/usr/include/polymake/internal/AVL.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
/** @file AVL.h
@brief This file contains the namespace pm::AVL
*/
#ifndef POLYMAKE_INTERNAL_AVL_H
#define POLYMAKE_INTERNAL_AVL_H
#include "polymake/internal/iterators.h"
#include "polymake/internal/comparators.h"
#if POLYMAKE_DEBUG
# include <iostream>
# include "polymake/GenericIO.h"
#endif
#include <memory>
#include <algorithm>
#include <cassert>
namespace pm {
/// special tags for find_nearest denoting the first and last occurrence of a given key in a multi-set
struct first_of_equal {};
struct last_of_equal {};
/// traits classes and such related to balanced trees
namespace AVL {
enum link_index { L=-1, P=0, R=1 };
/** Bit fields in \\ptr\\
The nodes are assumed to be allocated at addresses aligned to the word boundary.
Thus the lowest two bits of the address are always zero and so can be used for storing
of various flags.
*/
enum Ptr_flags {
NONE=0,
SKEW=1, // the subtree under this link is taller than the opposite one
LEAF=2, // the node pointed to is not the child of this node; it is a thread pointer
END=SKEW|LEAF, // the node pointed to is an apparent node in the tree head
LINK=(-1UL & ~END) // the rest bits hold the address
};
/// Pointer class
template <typename Node>
class Ptr {
private:
unsigned long ptr;
public:
explicit Ptr(Node* n=NULL) : ptr(reinterpret_cast<unsigned long>(n)) {}
Ptr(Node *n, Ptr_flags flags) : ptr(reinterpret_cast<unsigned long>(n) | flags) {}
Ptr& set(Node *n, Ptr_flags flags)
{
ptr = reinterpret_cast<unsigned long>(n) | flags;
return *this;
}
Ptr& set(Ptr_flags flags)
{
(ptr &= LINK) |= flags;
return *this;
}
Ptr& clear(Ptr_flags flags)
{
ptr &= ~flags;
return *this;
}
Ptr& set(Node *n)
{
ptr = reinterpret_cast<unsigned long>(n) | (ptr & END);
return *this;
}
operator Node* () const { return reinterpret_cast<Node*>(ptr & LINK); }
Node* get_node() const { return reinterpret_cast<Node*>(ptr & LINK); }
operator bool() const { return ptr; }
bool operator! () const { return !ptr; }
Ptr& operator= (Node *n)
{
ptr = reinterpret_cast<unsigned long>(n);
return *this;
}
Ptr_flags leaf() const { return Ptr_flags(ptr & LEAF); }
Ptr_flags skew() const { return Ptr_flags(ptr & SKEW); }
bool skew_strict() const { return (ptr & END)==SKEW; }
bool end() const { return (ptr & END)==END; }
link_index direction() const
{
return link_index((signed long)(ptr << sizeof(ptr)*8-2) >> sizeof(ptr)*8-2);
}
Ptr& set_direction(Node *n, link_index X)
{
ptr = reinterpret_cast<unsigned long>(n) | (X & (SKEW|LEAF));
return *this;
}
bool operator== (Node *n) const
{
return static_cast<Node*>(*this) == n;
}
bool operator== (const Ptr& p) const
{
return static_cast<Node*>(*this) == static_cast<Node*>(p);
}
bool operator!= (Node *n) const
{
return !(*this==n);
}
bool operator!= (const Ptr& p) const
{
return !(*this==p);
}
/// descend to the leaf in the given direction
template <typename Traits>
void traverse_to_leaf(const Traits& t, link_index Dir)
{
Ptr n2;
while (! (n2=t.link(*this,Dir)).leaf())
*this=n2;
}
template <typename Traits>
Ptr& traverse(const Traits& t, link_index Dir)
{
*this=t.link(*this,Dir);
if (!leaf()) traverse_to_leaf(t,link_index(-Dir));
return *this;
}
/// move to the next (dir==R) or previous (dir==L) node.
template <typename Traits>
friend Ptr traverse(Ptr n, const Traits& t, link_index Dir)
{
return n.traverse(t,Dir);
}
};
template <typename Traits> class tree;
template <typename Traits, link_index Dir>
class tree_iterator : public deref<Traits>::type {
public:
typedef typename deref<Traits>::type traits;
typedef bidirectional_iterator_tag iterator_category;
typedef typename traits::Node value_type;
typedef typename inherit_const<value_type, Traits>::type& reference;
typedef typename inherit_const<value_type, Traits>::type* pointer;
typedef ptrdiff_t difference_type;
typedef tree_iterator<traits,Dir> iterator;
typedef tree_iterator<const traits,Dir> const_iterator;
protected:
/// pointer to the current node
Ptr<value_type> cur;
static const link_index Oppos=link_index(-Dir);
typedef const tree_iterator<Traits,Oppos> reverse_iterator;
typedef typename inherit_const<tree_iterator<traits,Oppos>, Traits>::type alt_reverse_iterator;
public:
tree_iterator() {}
tree_iterator(const traits& arg, const Ptr<value_type>& cur_arg)
: traits(arg), cur(cur_arg) {}
tree_iterator(const traits& arg, pointer cur_arg)
: traits(arg), cur(cur_arg) {}
tree_iterator(const iterator& it)
: traits(it), cur(it.cur) {}
tree_iterator(reverse_iterator& it)
: traits(it), cur(it.cur) {}
tree_iterator(alt_reverse_iterator& it)
: traits(it), cur(it.cur) {}
tree_iterator& operator= (const iterator& it)
{
static_cast<traits&>(*this)=it;
cur=it.cur;
return *this;
}
tree_iterator& operator= (reverse_iterator& it)
{
static_cast<traits&>(*this)=it;
cur=it.cur;
return *this;
}
tree_iterator& operator= (alt_reverse_iterator& it)
{
static_cast<traits&>(*this)=it;
cur=it.cur;
return *this;
}
reference operator* () const { return *cur; }
pointer operator-> () const { return cur; }
tree_iterator& operator++ ()
{
cur.traverse(*this,Dir);
return *this;
}
tree_iterator& operator-- ()
{
cur.traverse(*this,link_index(-Dir));
return *this;
}
const tree_iterator operator++ (int) { tree_iterator copy=*this; operator++(); return copy; }
const tree_iterator operator-- (int) { tree_iterator copy=*this; operator--(); return copy; }
template <link_index Dir2>
bool operator== (const tree_iterator<traits,Dir2>& it) const { return cur==it.cur; }
template <link_index Dir2>
bool operator== (const tree_iterator<const traits,Dir2>& it) const { return cur==it.cur; }
template <link_index Dir2>
bool operator!= (const tree_iterator<traits,Dir2>& it) const { return cur!=it.cur; }
template <link_index Dir2>
bool operator!= (const tree_iterator<const traits,Dir2>& it) const { return cur!=it.cur; }
bool at_end() const { return cur.end(); }
template <typename,link_index> friend class tree_iterator;
template <typename> friend class tree;
};
/** @class tree
@brief balanced binary search tree
An AVL tree is a kind of balanced binary search tree, allowing for
logarithmic time element find, insert, and delete operations. AVL trees
are thoroughly discussed in D.E. Knuth's The Art of Computer Programming,
Vol. III, 6.2.3, pp 465ff;
http://www-cs-staff.stanford.edu/~knuth/taocp.html
AVL trees play the same role in the polymake library that the red-black
trees have in STL: a basis for the associative container classes. The
current implementation differs from the red-black trees in following
details:
- In the leaf nodes so called thread pointers to the lexicographically
next and previous tree nodes are maintained. This reduces the amortized
tree traversal time by approximately 50%.
- The key lookup procedure uses the comparator functor operations::cmp
instead of @c std::less, achieving the acceleration by 1.5 times in
average for non-trivial key types.
- A tree created from a preordered key sequence is kept as a double-linked
list up to the first random access operation (key search). Since some
container objects are accessed only in sequential traversal loops during
all their lifetime, this eliminates the overhead of rebalancing the tree
at its creation stage. The list-to-tree conversion takes linear time and
don't involve rebalancing at all.
*/
template <typename Traits>
class tree : public Traits {
public:
typedef Traits tree_traits;
typedef tree tree_type;
typedef typename Traits::Node Node;
typedef typename Traits::key_type key_type;
typedef typename Traits::key_comparator_type key_comparator_type;
typedef typename Traits::node_allocator_type node_allocator_type;
protected:
typedef AVL::Ptr<Node> Ptr;
private:
/// direct assignment is forbidden
void operator= (const tree&) = delete;
/** Recursive procedure making an exact copy of the tree.
@param n root node of the subtree to be cloned
@param lthread previous node in the new tree
@param rthread next node in the new tree
@return the root node of the subtree copy.
*/
Node* clone_tree(Node *n, Ptr lthread, Ptr rthread)
{
Node *copy=this->clone_node(n);
if (this->link(n,L).leaf()) {
if (!lthread) {
this->link(this->head_node(),R).set(copy,LEAF);
lthread=end_node();
}
this->link(copy,L)=lthread;
} else {
Node *lc=clone_tree(this->link(n,L), lthread, Ptr(copy,LEAF));
this->link(copy,L).set(lc, this->link(n,L).skew());
this->link(lc,P).set_direction(copy,L);
}
if (this->link(n,R).leaf()) {
if (!rthread) {
this->link(this->head_node(),L).set(copy,LEAF);
rthread=end_node();
}
this->link(copy,R)=rthread;
} else {
Node *rc=clone_tree(this->link(n,R), Ptr(copy,LEAF), rthread);
this->link(copy,R).set(rc, this->link(n,R).skew());
this->link(rc,P).set_direction(copy,R);
}
return copy;
}
/** Recursive procedure converting the list fragment to the AVL subtree.
@param left left neighbour of the leftmost leaf of the subtree to be built
@return pair(root, rightmost leaf) of the subtree
*/
pair<Node*,Node*> treeify(Node *left, int n) const
{
if (n<=2) {
Node *cur=this->link(left,R);
if (n==2) {
left=cur;
cur=this->link(left,R);
this->link(cur,L).set(left,SKEW);
this->link(left,P).set_direction(cur,L);
}
return pair<Node*,Node*>(cur,cur);
}
pair<Node*, Node*> subtree=treeify(left, (n-1)/2);
Node *root=this->link(subtree.second,R);
this->link(root,L)=subtree.first;
this->link(subtree.first,P).set_direction(root,L);
subtree=treeify(root, n/2);
this->link(root,R).set(subtree.first, Ptr_flags(!(n&(n-1))) /* SKEW if n is a power of 2 */);
this->link(subtree.first,P).set_direction(root,R);
return pair<Node*, Node*>(root,subtree.second);
}
/** Converts the list structure to the AVL tree.
The conversion is performed by relinking some pointers,
the nodes are neither copied nor moved around in the storage.
*/
void treeify() const
{
Node *root=treeify(this->head_node(),n_elem).first;
this->link(this->head_node(),P)=root;
this->link(root,P).set_direction(this->head_node(),P);
}
Ptr root_node() const { return this->link(this->head_node(),P); }
Ptr first() const { return this->link(this->head_node(),R); }
Ptr last() const { return this->link(this->head_node(),L); }
Ptr end_node() const { return Ptr(this->head_node(), END); }
friend class AVL::tree_iterator<typename Traits::traits_for_iterator, R>;
friend class AVL::tree_iterator<const typename Traits::traits_for_iterator, R>;
friend class AVL::tree_iterator<typename Traits::traits_for_iterator, L>;
friend class AVL::tree_iterator<const typename Traits::traits_for_iterator, L>;
public:
void* allocate_node() { return this->node_allocator.allocate(1); }
/// true if object is really a tree (and not a list)
bool tree_form() const { return root_node(); }
typedef typename Traits::traits_for_iterator traits_for_iterator;
typedef AVL::tree_iterator<traits_for_iterator, R> iterator;
typedef AVL::tree_iterator<const traits_for_iterator, R> const_iterator;
typedef AVL::tree_iterator<traits_for_iterator, L> reverse_iterator;
typedef AVL::tree_iterator<const traits_for_iterator, L> const_reverse_iterator;
typedef Node value_type;
typedef Node& reference;
typedef const Node& const_reference;
iterator begin()
{
return iterator(this->get_it_traits(), first());
}
iterator end()
{
return iterator(this->get_it_traits(), end_node());
}
const_iterator begin() const
{
return const_iterator(this->get_it_traits(), first());
}
const_iterator end() const
{
return const_iterator(this->get_it_traits(), end_node());
}
reverse_iterator rbegin()
{
return reverse_iterator(this->get_it_traits(), last());
}
reverse_iterator rend()
{
return reverse_iterator(this->get_it_traits(), end_node());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(this->get_it_traits(), last());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(this->get_it_traits(), end_node());
}
private:
template <typename Key, typename Comparator>
pair<Ptr,link_index> _do_find_descend(const Key& k, const Comparator& comparator) const
{
Ptr cur;
if (!tree_form()) {
// quick test whether one of the list ends matches
cur=last();
cmp_value c=comparator(k, this->key(*cur));
if (c>=0 ||
n_elem==1 ||
(cur=first(), c=comparator(k, this->key(*cur)))<=0)
return pair<Ptr,link_index>(cur,link_index(c));
treeify();
}
link_index Down;
cur=root_node();
typename Diligent<const Key&>::type K=diligent(k);
while (1) {
Down=link_index(comparator(K, this->key(*cur)));
if (Down==P ||
this->link(cur,Down).leaf()) break;
cur=this->link(cur,Down);
}
return pair<Ptr,link_index>(cur,Down);
}
template <typename Key, typename Comparator>
pair<Ptr,link_index> find_descend(const Key& k, const Comparator& comparator) const
{
return _do_find_descend(k,comparator);
}
template <typename Key, typename Data, typename Comparator>
pair<Ptr,link_index> find_descend(const pair<Key,Data>& p, const Comparator& comparator) const
{
return _do_find_descend(pair_init_first<key_type>(p),comparator);
}
Node* insert_first(Node *n)
{
this->link(this->head_node(),L)=this->link(this->head_node(),R).set(n,LEAF);
this->link(n,R)=this->link(n,L)=end_node();
n_elem=1;
return n;
}
template <typename Key>
void assign_node(Node&, const Key&, std::false_type) {}
template <typename Key, typename Data>
void assign_node(Node& n, const pair<Key, Data>& p, std::true_type)
{
Traits::data(n)=p.second;
}
struct assign_op {
template <typename Dst, typename Src>
void operator() (Dst& dst, const Src& src) const { dst=src; }
};
template <typename Key>
Node* find_insert(const Key& k)
{
if (!n_elem) return insert_first(this->create_node(k));
pair<Ptr,link_index> p=find_descend(k, this->key_comparator);
if (p.second==P) {
assign_node(*p.first, k, bool_constant<isomorphic_to_first<key_type, Key>::value>());
return p.first;
}
++n_elem;
Node *n=this->create_node(k);
insert_rebalance(n,p.first,p.second);
return n;
}
template <typename Key, typename Data, typename Operation>
Node* find_insert(const Key& k, const Data& d, const Operation& op)
{
if (!n_elem) return insert_first(this->create_node(k,d));
pair<Ptr,link_index> p=find_descend(k, this->key_comparator);
if (p.second==P) {
op(Traits::data(*p.first), d);
return p.first;
}
++n_elem;
Node *n=this->create_node(k,d);
insert_rebalance(n, p.first, p.second);
return n;
}
void insert_rebalance(Node *n, Node *parent, link_index Down);
void remove_rebalance(Node *n);
template <typename Key, typename Comparator>
Ptr find_node(const Key& k, const Comparator& comparator) const
{
if (!n_elem) return end_node();
pair<Ptr,link_index> p=find_descend(k, comparator);
return p.second==P ? p.first : end_node();
}
private:
void find_last_equal(Ptr& cur, link_index Dir) const
{
Ptr next;
while (!this->link(cur,Dir).end()) {
next=traverse(cur,*this,Dir);
if (this->key_comparator(this->key(*cur), this->key(*next)) == cmp_eq)
cur=next;
else
break;
}
}
public:
template <typename Key, typename RelOp>
Ptr find_nearest_node(const Key& k, const RelOp&) const
{
if (n_elem) {
if (is_instance_of<Key, maximal>::value) {
if (is_among<RelOp, polymake::operations::le, polymake::operations::lt>::value)
return last();
else
return end_node();
}
if (is_instance_of<Key, minimal>::value) {
if (is_among<RelOp, polymake::operations::ge, polymake::operations::gt>::value)
return first();
else
return end_node();
}
pair<Ptr,link_index> p=find_descend(k, this->key_comparator);
switch (p.second) {
case P:
if (Traits::allow_multiple) {
if (is_among<RelOp, last_of_equal, polymake::operations::ge, polymake::operations::gt>::value)
find_last_equal(p.first, R);
if (is_among<RelOp, first_of_equal, polymake::operations::le, polymake::operations::lt>::value)
find_last_equal(p.first, L);
}
if (std::is_same<RelOp, polymake::operations::gt>::value)
p.first.traverse(*this,R);
if (std::is_same<RelOp, polymake::operations::lt>::value)
p.first.traverse(*this,L);
return p.first;
case R:
if (is_among<RelOp, polymake::operations::le, polymake::operations::lt>::value)
return p.first;
if (is_among<RelOp, polymake::operations::ge, polymake::operations::gt>::value)
return p.first.traverse(*this,R);
break;
case L:
if (is_among<RelOp, polymake::operations::ge, polymake::operations::gt>::value)
return p.first;
if (is_among<RelOp, polymake::operations::le, polymake::operations::lt>::value)
return p.first.traverse(*this,L);
break;
}
}
return end_node();
}
template <typename Key, typename RelOp, typename Comparator>
Ptr find_nearest_node(const Key& k, const RelOp&, const Comparator& comparator) const
{
Ptr found=end_node();
const link_index Left= is_among<RelOp, polymake::operations::ge, polymake::operations::gt>::value ? L : R,
Right=link_index(-Left);
link_index Down;
if (n_elem) {
typename unary_op_builder< operations::fix2<cmp_value, RelOp>, const cmp_value*>::operation good(cmp_eq);
if (!tree_form()) { // we have the list form - test the ends
if (good(comparator(this->key(*this->link(this->head_node(),Right)), k)))
// the first node satisfies
return this->link(this->head_node(),Right);
if (n_elem==1 || !good(comparator(this->key(*this->link(this->head_node(),Left)), k)))
// the last node does not satisfy
return found;
treeify();
}
typename Diligent<const Key&>::type K=diligent(k);
Ptr cur=root_node();
do {
const cmp_value diff=comparator(this->key(*cur), K);
if (good(diff)) {
found=cur;
Down=Left;
} else {
Down=Right;
}
} while (!(cur=this->link(cur,Down)).leaf());
}
return found;
}
// Down==L : before next
// Down==R : after next
Node* insert_node_at(Ptr next, link_index Down, Node *n)
{
#ifndef NDEBUG
{
const Ptr other= traverse(next,*this,Down),
lft= Down==L ? other : next,
rgt= Down==L ? next : other;
assert(lft.end() || this->key_comparator(this->key(*lft), this->key(*n)) <= (Traits::allow_multiple ? cmp_eq : cmp_lt));
assert(rgt.end() || this->key_comparator(this->key(*n), this->key(*rgt)) <= (Traits::allow_multiple ? cmp_eq : cmp_lt));
}
#endif
++n_elem;
if (!tree_form()) {
Ptr other=this->link(next,Down);
this->link(n,Down)=other;
this->link(n,link_index(-Down))=next;
this->link(other,link_index(-Down))=this->link(next,Down).set(n,LEAF);
} else {
if (next.end()) {
next=this->link(next,Down);
Down=link_index(-Down);
} else if (! this->link(next,Down).leaf()) {
next.traverse(*this,Down);
Down=link_index(-Down);
}
insert_rebalance(n,next,Down);
}
return n;
}
template <typename Key>
iterator insert_impl(const Key& k, int_constant<0>)
{
return iterator(this->get_it_traits(), find_insert(k));
}
template <typename Key, typename Data>
iterator insert_impl(const Key& k, const Data& data, int_constant<0>)
{
return iterator(this->get_it_traits(), find_insert(k, data, assign_op()));
}
template <typename Key, typename Data, typename Operation>
iterator insert_impl(const Key& k, const Data& data, const Operation& op, int_constant<0>)
{
return iterator(this->get_it_traits(), find_insert(k, data, op));
}
template <typename Key, typename Data>
iterator insert_impl(const pair<Key, Data>& p, int_constant<1>)
{
return iterator(this->get_it_traits(), find_insert(p.first, p.second, assign_op()));
}
template <typename Key, typename Data, typename Operation>
iterator insert_impl(const pair<Key, Data>& p, const Operation& op, int_constant<1>)
{
return iterator(this->get_it_traits(), find_insert(p.first, p.second, op));
}
template <typename Key>
iterator insert_impl(const iterator& pos, const Key& k, int_constant<2>)
{
return iterator(this->get_it_traits(), insert_node_at(pos.cur, L, this->create_node(k)));
}
template <typename Key, typename Data>
iterator insert_impl(const iterator& pos, const Key& k, const Data& data, int_constant<2>)
{
return iterator(this->get_it_traits(), insert_node_at(pos.cur, L, this->create_node(k, data)));
}
template <typename Key>
reverse_iterator insert_impl(const reverse_iterator& pos, const Key& k, int_constant<2>)
{
return reverse_iterator(this->get_it_traits(), insert_node_at(pos.cur, R, this->create_node(k)));
}
template <typename Key, typename Data>
reverse_iterator insert_impl(const reverse_iterator& pos, const Key& k, const Data& data, int_constant<2>)
{
return reverse_iterator(this->get_it_traits(), insert_node_at(pos.cur, R, this->create_node(k, data)));
}
template <typename Key>
iterator insert_new_impl(const Key& k, int_constant<0>)
{
return iterator(this->get_it_traits(), insert_node(this->create_node(k)));
}
template <typename Key, typename Data>
iterator insert_new_impl(const Key& k, const Data& data, int_constant<0>)
{
return iterator(this->get_it_traits(), insert_node(this->create_node(k, data)));
}
template <typename Key, typename Data>
iterator insert_new_impl(const pair<Key, Data>& p, int_constant<1>)
{
return iterator(this->get_it_traits(), insert_node(this->create_node(p.first, p.second)));
}
template <typename Key>
void erase_impl(const Key& k, int_constant<0>)
{
if (empty()) return;
pair<Ptr,link_index> p=find_descend(k, this->key_comparator);
if (p.second!=P) return;
remove_node(p.first);
this->destroy_node(p.first);
}
void erase_impl(const iterator& pos, int_constant<2>)
{
this->destroy_node(remove_node(pos.cur));
}
void erase_impl(const reverse_iterator& pos, int_constant<2>)
{
this->destroy_node(remove_node(pos.cur));
}
void erase_impl(iterator pos, const iterator& end, int_constant<2>)
{
while (pos != end) {
Node *n=pos.cur; ++pos;
this->destroy_node(remove_node(n));
}
}
void erase_impl(reverse_iterator pos, const reverse_iterator& end, int_constant<2>)
{
while (pos != end) {
Node *n=pos.cur; ++pos;
this->destroy_node(remove_node(n));
}
}
public:
template <typename Key>
iterator find(const Key& k)
{
return iterator(this->get_it_traits(), find_node(k,this->key_comparator));
}
template <typename Key>
const_iterator find(const Key& k) const
{
return const_iterator(this->get_it_traits(), find_node(k,this->key_comparator));
}
template <typename Key, typename Comparator>
iterator find(const Key& k, const Comparator& comparator)
{
return iterator(this->get_it_traits(), find_node(k,comparator));
}
template <typename Key, typename Comparator>
const_iterator find(const Key& k, const Comparator& comparator) const
{
return const_iterator(this->get_it_traits(), find_node(k,comparator));
}
template <typename Key, typename RelOp>
iterator find_nearest(const Key& k, const RelOp& relop)
{
return iterator(this->get_it_traits(), find_nearest_node(k,relop));
}
template <typename Key, typename RelOp>
const_iterator find_nearest(const Key& k, const RelOp& relop) const
{
return const_iterator(this->get_it_traits(), find_nearest_node(k,relop));
}
template <typename Key, typename RelOp, typename Comparator>
iterator find_nearest(const Key& k, const RelOp& relop, const Comparator& comparator)
{
return iterator(this->get_it_traits(), find_nearest_node(k,relop,comparator));
}
template <typename Key, typename RelOp, typename Comparator>
const_iterator find_nearest(const Key& k, const RelOp& relop, const Comparator& comparator) const
{
return const_iterator(this->get_it_traits(), find_nearest_node(k,relop,comparator));
}
template <typename Key>
bool exists(const Key& k) const
{
return ! find_node(k,this->key_comparator).end();
}
template <typename Arg>
struct insert_arg_helper {
static const bool is_reverse_iterator=is_derived_from<Arg, reverse_iterator>::value;
static const bool is_iterator=is_derived_from<Arg, iterator>::value || is_reverse_iterator;
static const bool is_pair=isomorphic_to_first<key_type, Arg>::value;
static const int d=is_iterator*2+is_pair;
typedef int_constant<d> discr;
typedef typename std::conditional<is_reverse_iterator, reverse_iterator, iterator>::type return_type;
};
template <typename First>
typename insert_arg_helper<First>::return_type
insert(const First& first_arg)
{
return insert_impl(first_arg, typename insert_arg_helper<First>::discr());
}
template <typename First, typename Second>
typename insert_arg_helper<First>::return_type
insert(const First& first_arg, const Second& second_arg)
{
return insert_impl(first_arg, second_arg, typename insert_arg_helper<First>::discr());
}
template <typename First, typename Second, typename Third>
typename insert_arg_helper<First>::return_type
insert(const First& first_arg, const Second& second_arg, const Third& third_arg)
{
return insert_impl(first_arg, second_arg, third_arg, typename insert_arg_helper<First>::discr());
}
template <typename First>
typename std::enable_if<Traits::allow_multiple, typename insert_arg_helper<First>::return_type>::type
insert_new(const First& first_arg)
{
return insert_new_impl(first_arg, typename insert_arg_helper<First>::discr());
}
template <typename First, typename Second>
typename std::enable_if<Traits::allow_multiple, typename insert_arg_helper<First>::return_type>::type
insert_new(const First& first_arg, const Second& second_arg)
{
return insert_new_impl(first_arg, second_arg, typename insert_arg_helper<First>::discr());
}
/// Insert a given node in the tree corresponding to the value of its key field.
/// @return NULL if the key of the given node already occurs in the tree, //n// otherwise.
Node* insert_node(Node *n)
{
if (n_elem) {
pair<Ptr,link_index> p=find_descend(this->key(*n), this->key_comparator);
if (Traits::allow_multiple) {
if (p.second == P) {
if (tree_form()) {
if (this->link(p.first, L).leaf()) {
p.second=L;
} else if (this->link(p.first, R).leaf()) {
p.second=R;
} else if (this->link(p.first, L).skew()) {
p.first.traverse(*this,R);
p.second=L;
} else {
p.first.traverse(*this,L);
p.second=R;
}
} else {
p.second=R;
}
}
} else if (p.second == P) {
return NULL;
}
++n_elem;
insert_rebalance(n,p.first,p.second);
} else {
insert_first(n);
}
return n;
}
/** Delete an element if it exists.
Delete the element the iterator points to. */
template <typename Key_or_Iterator>
void erase(const Key_or_Iterator& k_or_it)
{
erase_impl(k_or_it, typename insert_arg_helper<Key_or_Iterator>::discr());
}
template <typename Iterator>
void erase(const Iterator& pos, const Iterator& last)
{
erase_impl(pos, last, typename insert_arg_helper<Iterator>::discr());
}
/** Remove the node with a given address.
The Node object is not destroyed.
@return address of the removed node
*/
Node* remove_node(Node *n)
{
--n_elem;
if (!tree_form()) {
Ptr next=this->link(n,R),
prev=this->link(n,L);
this->link(next,L)=prev;
this->link(prev,R)=next;
} else {
remove_rebalance(n);
}
return n;
}
// This operation destroys the balancedness and should be used with uttermost caution
Node* unlink_node(Node *n)
{
--n_elem;
Ptr next=this->link(n,R),
prev=this->link(n,L);
if (prev.leaf()) {
if (next.leaf()) {
this->link(next,L)=prev;
this->link(prev,R)=next;
} else {
Ptr parent=this->link(n,P);
this->link(parent,parent.direction())=next;
this->link(next,P)=parent;
next.traverse_to_leaf(*this,L);
this->link(next,L)=prev;
}
} else {
Ptr parent=this->link(n,P);
this->link(parent,parent.direction())=prev;
this->link(prev,P)=parent;
prev.traverse_to_leaf(*this,R);
this->link(prev,R)=next;
if (!next.leaf()) {
this->link(next,P).set_direction(prev,R);
next.traverse_to_leaf(*this,L);
this->link(next,L).set(prev,LEAF);
}
}
return n;
}
/// The key of the node has been changed: move it to the proper position.
/// The new key must not violate the uniqueness requirement.
void update_node(Node *n);
template <typename Key>
iterator toggle(const Key& k)
{
if (!n_elem) {
return iterator(this->get_it_traits(), insert_first(this->create_node(k)));
}
pair<Ptr,link_index> p=find_descend(k, this->key_comparator);
if (p.second==P) {
this->destroy_node(remove_node(p.first));
return end();
}
++n_elem;
Node *n=this->create_node(k);
insert_rebalance(n,p.first,p.second);
return iterator(this->get_it_traits(), Ptr(n));
}
/// Return the current number of nodes.
int size() const { return n_elem; }
bool empty() const { return n_elem==0; }
template <typename Key>
void push_front(const Key& k)
{
insert_node_at(end_node(), R, this->create_node(k));
}
template <typename Key, typename Data>
void push_front(const Key& k, const Data& data)
{
insert_node_at(end_node(), R, this->create_node(k,data));
}
void push_front_node(Node *n)
{
insert_node_at(end_node(), R, n);
}
template <typename Key>
void push_back(const Key& k)
{
insert_node_at(end_node(), L, this->create_node(k));
}
template <typename Key, typename Data>
void push_back(const Key& k, const Data& data)
{
insert_node_at(end_node(), L, this->create_node(k,data));
}
void push_back_node(Node *n)
{
insert_node_at(end_node(), L, n);
}
reference front() { return *first(); }
const_reference front() const { return *first(); }
reference back() { return *last(); }
const_reference back() const { return *last(); }
void pop_front()
{
this->destroy_node(remove_node(first()));
}
void pop_back()
{
this->destroy_node(remove_node(last()));
}
/** Makes the tree look like empty.
Nodes are not destroyed.
*/
void init()
{
this->link(this->head_node(),L)=this->link(this->head_node(),R)=end_node();
this->link(this->head_node(),P)=NULL;
n_elem=0;
}
private:
template <bool force>
void destroy_nodes(bool_constant<force>)
{
Ptr n=last();
do {
if (!(force || this->own_node(n))) break;
Node *to_delete=n;
n.traverse(*this,L);
this->destroy_node(to_delete);
} while (!n.end());
}
public:
/// Make the tree empty, destroy the nodes.
void clear()
{
if (n_elem) {
destroy_nodes(std::true_type());
init();
}
}
/// Creates an empty tree.
tree() { init(); }
tree(typename Traits::arg_type traits_arg) : Traits(traits_arg) { init(); }
/** Create a copy of another tree.
The current form (list or tree) is also inherited.
*/
tree(const tree& t)
: Traits(t)
{
if (t.tree_form()) {
n_elem=t.n_elem;
Node *root=clone_tree(t.root_node(), Ptr(), Ptr());
this->link(this->head_node(),P)=root;
this->link(root,P).set_direction(this->head_node(),P);
} else { // list form
init();
for (Ptr n=t.first(); !n.end(); n=t.link(n,R))
insert_node_at(end_node(), L, this->clone_node(n));
}
}
private:
template <typename Iterator>
void fill_impl(Iterator& src, std::true_type)
{
for (; !src.at_end(); ++src)
push_back(src.index(), *src);
}
template <typename Iterator>
void fill_impl(Iterator& src, std::false_type)
{
for (; !src.at_end(); ++src)
push_back(*src);
}
template <typename Iterator>
void fill_impl(Iterator&& src)
{
fill_impl(src, bool_constant< check_iterator_feature<Iterator, indexed>::value &&
isomorphic_types<typename iterator_traits<Iterator>::value_type, typename Node::mapped_type>::value >());
}
public:
template <typename Iterator>
explicit tree(Iterator&& src,
typename std::enable_if<assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value, void**>::type=nullptr)
{
init();
fill_impl(ensure_private_mutable(std::forward<Iterator>(src)));
}
~tree() { if (n_elem) destroy_nodes(std::false_type()); }
void swap(tree& t)
{
if (this==&t) return;
std::swap(static_cast<Traits&>(*this), static_cast<Traits&>(t));
std::swap(n_elem, t.n_elem);
}
template <bool with_nodes>
friend void relocate_tree(tree* from, tree* to, bool_constant<with_nodes>)
{
relocate(static_cast<Traits*>(from), static_cast<Traits*>(to));
if (with_nodes && from->n_elem) {
to->n_elem=from->n_elem;
to->link(to->first(),L)=to->link(to->last(),R)=to->end_node();
if (to->tree_form())
to->link(to->root_node(),P).set_direction(to->head_node(), P);
} else {
to->init();
}
}
friend void relocate(tree* from, tree* to)
{
relocate_tree(from, to, std::true_type());
}
template <typename Iterator,
typename=typename std::enable_if<assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value>::type>
void assign(Iterator&& src)
{
clear();
fill_impl(ensure_private_mutable(std::forward<Iterator>(src)));
}
#if POLYMAKE_DEBUG
private:
struct check_ret {
/// height and weight of the visited subtree
int h, w;
};
check_ret
check_tree(Ptr n, const char *prefix, bool is_leftmost, bool is_rightmost) const
{
check_ret l={ 0, 0 }, r={ 0, 0 };
Ptr left=this->link(n,L),
right=this->link(n,R);
if (left.end()) {
if (!is_leftmost) cerr << prefix << "bad END <-- " << this->key(*n) << endl;
else if (this->link(left,R) != n) cerr << prefix << "bad LEFTMOST" << endl;
} else {
if (this->key_comparator(this->key(*left),this->key(*n)) > (Traits::allow_multiple ? cmp_eq : cmp_lt))
cerr << prefix << "order violation: " << this->key(*left) << " <-- " << this->key(*n) << endl;
if (!left.leaf()) {
if (this->link(left,P) != n || this->link(left,P).direction() != L)
cerr << prefix << this->key(*left) << " : P broken" << endl;
l=check_tree(left,prefix,is_leftmost,false);
}
}
if (right.end()) {
if (!is_rightmost) cerr << prefix << this->key(*n) << " --> bad END" << endl;
else if (this->link(right,L) != n) cerr << prefix << "bad RIGHTMOST" << endl;
} else {
if (this->key_comparator(this->key(*n),this->key(*right)) > (Traits::allow_multiple ? cmp_eq : cmp_lt))
cerr << prefix << "order violation: " << this->key(*n) << " --> " << this->key(*right) << endl;
if (!right.leaf()) {
if (this->link(right,P) != n || this->link(right,P).direction() != R)
cerr << prefix << this->key(*right) << " : P broken" << endl;
r=check_tree(right,prefix,false,is_rightmost);
}
}
if (l.h-r.h<-1 || l.h-r.h>1) {
cerr << prefix << "disbalance: (" << l.h << ") <-- " << this->key(*n) << " --> (" << r.h << ")" << endl;
}
if (left.skew_strict()) {
if (l.h<=r.h) cerr << prefix << "SKEW <-- " << this->key(*n) << endl;
} else {
if (l.h>r.h) cerr << prefix << "!SKEW <-- " << this->key(*n) << endl;
}
if (right.skew_strict()) {
if (r.h<=l.h) cerr << prefix << this->key(*n) << "--> SKEW" << endl;
} else {
if (r.h>l.h) cerr << prefix << this->key(*n) << "--> !SKEW" << endl;
}
r.h=std::max(r.h,l.h)+1;
r.w=r.w+l.w+1;
return r;
}
/// Dump the subtree.
void dump_tree(Ptr n, int depth) const
{
if (! this->link(n,R).leaf())
dump_tree(this->link(n,R), depth+3);
cerr << std::setw(depth) << (n.skew() ? "*" : " ") << std::setw(0) << this->key(*n) << endl;
if (! this->link(n,L).leaf())
dump_tree(this->link(n,L), depth+3);
}
public:
/** Check the integrity of the tree.
@param prefix a string to be prepended to each error message
*/
void check(const char *prefix) const
{
int n=0;
if (this->link(this->head_node(),P).direction() != P)
cerr << prefix << "root pointer - wrong direction" << endl;
if (Ptr root=root_node()) {
if (this->link(root,P) != this->head_node() || this->link(root,P).direction() != P)
cerr << prefix << "root node " << this->key(*root_node()) << " : P broken" << endl;
n=(check_tree(root,prefix,true,true)).w;
} else {
Ptr cur=first(), prev=end_node();
while (!cur.end()) {
if (!this->link(cur,L).leaf())
cerr << prefix << this->key(*cur) << " L !leaf" << endl;
if (this->link(cur,L) != prev)
cerr << prefix << this->key(*cur) << " L broken" << endl;
if (!prev.end() && this->key_comparator(this->key(*prev),this->key(*cur)) > (Traits::allow_multiple ? cmp_eq : cmp_lt))
cerr << prefix << "order violation: " << this->key(*prev) << " --> " << this->key(*cur) << endl;
prev=cur;
if (!this->link(cur,R).leaf())
cerr << prefix << this->key(*cur) << " R !leaf" << endl;
cur=this->link(cur,R);
++n;
}
if (prev != last()) cerr << prefix << "RIGHTMOST broken" << endl;
}
if (n != n_elem)
cerr << prefix << "element count=" << n_elem << " != " << n << endl;
}
void dump() const
{
if (tree_form()) {
dump_tree(root_node(),1);
} else {
for (Ptr cur=first(); !cur.end(); cur.traverse(*this,R))
cerr << this->key(*cur) << ", ";
}
cerr << endl;
}
#endif // POLYMAKE_DEBUG
private:
/// current number of nodes
int n_elem;
};
template <typename Traits>
void tree<Traits>::insert_rebalance(Node *n, Node *parent, link_index Tonew)
{
link_index Oppos=link_index(-Tonew);
this->link(n,Oppos).set(parent,LEAF);
if (!tree_form()) {
this->link((this->link(n,Tonew)=this->link(parent,Tonew)), Oppos).set(n,LEAF);
this->link(parent,Tonew).set(n,LEAF);
return;
}
if ((this->link(n,Tonew)=this->link(parent,Tonew)).end())
this->link(this->head_node(),Oppos).set(n,LEAF);
this->link(n,P).set_direction(parent,Tonew);
if (this->link(parent,Oppos).skew_strict()) {
this->link(parent,Oppos).clear(SKEW);
this->link(parent,Tonew)=n;
return;
}
this->link(parent,Tonew).set(n,SKEW);
Node *root=root_node();
while (parent != root) {
n=parent;
parent=this->link(n,P);
Tonew=this->link(n,P).direction();
Oppos=link_index(-Tonew);
if (this->link(parent,Tonew).skew()) {
Node *grandparent=this->link(parent,P);
link_index Down=this->link(parent,P).direction();
if (this->link(n,Tonew).skew_strict()) { // single rotation
if (this->link(n,Oppos).leaf())
this->link(parent,Tonew).set(n,LEAF);
else
this->link((this->link(parent,Tonew)=(Node*)this->link(n,Oppos)),P).set_direction(parent,Tonew);
this->link(grandparent,Down).set(n);
this->link(n,P).set_direction(grandparent,Down);
this->link(parent,P).set_direction(n,Oppos);
this->link(n,Tonew).clear(SKEW);
this->link(n,Oppos)=parent;
} else { // double rotation
Node *n2=this->link(n,Oppos);
if (this->link(n2,Tonew).leaf()) {
this->link(n,Oppos).set(n2,LEAF);
} else {
this->link((this->link(n,Oppos)=(Node*)this->link(n2,Tonew)),P).set_direction(n,Oppos);
this->link(parent,Oppos).set( this->link(n2,Tonew).skew() );
}
if (this->link(n2,Oppos).leaf()) {
this->link(parent,Tonew).set(n2,LEAF);
} else {
this->link((this->link(parent,Tonew)=(Node*)this->link(n2,Oppos)),P).set_direction(parent,Tonew);
this->link(n,Tonew).set( this->link(n2,Oppos).skew() );
}
this->link(grandparent,Down).set(n2);
this->link(n2,P).set_direction(grandparent,Down);
this->link(n2,Tonew)=n;
this->link(n,P).set_direction(n2,Tonew);
this->link(n2,Oppos)=parent;
this->link(parent,P).set_direction(n2,Oppos);
}
break;
}
if (this->link(parent,Oppos).skew()) {
this->link(parent,Oppos).clear(SKEW);
break;
}
this->link(parent,Tonew).set(SKEW);
}
}
template <typename Traits>
void tree<Traits>::remove_rebalance(Node *n)
{
if (!n_elem) { // the last element removed - tree got empty
this->link(this->head_node(),L)=this->link(this->head_node(),R)=end_node();
this->link(this->head_node(),P)=NULL;
return;
}
Node *lf=n;
Node *parent=this->link(n,P);
link_index Down=this->link(n,P).direction();
if (! this->link(n,L).leaf() && ! this->link(n,R).leaf()) {
link_index Descend; // the node to be removed has both subtrees, find the
Node *neighbor_leaf; // lexicographically adjacent as replacement
if (this->link(n,L).skew()) {
neighbor_leaf=traverse(Ptr(n),*this,R);
Descend=L;
} else {
neighbor_leaf=traverse(Ptr(n),*this,L);
Descend=R;
}
link_index Oppos=link_index(-Descend), lf_Down=Descend;
while (1) {
lf=this->link(lf,lf_Down);
if (this->link(lf,Oppos).leaf()) break;
lf_Down=Oppos;
}
this->link(neighbor_leaf,Descend).set(lf,LEAF);
this->link(parent,Down).set(lf);
this->link((this->link(lf,Oppos)=this->link(n,Oppos)), P).set_direction(lf,Oppos);
if (lf_Down==Descend) {
if (!this->link(n,Descend).skew() && this->link(lf,Descend).skew_strict())
this->link(lf,Descend).clear(SKEW);
this->link(lf,P).set_direction(parent,Down);
parent=lf;
} else {
Node *lf_parent=this->link(lf,P);
if (this->link(lf,Descend).leaf()) {
this->link(lf_parent,lf_Down).set(lf,LEAF);
} else {
Node *n2=this->link(lf,Descend);
this->link(lf_parent,lf_Down).set(n2);
this->link(n2,P).set_direction(lf_parent,lf_Down);
}
this->link((this->link(lf,Descend)=this->link(n,Descend)), P).set_direction(lf,Descend);
this->link(lf,P).set_direction(parent,Down);
parent=lf_parent;
}
Down=lf_Down;
} else {
link_index Toleaf= this->link(n,L).leaf() ? L : R;
link_index Oppos=link_index(-Toleaf);
if (this->link(n,Oppos).leaf()) {
if ((this->link(parent,Down)=this->link(n,Down)).end())
this->link(this->head_node(),link_index(-Down)).set(parent,LEAF);
} else {
Node *n2=this->link(n,Oppos);
this->link(parent,Down).set(n2);
this->link(n2,P).set_direction(parent,Down);
if ((this->link(n2,Toleaf)=this->link(n,Toleaf)).end())
this->link(this->head_node(),Oppos).set(n2,LEAF);
}
}
// rebalance the tree
while (parent != this->head_node()) {
Node *cur=parent;
link_index Todel=Down, Oppos=link_index(-Todel);
parent=this->link(cur,P);
Down=this->link(cur,P).direction();
if (this->link(cur,Todel).skew_strict()) {
this->link(cur,Todel).clear(SKEW);
} else if (this->link(cur,Oppos).skew_strict()) {
Node *n1=this->link(cur,Oppos);
if (this->link(n1,Todel).skew()) { // double rotation
Node *n2=this->link(n1,Todel);
if (this->link(n2,Todel).leaf()) {
this->link(cur,Oppos).set(n2,LEAF);
} else {
this->link((this->link(cur,Oppos)=(Node*)this->link(n2,Todel)),P).set_direction(cur,Oppos);
this->link(n1,Oppos).set( this->link(n2,Todel).skew() );
}
if (this->link(n2,Oppos).leaf()) {
this->link(n1,Todel).set(n2,LEAF);
} else {
this->link((this->link(n1,Todel)=(Node*)this->link(n2,Oppos)),P).set_direction(n1,Todel);
this->link(cur,Todel).set( this->link(n2,Oppos).skew() );
}
this->link(parent,Down).set(n2);
this->link(n2,P).set_direction(parent,Down);
this->link(n2,Todel)=cur;
this->link(cur,P).set_direction(n2,Todel);
this->link(n2,Oppos)=n1;
this->link(n1,P).set_direction(n2,Oppos);
} else { // single rotation
if (this->link(n1,Todel).leaf())
this->link(cur,Oppos).set(n1,LEAF);
else
this->link((this->link(cur,Oppos)=this->link(n1,Todel)),P).set_direction(cur,Oppos);
this->link(parent,Down).set(n1);
this->link(n1,P).set_direction(parent,Down);
this->link(n1,Todel)=cur;
this->link(cur,P).set_direction(n1,Todel);
if (this->link(n1,Oppos).skew_strict()) {
this->link(n1,Oppos).clear(SKEW);
} else {
this->link(n1,Todel).set(SKEW);
this->link(cur,Oppos).set(SKEW);
break;
}
}
} else if (! this->link(cur,Oppos).leaf()) {
this->link(cur,Oppos).set(SKEW);
break;
}
}
}
template <typename Traits>
void tree<Traits>::update_node(Node* n)
{
if (n_elem<=1) return;
if (tree_form()) {
Ptr l(n), r(n);
l.traverse(*this,L); r.traverse(*this, R);
if ((!l.end() && this->key_comparator(this->key(*l), this->key(*n))==cmp_gt) ||
(!r.end() && this->key_comparator(this->key(*r), this->key(*n))==cmp_lt)) {
--n_elem;
remove_rebalance(n);
insert_node(n);
}
} else {
Ptr old_prev=this->link(n, L),
old_next=this->link(n, R);
Ptr prev=old_prev,
next=old_next;
while (!prev.end() && this->key_comparator(this->key(*prev), this->key(*n)) == cmp_gt)
prev=this->link(prev, L);
if (prev != old_prev) {
next=this->link(prev, R);
} else {
while (!next.end() && this->key_comparator(this->key(*n), this->key(*next)) == cmp_gt)
next=this->link(next, R);
if (next != old_next)
prev=this->link(next, L);
else
return;
}
this->link(old_prev, R)=old_next;
this->link(old_next, L)=old_prev;
this->link(prev, R)=n;
this->link(next, L)=n;
this->link(n, L)=prev;
this->link(n, R)=next;
}
}
/** Standard node of an AVL tree
@tmplparam K type of the key field
@tmplparam D type of the data field
*/
template <typename K, typename D>
struct node {
typedef D mapped_type;
typedef pair<const K, D> value_type;
/// links in the tree
Ptr<node> links[3];
/// key and data fields
value_type key_and_data;
template <typename Key>
explicit node(const Key& key_arg)
: key_and_data(key_arg,D()) {}
template <typename Key, typename Data>
explicit node(const pair<Key,Data>& p)
: key_and_data(p) {}
template <typename Key, typename Data>
node(const Key& key_arg, const Data& data_arg)
: key_and_data(key_arg,data_arg) {}
template <typename Key>
node(const Key& key_arg, const nothing&)
: key_and_data(key_arg,D()) {}
/// doesn't copy the tree links
node(const node& o) : key_and_data(o.key_and_data) {}
};
/** Key-data pair access filter for @c node.
Key field is referred to as @c first, data field as @c second.
*/
template <typename NodeRef, bool no_data=std::is_same<typename deref<NodeRef>::type::mapped_type, nothing>::value>
struct node_accessor_impl {
typedef NodeRef argument_type;
typedef typename inherit_ref<typename deref<NodeRef>::type::value_type, NodeRef>::type result_type;
result_type operator() (argument_type n) const { return n.key_and_data; }
};
template <typename NodeRef>
struct node_accessor_impl<NodeRef, true> {
typedef NodeRef argument_type;
typedef typename inherit_ref<typename deref<NodeRef>::type::value_type::first_type, NodeRef>::type result_type;
result_type operator() (argument_type n) const { return n.key_and_data.first; }
};
template <typename NodeRef>
struct node_accessor : node_accessor_impl<NodeRef> {};
template <typename K, typename D, typename Comparator>
struct it_traits {
typedef node<K,D> Node;
static Ptr<Node>& link(Node *n, link_index X) { return n->links[X-L]; }
const it_traits& get_it_traits() const { return *this; }
};
template <typename K, typename D, typename Comparator>
class traits : public it_traits<K,D,Comparator> {
public:
typedef it_traits<K,D,Comparator> traits_for_iterator;
typedef typename traits_for_iterator::Node Node;
typedef K key_type;
typedef Comparator key_comparator_type;
static const bool allow_multiple=false;
typedef std::allocator<Node> node_allocator_type;
protected:
mutable Ptr<Node> root_links[3];
key_comparator_type key_comparator;
node_allocator_type node_allocator;
Node* head_node() const { return reinterpret_cast<Node*>(&root_links[0]); }
static const K& key(const Node& n) { return n.key_and_data.first; }
static D& data(Node& n) { return n.key_and_data.second; }
template <typename Key, typename Data>
Node* create_from_pair(const pair<Key, Data>& arg, std::false_type)
{
return new(node_allocator.allocate(1)) Node(arg.first, arg.second);
}
template <typename Key1, typename Key2>
Node* create_from_pair(const pair<Key1, Key2>& arg, std::true_type)
{
return new(node_allocator.allocate(1)) Node(arg, nothing());
}
template <typename Key1, typename Key2>
Node* create_node(const pair<Key1, Key2>& arg)
{
return create_from_pair(arg, bool_constant<isomorphic_types<pair<Key1, Key2>, key_type>::value>());
}
template <typename Key>
Node* create_node(const Key& key_arg)
{
return new(node_allocator.allocate(1)) Node(key_arg);
}
template <typename Key, typename Data>
Node* create_node(const Key& key_arg, const Data& data_arg)
{
return new(node_allocator.allocate(1)) Node(key_arg, data_arg);
}
Node* clone_node(Node *n)
{
return new(node_allocator.allocate(1)) Node(*n);
}
void destroy_node(Node *n)
{
node_allocator.destroy(n);
node_allocator.deallocate(n,1);
}
static bool own_node(Node*) { return true; }
public:
typedef const key_comparator_type& arg_type;
traits() {}
explicit traits(arg_type cmp_arg) : key_comparator(cmp_arg) {}
static int max_size()
{
return (unsigned int)-1/sizeof(Node);
}
const key_comparator_type& get_comparator() const { return key_comparator; }
};
} // end namespace AVL
template <typename Traits, AVL::link_index Dir>
struct check_iterator_feature<AVL::tree_iterator<Traits,Dir>, end_sensitive> : std::true_type {};
template <typename Traits, AVL::link_index Dir>
struct iterator_reversed< AVL::tree_iterator<Traits,Dir> > {
typedef AVL::tree_iterator<Traits, AVL::link_index(-Dir)> type;
static
const AVL::tree_iterator<Traits,Dir>& revert(const type& it)
{
return reinterpret_cast<const AVL::tree_iterator<Traits,Dir>&>(it);
}
};
} // end namespace pm
namespace std {
template <typename Traits>
inline void swap(pm::AVL::tree<Traits>& t1, pm::AVL::tree<Traits>& t2) { t1.swap(t2); }
}
#endif // POLYMAKE_INTERNAL_AVL_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|