M,
typename std::enable_if<TMatrix::is_symmetric, bool>::type gather_automorphisms=false)
: p_impl(alloc_impl(M.rows(), true))
, n_autom(0)
{
// there can be ones on the diagonal, which correspond to the loops in the graph;
// nauty and bliss require the graph to be declared as directed in this case
fill(M);
finalize(gather_automorphisms);
}
~GraphIso();
bool operator== (const GraphIso& g2) const;
bool operator!= (const GraphIso& g2) const { return !operator==(g2); }
private:
static void incr_color_count(std::pair<int,int>& p)
{
++p.first; ++p.second;
}
public:
template <typename TGraph1, typename Colors1, typename TGraph2, typename Colors2>
static bool prepare_colored(GraphIso& GI1, const GenericGraph<TGraph1>& G1, const Colors1& colors1,
GraphIso& GI2, const GenericGraph<TGraph2>& G2, const Colors2& colors2);
template <typename TGraph, typename Colors>
static bool prepare_colored(GraphIso& GI, const GenericGraph<TGraph>& G, const Colors& colors);
Array<int> find_permutation(const GraphIso& g2) const;
std::pair<Array<int>, Array<int>> find_permutations(const GraphIso& g2, int n_cols) const;
int n_automorphisms() const { return n_autom; }
const std::list<Array<int>>& automorphisms() const { return autom; }
Array<int> canonical_perm() const;
long hash(long key) const;
};
template <typename TGraph1, typename TGraph2> inline
bool isomorphic(const GenericGraph<TGraph1>& G1, const GenericGraph<TGraph2>& G2)
{
if (G1.is_directed != G2.is_directed || G1.nodes() != G2.nodes())
return false;
if (G1.nodes() <= 1)
return true;
GraphIso GI1(G1), GI2(G2);
return GI1==GI2;
}
template <typename TGraph1, typename Colors1, typename TGraph2, typename Colors2> inline
typename std::enable_if<std::is_same<typename Colors1::value_type, typename Colors2::value_type>::value, bool>::type
isomorphic(const GenericGraph<TGraph1>& G1, const Colors1& colors1,
const GenericGraph<TGraph2>& G2, const Colors2& colors2)
{
if (G1.is_directed != G2.is_directed || G1.nodes() != G2.nodes())
return false;
if (G1.nodes() <= 1)
return G1.nodes()==0 || colors1.front()==colors2.front();
GraphIso GI1, GI2;
return GraphIso::prepare_colored(GI1, G1, colors1, GI2, G2, colors2) && GI1==GI2;
}
template <typename TGraph1, typename TGraph2> inline
Array<int> find_node_permutation(const GenericGraph<TGraph1>& G1, const GenericGraph<TGraph2>& G2)
{
if (G1.is_directed != G2.is_directed)
throw no_match("graphs of different kind");
if (G1.nodes() != G2.nodes())
throw no_match("graphs of different size");
if (G1.nodes() <= 1)
return Array<int>(G1.nodes(), 0);
GraphIso GI1(G1), GI2(G2);
return GI1.find_permutation(GI2);
}
template <typename TGraph1, typename Colors1, typename TGraph2, typename Colors2> inline
typename std::enable_if<std::is_same<typename Colors1::value_type, typename Colors2::value_type>::value, Array<int>>::type
find_node_permutation(const GenericGraph<TGraph1>& G1, const Colors1& colors1,
const GenericGraph<TGraph2>& G2, const Colors2& colors2)
{
if (G1.is_directed != G2.is_directed)
throw no_match("graphs of different kind");
if (G1.nodes() != G2.nodes())
throw no_match("graphs of different size");
if (G1.nodes() <= 1) {
if (G1.nodes() == 1 && colors1.front() != colors2.front())
throw no_match("different colors");
return Array<int>(G1.nodes(), 0);
}
GraphIso GI1, GI2;
if (GraphIso::prepare_colored(GI1, G1, colors1, GI2, G2, colors2))
return GI1.find_permutation(GI2);
else
throw no_match("different colors");
}
template <typename TGraph> inline
Array< Array<int> > automorphisms(const GenericGraph<TGraph>& G)
{
GraphIso GI(G, true);
return Array< Array<int> >(GI.n_automorphisms(), GI.automorphisms().begin());
}
template <typename TGraph, typename Colors> inline
Array< Array<int> > automorphisms(const GenericGraph<TGraph>& G, const Colors& colors)
{
GraphIso GI;
GraphIso::prepare_colored(GI, G, colors);
return Array< Array<int> >(GI.n_automorphisms(), GI.automorphisms().begin());
}
template <typename TGraph> inline
int n_automorphisms(const GenericGraph<TGraph>& G)
{
GraphIso GI(G, true);
return GI.n_automorphisms();
}
template <typename TGraph, typename Colors> inline
int n_automorphisms(const GenericGraph<TGraph>& G, const Colors& colors)
{
GraphIso GI;
GraphIso::prepare_colored(GI,G,colors);
return GI.n_automorphisms();
}
template <typename TMatrix1, typename TMatrix2> inline
typename std::enable_if<TMatrix1::is_symmetric==TMatrix2::is_symmetric, bool>::type
isomorphic(const GenericIncidenceMatrix<TMatrix1>& M1, const GenericIncidenceMatrix<TMatrix2>& M2)
{
if (M1.rows() != M2.rows() || (!TMatrix1::is_symmetric && M1.cols() != M2.cols()))
return false;
if (M1.rows() == 0 || (!TMatrix1::is_symmetric && M1.cols() == 0))
return true;
GraphIso GI1(M1), GI2(M2);
return GI1==GI2;
}
template <typename TMatrix1, typename TMatrix2> inline
typename std::enable_if<TMatrix1::is_symmetric && TMatrix2::is_symmetric, Array<int>>::type
find_row_permutation(const GenericIncidenceMatrix<TMatrix1>& M1, const GenericIncidenceMatrix<TMatrix2>& M2)
{
if (M1.rows() != M2.rows())
throw no_match("matrices of different dimensions");
if (M1.rows() == 0)
return Array<int>();
GraphIso GI1(M1), GI2(M2);
return GI1.find_permutation(GI2);
}
template <typename TMatrix1, typename TMatrix2> inline
typename std::enable_if<!TMatrix1::is_symmetric && !TMatrix2::is_symmetric, std::pair<Array<int>, Array<int>>>::type
find_row_col_permutation(const GenericIncidenceMatrix<TMatrix1>& M1, const GenericIncidenceMatrix<TMatrix2>& M2)
{
if (M1.rows() != M2.rows() || M1.cols() != M2.cols())
throw no_match("matrices of different dimensions");
if (M1.rows() == 0 && M1.cols() == 0)
return std::pair< Array<int>, Array<int> >();
GraphIso GI1(M1), GI2(M2);
return GI1.find_permutations(GI2, M1.cols());
}
template <typename TMatrix> inline
typename std::enable_if<TMatrix::is_symmetric, Array<Array<int>>>::type
automorphisms(const GenericIncidenceMatrix<TMatrix>& M)
{
GraphIso GI(M, true);
return Array< Array<int> >(GI.n_automorphisms(), GI.automorphisms().begin());
}
template <typename Matrix>
typename std::enable_if<!Matrix::is_symmetric, Array<std::pair<Array<int>, Array<int>>>>::type
automorphisms(const GenericIncidenceMatrix<Matrix>& M)
{
GraphIso GI(M, true);
Array<std::pair<Array<int>, Array<int>>> result(GI.n_automorphisms());
std::list< Array<int> >::const_iterator p=GI.automorphisms().begin();
const int n_rows=M.rows(), n_cols=M.cols();
sequence rows(n_cols, n_rows), cols(0, n_cols);
for (auto r=entire(result); !r.at_end(); ++r, ++p) {
r->first.append(n_rows, translate(select(*p,rows), -n_cols).begin());
r->second.append(n_cols, select(*p,cols).begin());
}
return result;
}
template <typename TGraph1, typename Colors1, typename TGraph2, typename Colors2>
bool GraphIso::prepare_colored(GraphIso& GI1, const GenericGraph<TGraph1>& G1, const Colors1& colors1,
GraphIso& GI2, const GenericGraph<TGraph2>& G2, const Colors2& colors2)
{
const int n=G1.nodes();
GI1.p_impl=alloc_impl(n, G1.is_directed, true);
GI2.p_impl=alloc_impl(n, G2.is_directed, true);
typedef Map<typename Colors1::value_type, std::pair<int, int> > color_map_type;
color_map_type color_map;
// count the nodes per color in the first graph
for (auto c=entire(colors1); !c.at_end(); ++c)
incr_color_count(color_map[*c]);
// compare the counts with the second graph; all must gown to zero, otherwise the graphs are not isomoprhic
for (auto c=entire(colors2); !c.at_end(); ++c)
if (--color_map[*c].second < 0)
return false;
for (auto cm=color_map.begin(); !cm.at_end(); ++cm)
GI1.next_color(cm->second);
GI2.copy_colors(GI1);
for (auto c=ensure(colors1, (pm::cons<pm::end_sensitive, pm::indexed>*)0).begin(); !c.at_end(); ++c)
GI1.set_node_color(c.index(), color_map[*c]);
for (auto c=ensure(colors2, (pm::cons<pm::end_sensitive, pm::indexed>*)0).begin(); !c.at_end(); ++c)
GI2.set_node_color(c.index(), color_map[*c]);
GI1.fill(G1); GI1.finalize(false);
GI2.fill(G2); GI2.finalize(false);
return true;
}
template <typename TGraph, typename Colors>
bool GraphIso::prepare_colored(GraphIso& GI, const GenericGraph<TGraph>& G, const Colors& colors)
{
const int n=G.nodes();
GI.p_impl=alloc_impl(n, G.is_directed, true);
typedef Map<typename Colors::value_type, std::pair<int, int> > color_map_type;
color_map_type color_map;
for (auto c=entire(colors); !c.at_end(); ++c)
++(color_map[*c].first);
for (auto cm=color_map.begin(); !cm.at_end(); ++cm)
GI.next_color(cm->second);
for (auto c=ensure(colors, (pm::cons<pm::end_sensitive, pm::indexed>*)0).begin(); !c.at_end(); ++c)
GI.set_node_color(c.index(), color_map[*c]);
GI.fill(G); GI.finalize(true);
return true;
}
template <typename TGraph> inline
typename TGraph::persistent_type canonical_form(const GenericGraph<TGraph>& G)
{
if (G.nodes() <= 1)
return G;
GraphIso GI(G);
if (G.top().has_gaps())
return permuted_nodes(renumber_nodes(G),GI.canonical_perm());
else
return permuted_nodes(G, GI.canonical_perm());
}
template <typename TGraph> inline
long canonical_hash(const GenericGraph<TGraph>& G, long k)
{
GraphIso GI(G);
return GI.hash(k);
}
template <typename TMatrix> inline
long canonical_hash(const GenericIncidenceMatrix<TMatrix>& M, long k)
{
GraphIso GI(M);
return GI.hash(k);
}
} }
#endif // POLYMAKE_GRAPH_GRAPHISO_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|