/usr/include/polymake/internal/matrix_methods.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_INTERNAL_MATRIX_METHODS_H
#define POLYMAKE_INTERNAL_MATRIX_METHODS_H
#include "polymake/IndexedSubset.h"
#include "polymake/ContainerChain.h"
#include "polymake/internal/matrix_rows_cols.h"
#include <stdexcept>
// OSF/1 defines this name to something odd that we don't need at all
#ifdef minor
#undef minor
#endif
namespace pm {
struct Symmetric : std::true_type {};
struct NonSymmetric : std::false_type {};
struct SkewSymmetric : Symmetric {};
struct FlatStorage {};
template <typename TMatrix>
struct default_check_container_feature<TMatrix, Symmetric> : std::false_type {};
template <typename TMatrix>
struct default_check_container_feature<TMatrix, SkewSymmetric> : std::false_type {};
template <typename TMatrix>
struct default_check_container_feature<TMatrix, FlatStorage> : std::false_type {};
template <typename TMatrix>
struct default_check_container_feature<TMatrix, NonSymmetric> {
static const bool value= !check_container_feature<TMatrix, Symmetric>::value &&
!check_container_feature<TMatrix, SkewSymmetric>::value;
};
template <typename TMatrix>
struct matrix_symmetry_type
: mselect< std::enable_if<check_container_feature<TMatrix, Symmetric>::value, Symmetric>,
std::enable_if<check_container_feature<TMatrix, SkewSymmetric>::value, SkewSymmetric>,
NonSymmetric > {};
template <typename TMatrix> inline
int empty_rows(const TMatrix& m)
{
int cnt=0;
for (auto r=entire(rows(m)); !r.at_end(); ++r)
if (!r->size()) ++cnt;
return cnt;
}
template <typename TMatrix> inline
int empty_cols(const TMatrix& m)
{
int cnt=0;
for (auto c=entire(cols(m)); !c.at_end(); ++c)
if (!c->size()) ++cnt;
return cnt;
}
template <typename E> inline
int count_columns(const std::initializer_list<std::initializer_list<E>>& l)
{
if (l.size()==0) return 0;
#if POLYMAKE_DEBUG
auto r=l.begin(), e=l.end();
const size_t c=r->size();
while (++r != e) {
if (r->size() != c)
throw std::runtime_error("Matrix initializer list does not have a rectangular shape");
}
return c;
#else
return l.begin()->size();
#endif
}
/* -------------------------------
* Matrix masquerade: Transposed
* ------------------------------- */
template <typename Matrix>
class Transposed
: public inherit_generic<Transposed<Matrix>, Matrix>::type {
protected:
~Transposed();
public:
typedef typename Matrix::value_type value_type;
typedef typename Matrix::reference reference;
typedef typename Matrix::const_reference const_reference;
Matrix& hidden() { return reinterpret_cast<Matrix&>(*this); }
const Matrix& hidden() const { return reinterpret_cast<const Matrix&>(*this); }
void clear() { hidden().clear(); }
void clear(int r, int c) { hidden().clear(c,r); }
};
template <typename Matrix>
struct spec_object_traits< Transposed<Matrix> >
: spec_object_traits<is_container> {
typedef Matrix masquerade_for;
static const bool is_lazy = object_traits<Matrix>::is_lazy,
is_always_const = object_traits<Matrix>::is_always_const;
static const int is_resizeable= object_traits<Matrix>::is_resizeable;
};
template <typename Matrix>
struct check_container_feature<Transposed<Matrix>, sparse>
: check_container_feature<Matrix, sparse> {};
template <typename Matrix>
struct check_container_feature<Transposed<Matrix>, pure_sparse>
: check_container_feature<Matrix, pure_sparse> {};
template <typename Matrix> inline
Transposed<typename Concrete<Matrix>::type>& T(Matrix& m)
{
return reinterpret_cast<Transposed<typename Concrete<Matrix>::type>&>(concrete(m));
}
template <typename Matrix> inline
const Transposed<typename Concrete<Matrix>::type>& T(const Matrix& m)
{
return reinterpret_cast<const Transposed<typename Concrete<Matrix>::type>&>(concrete(m));
}
template <typename Matrix>
class Rows< Transposed<Matrix> > : public Cols<Matrix> {};
template <typename Matrix>
class Cols< Transposed<Matrix> > : public Rows<Matrix> {};
/* ------------------------------------------------
* Methods defined for all matrices,
* depending on Rows::category and Cols::category
* ------------------------------------------------ */
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef> class MatrixMinor;
template <typename Matrix, typename RowCategory=typename container_traits< Rows<Matrix> >::category>
class matrix_row_methods {
public:
typedef typename deref<typename container_traits< Rows<Matrix> >::reference>::type row_type;
typedef typename deref<typename container_traits< Rows<Matrix> >::const_reference>::minus_ref const_row_type;
int rows() const
{
return pm::rows(static_cast<const Matrix&>(*this)).size();
}
// stub for ColChain
void stretch_rows(int r) const
{
if (r) throw std::runtime_error("rows number mismatch");
}
};
template <typename Matrix>
class matrix_row_methods<Matrix, output_iterator_tag> {};
template <typename Matrix>
class matrix_row_methods<Matrix, random_access_iterator_tag>
: public matrix_row_methods<Matrix, forward_iterator_tag> {
public:
typename container_traits< Rows<Matrix> >::reference
row(int i)
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->rows())
throw std::runtime_error("matrix row index out of range");
}
return pm::rows(*static_cast<Matrix*>(this))[i];
}
typename container_traits< Rows<Matrix> >::reference
operator[] (int i)
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->rows())
throw std::runtime_error("matrix row index out of range");
}
return pm::rows(*static_cast<Matrix*>(this))[i];
}
typename container_traits< Rows<Matrix> >::const_reference
row(int i) const
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->rows())
throw std::runtime_error("matrix row index out of range");
}
return pm::rows(*static_cast<const Matrix*>(this))[i];
}
typename container_traits< Rows<Matrix> >::const_reference
operator[] (int i) const
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->rows())
throw std::runtime_error("matrix row index out of range");
}
return pm::rows(*static_cast<const Matrix*>(this))[i];
}
};
template <typename Matrix, typename ColCategory=typename container_traits< Cols<Matrix> >::category>
class matrix_col_methods {
public:
typedef typename deref<typename container_traits< Cols<Matrix> >::reference>::type col_type;
typedef typename deref<typename container_traits< Cols<Matrix> >::const_reference>::minus_ref const_col_type;
int cols() const
{
return pm::cols(*static_cast<const Matrix*>(this)).size();
}
// stub for RowChain
void stretch_cols(int c) const
{
if (c) throw std::runtime_error("columns number mismatch");
}
};
template <typename Matrix>
class matrix_col_methods<Matrix, output_iterator_tag> {};
template <typename Matrix>
class matrix_col_methods<Matrix, random_access_iterator_tag>
: public matrix_col_methods<Matrix, forward_iterator_tag> {
public:
typename container_traits< Cols<Matrix> >::reference
col(int i)
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->cols())
throw std::runtime_error("matrix column index out of range");
}
return pm::cols(*static_cast<Matrix*>(this))[i];
}
typename container_traits< Cols<Matrix> >::const_reference
col(int i) const
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (i<0 || i>=this->cols())
throw std::runtime_error("matrix column index out of range");
}
return pm::cols(*static_cast<const Matrix*>(this))[i];
}
};
template <typename Matrix, typename E=typename Matrix::element_type,
typename RowCategory=typename container_traits< Rows<Matrix> >::category,
typename ColCategory=typename container_traits< Cols<Matrix> >::category>
class matrix_methods
: public matrix_row_methods<Matrix>
, public matrix_col_methods<Matrix> {
public:
typedef E element_type;
typedef typename mevaluate<least_derived_class<typename container_traits< Rows<Matrix> >::category,
typename container_traits< Cols<Matrix> >::category>,
output_iterator_tag>::type
container_category;
template <typename RowIndexSet, typename ColIndexSet>
MatrixMinor<unwary_t<Matrix>&,
typename Diligent<const RowIndexSet&>::type,
typename Diligent<const ColIndexSet&>::type>
minor(const RowIndexSet& row_indices, const ColIndexSet& col_indices)
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (!set_within_range(row_indices, this->rows()))
throw std::runtime_error("matrix minor - row indices out of range");
if (!set_within_range(col_indices, this->cols()))
throw std::runtime_error("matrix minor - column indices out of range");
}
return MatrixMinor<unwary_t<Matrix>&,
typename Diligent<const RowIndexSet&>::type,
typename Diligent<const ColIndexSet&>::type>
(static_cast<Matrix&>(*this).top(), diligent(row_indices), diligent(col_indices));
}
template <typename RowIndexSet, typename ColIndexSet>
const MatrixMinor<const unwary_t<Matrix>&,
typename Diligent<const RowIndexSet&>::type,
typename Diligent<const ColIndexSet&>::type>
minor(const RowIndexSet& row_indices, const ColIndexSet& col_indices) const
{
if (POLYMAKE_DEBUG || !Unwary<Matrix>::value) {
if (!set_within_range(row_indices, this->rows()))
throw std::runtime_error("matrix minor - row indices out of range");
if (!set_within_range(col_indices, this->cols()))
throw std::runtime_error("matrix minor - column indices out of range");
}
return MatrixMinor<const unwary_t<Matrix>&,
typename Diligent<const RowIndexSet&>::type,
typename Diligent<const ColIndexSet&>::type>
(static_cast<const Matrix&>(*this).top(), diligent(row_indices), diligent(col_indices));
}
};
template <typename Matrix> class matrix_random_access_methods {};
template <typename Matrix, typename E>
class matrix_methods<Matrix, E, random_access_iterator_tag, random_access_iterator_tag>
: public matrix_methods<Matrix, E, forward_iterator_tag, forward_iterator_tag>,
public matrix_random_access_methods<Matrix> {};
template <typename Matrix, typename E>
class matrix_methods<Wary<Matrix>, E, random_access_iterator_tag, random_access_iterator_tag>
: public matrix_methods<Wary<Matrix>, E, forward_iterator_tag, forward_iterator_tag>
{
public:
typename Matrix::reference
operator() (int i, int j)
{
if (i<0 || i>=this->rows() || j<0 || j>=this->cols())
throw std::runtime_error("matrix element access - index out of range");
return unwary(static_cast<Wary<Matrix>&>(*this))(i,j);
}
typename Matrix::const_reference
operator() (int i, int j) const
{
if (i<0 || i>=this->rows() || j<0 || j>=this->cols())
throw std::runtime_error("matrix element access - index out of range");
return unwary(static_cast<const Wary<Matrix>&>(*this))(i,j);
}
};
template <typename Matrix>
class matrix_random_access_methods< Transposed<Matrix> > {
public:
typename Matrix::reference
operator() (int i, int j)
{
return static_cast<Transposed<Matrix>*>(this)->hidden()(j,i);
}
typename Matrix::const_reference
operator() (int i, int j) const
{
return static_cast<const Transposed<Matrix>*>(this)->hidden()(j,i);
}
};
template <typename Matrix>
class Transposed< Transposed<Matrix> > : public Matrix {
protected:
Transposed();
~Transposed();
};
/* -------------
* MatrixMinor
* ------------- */
template <>
class alias<const all_selector&, object_classifier::alias_ref> {
public:
typedef const all_selector& arg_type;
typedef const alias& reference;
typedef reference const_reference;
alias(arg_type) {}
reference operator* () const { return *this; }
int operator[] (int i) const { return i; }
};
inline bool set_within_range(const all_selector&, int) { return true; }
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
class minor_base {
public:
typedef typename deref<MatrixRef>::type matrix_type;
typedef typename deref<RowIndexSetRef>::type row_set_type;
typedef typename deref<ColIndexSetRef>::type col_set_type;
protected:
alias<MatrixRef> matrix;
alias<RowIndexSetRef> rset;
alias<ColIndexSetRef> cset;
typedef typename alias<MatrixRef>::arg_type matrix_arg_type;
typedef typename alias<RowIndexSetRef>::arg_type row_set_arg_type;
typedef typename alias<ColIndexSetRef>::arg_type col_set_arg_type;
minor_base(matrix_arg_type matrix_arg, row_set_arg_type rset_arg, col_set_arg_type cset_arg)
: matrix(matrix_arg), rset(rset_arg), cset(cset_arg) {}
public:
typename alias<MatrixRef>::reference get_matrix() { return *matrix; }
typename alias<MatrixRef>::const_reference get_matrix() const { return *matrix; }
const alias<RowIndexSetRef>& get_subset_alias(int_constant<1>) const { return rset; }
const alias<ColIndexSetRef>& get_subset_alias(int_constant<2>) const { return cset; }
typename alias<RowIndexSetRef>::const_reference get_subset(int_constant<1>) const { return *rset; }
typename alias<ColIndexSetRef>::const_reference get_subset(int_constant<2>) const { return *cset; }
template <typename RowIndexSet>
int random_row(int i, type2type<RowIndexSet>) const { return get_subset(int_constant<1>())[i]; }
template <typename ColIndexSet>
int random_col(int i, type2type<ColIndexSet>) const { return get_subset(int_constant<2>())[i]; }
int random_row(int i, type2type<all_selector>) const { return i; }
int random_col(int i, type2type<all_selector>) const { return i; }
int random_row(int i) const { return random_row(i, type2type<typename deref<RowIndexSetRef>::type>()); }
int random_col(int i) const { return random_col(i, type2type<typename deref<ColIndexSetRef>::type>()); }
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
class MatrixMinor
: public minor_base<MatrixRef, RowIndexSetRef, ColIndexSetRef>
, public inherit_generic<MatrixMinor<MatrixRef,RowIndexSetRef,ColIndexSetRef>, typename deref<MatrixRef>::type>::type {
typedef minor_base<MatrixRef, RowIndexSetRef, ColIndexSetRef> base_t;
public:
typedef typename base_t::matrix_type matrix_type;
typedef typename container_traits<MatrixRef>::value_type value_type;
typedef typename container_traits<MatrixRef>::reference reference;
typedef typename container_traits<MatrixRef>::const_reference const_reference;
MatrixMinor(typename base_t::matrix_arg_type matrix_arg,
typename base_t::row_set_arg_type rset_arg,
typename base_t::col_set_arg_type cset_arg)
: base_t(matrix_arg,rset_arg,cset_arg) {}
/// Assignment operator should copy elements instead of alias pointers
MatrixMinor& operator= (const MatrixMinor& other) { return MatrixMinor::generic_type::operator=(other); }
using MatrixMinor::generic_type::operator=;
protected:
void clear_impl(std::true_type)
{
for (auto c=entire(pm::cols(*this)); !c.at_end(); ++c)
c->fill(0);
}
void clear_impl(std::false_type)
{
for (auto r=entire(pm::rows(*this)); !r.at_end(); ++r)
r->fill(0);
}
public:
/// fill with zeroes (if dense), delete elements (if sparse)
void clear()
{
clear_impl(std::is_same<typename base_t::row_set_type, all_selector>());
}
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
struct spec_object_traits< MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef> >
: spec_object_traits<is_container> {
static const bool is_temporary = true,
is_lazy = object_traits<typename deref<MatrixRef>::type>::is_lazy,
is_always_const = effectively_const<MatrixRef>::value;
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
struct check_container_feature<MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef>, sparse>
: check_container_ref_feature<MatrixRef, sparse> {};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
struct check_container_feature<MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef>, pure_sparse>
: check_container_ref_feature<MatrixRef, pure_sparse> {};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
struct check_container_feature<MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef>, FlatStorage>
{
static const bool value=check_container_ref_feature<MatrixRef, FlatStorage>::value &&
identical_minus_const_ref<ColIndexSetRef, all_selector>::value;
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
class matrix_random_access_methods< MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef> > {
typedef MatrixMinor<MatrixRef,RowIndexSetRef,ColIndexSetRef> master;
public:
typename inherit_const<typename deref<MatrixRef>::type::reference, MatrixRef>::type
operator() (int i, int j)
{
master& me=static_cast<master&>(*this);
return me.get_matrix()(me.random_row(i), me.random_col(j));
}
typename deref<MatrixRef>::type::const_reference
operator() (int i, int j) const
{
const master& me=static_cast<const master&>(*this);
return me.get_matrix()(me.random_row(i), me.random_col(j));
}
};
template <typename TMinor, int dir>
struct RowCol_helper;
template <typename TMinor>
struct RowCol_helper<TMinor, 1> : masquerade<Rows, typename mget_template_parameter<TMinor, 0>::type> {};
template <typename TMinor>
struct RowCol_helper<TMinor, 2> : masquerade<Cols, typename mget_template_parameter<TMinor, 0>::type> {};
template <typename TMinor, typename TRenumber, int TDir, typename TSelector=typename mget_template_parameter<TMinor, TDir>::type>
class RowColSubset
: public indexed_subset_impl< RowColSubset<TMinor, TRenumber, TDir, TSelector>,
mlist< Container1Tag< typename RowCol_helper<TMinor, TDir>::type >,
Container2Tag< TSelector >,
RenumberTag< TRenumber >,
HiddenTag< TMinor > > > {
typedef indexed_subset_impl<RowColSubset> base_t;
public:
typename base_t::container1& get_container1()
{
return reinterpret_cast<typename base_t::container1&>(this->hidden().get_matrix());
}
const typename base_t::container1& get_container1() const
{
return reinterpret_cast<const typename base_t::container1&>(this->hidden().get_matrix());
}
const typename base_t::container2& get_container2() const
{
return this->hidden().get_subset(int_constant<TDir>());
}
};
template <typename TMinor, typename TRenumber, int TDir>
class RowColSubset<TMinor, TRenumber, TDir, const all_selector&>
: public redirected_container< RowColSubset<TMinor, TRenumber, TDir, const all_selector&>,
mlist< ContainerTag< typename RowCol_helper<TMinor, TDir>::type >,
HiddenTag< TMinor > > > {
typedef redirected_container<RowColSubset> base_t;
public:
typename base_t::container& get_container()
{
return reinterpret_cast<typename base_t::container&>(this->hidden().get_matrix());
}
const typename base_t::container& get_container() const
{
return reinterpret_cast<const typename base_t::container&>(this->hidden().get_matrix());
}
};
template <typename TMinor, typename TRenumber, int TDir, typename TSliceConstructor,
typename TCrossSelector=typename mget_template_parameter<TMinor, 3-TDir>::type>
class RowsCols
: public modified_container_pair_impl< RowsCols<TMinor, TRenumber, TDir, TSliceConstructor, TCrossSelector>,
mlist< Container1Tag< RowColSubset<TMinor, TRenumber, TDir> >,
Container2Tag< constant_value_container<TCrossSelector> >,
HiddenTag< TMinor >,
OperationTag< TSliceConstructor > > > {
typedef modified_container_pair_impl<RowsCols> base_t;
protected:
~RowsCols();
public:
const typename base_t::container2& get_container2() const
{
return constant(this->hidden().get_subset_alias(int_constant<3-TDir>()));
}
};
template <typename TMinor, typename TRenumber, int TDir, typename TSliceConstructor>
class RowsCols<TMinor, TRenumber, TDir, TSliceConstructor, const all_selector&>
: public RowColSubset<TMinor, TRenumber, TDir> {
protected:
~RowsCols();
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
class Rows< MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef> >
: public RowsCols< minor_base<MatrixRef, RowIndexSetRef, ColIndexSetRef>, std::true_type, 1,
operations::construct_binary2<IndexedSlice, mlist<>> > {
protected:
~Rows();
};
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef>
class Cols< MatrixMinor<MatrixRef, RowIndexSetRef, ColIndexSetRef> >
: public RowsCols< minor_base<MatrixRef, RowIndexSetRef, ColIndexSetRef>, std::true_type, 2,
operations::construct_binary2<IndexedSlice, mlist<>> > {
protected:
~Cols();
};
/* ----------
* RowChain
* ---------- */
template <typename MatrixRef1, typename MatrixRef2>
class RowChain
: public container_pair_base<MatrixRef1, MatrixRef2>
, public inherit_generic< RowChain<MatrixRef1,MatrixRef2>,
cons<typename deref<MatrixRef1>::type, typename deref<MatrixRef2>::type> >::type {
typedef container_pair_base<MatrixRef1, MatrixRef2> base_t;
typedef typename deref<MatrixRef1>::type matrix1_type;
typedef typename deref<MatrixRef2>::type matrix2_type;
public:
typedef typename container_traits<MatrixRef1>::value_type value_type;
static_assert(std::is_same<value_type, typename container_traits<MatrixRef2>::value_type>::value,
"blocks with different element types");
typedef typename compatible<typename container_traits<MatrixRef1>::reference,
typename container_traits<MatrixRef2>::reference>::type
reference;
typedef typename compatible<typename container_traits<MatrixRef1>::const_reference,
typename container_traits<MatrixRef2>::const_reference>::type
const_reference;
RowChain(typename base_t::first_arg_type m1, typename base_t::second_arg_type m2)
: base_t(m1, m2)
{
const int c1=m1.cols(), c2=m2.cols();
if (c1) {
if (c2) {
if (c1!=c2) throw std::runtime_error("block matrix - different number of columns");
} else {
this->src2.get_object().stretch_cols(c1);
}
} else if (c2) {
this->src1.get_object().stretch_cols(c2);
}
}
RowChain& operator= (const RowChain& other) { return RowChain::generic_type::operator=(other); }
using RowChain::generic_type::operator=;
};
template <typename MatrixRef1, typename MatrixRef2>
struct spec_object_traits< RowChain<MatrixRef1, MatrixRef2> >
: spec_object_traits<is_container> {
static const bool
is_temporary = true,
is_lazy = object_traits<typename deref<MatrixRef1>::type>::is_lazy || object_traits<typename deref<MatrixRef2>::type>::is_lazy,
is_always_const = effectively_const<MatrixRef1>::value || effectively_const<MatrixRef2>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
struct check_container_feature< RowChain<MatrixRef1, MatrixRef2>, sparse> {
static const bool value=check_container_ref_feature<MatrixRef1, sparse>::value ||
check_container_ref_feature<MatrixRef2, sparse>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
struct check_container_feature< RowChain<MatrixRef1, MatrixRef2>, pure_sparse> {
static const bool value=check_container_ref_feature<MatrixRef1, pure_sparse>::value &&
check_container_ref_feature<MatrixRef2, pure_sparse>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
struct check_container_feature< RowChain<MatrixRef1, MatrixRef2>, FlatStorage> {
static const bool value=check_container_ref_feature<MatrixRef1, FlatStorage>::value &&
check_container_ref_feature<MatrixRef2, FlatStorage>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
class matrix_random_access_methods< RowChain<MatrixRef1, MatrixRef2> > {
typedef RowChain<MatrixRef1,MatrixRef2> master;
public:
typename compatible<typename container_traits<MatrixRef1>::reference,
typename container_traits<MatrixRef2>::reference>::type
operator() (int i, int j)
{
master& me=static_cast<master&>(*this);
const int r1=me.get_container1().rows();
if (i < r1) return me.get_container1()(i,j);
return me.get_container2()(i-r1,j);
}
typename compatible<typename container_traits<MatrixRef1>::const_reference,
typename container_traits<MatrixRef2>::const_reference>::type
operator() (int i, int j) const
{
const master& me=static_cast<const master&>(*this);
const int r1=me.get_container1().rows();
if (i < r1) return me.get_container1()(i,j);
return me.get_container2()(i-r1,j);
}
};
template <typename MatrixRef1, typename MatrixRef2>
class Rows< RowChain<MatrixRef1, MatrixRef2> >
: public container_chain_impl< Rows< RowChain<MatrixRef1, MatrixRef2> >,
mlist< Container1Tag< masquerade<pm::Rows, MatrixRef1> >,
Container2Tag< masquerade<pm::Rows, MatrixRef2> >,
MasqueradedTop > > {
typedef container_chain_impl<Rows> base_t;
protected:
~Rows();
public:
typename base_t::container1& get_container1()
{
return rows(this->hidden().get_container1());
}
typename base_t::container2& get_container2()
{
return rows(this->hidden().get_container2());
}
const typename base_t::container1& get_container1() const
{
return rows(this->hidden().get_container1());
}
const typename base_t::container2& get_container2() const
{
return rows(this->hidden().get_container2());
}
int size() const
{
return get_container1().size() + get_container2().size();
}
};
template <typename MatrixRef1, typename MatrixRef2>
class Cols< RowChain<MatrixRef1, MatrixRef2> >
: public modified_container_pair_impl< Cols< RowChain<MatrixRef1, MatrixRef2> >,
mlist< Container1Tag< masquerade<pm::Cols, MatrixRef1> >,
Container2Tag< masquerade<pm::Cols, MatrixRef2> >,
OperationTag< BuildBinary<operations::concat> >,
MasqueradedTop > > {
typedef modified_container_pair_impl<Cols> base_t;
protected:
~Cols();
public:
typename base_t::container1& get_container1()
{
return cols(this->hidden().get_container1());
}
typename base_t::container2& get_container2()
{
return cols(this->hidden().get_container2());
}
const typename base_t::container1& get_container1() const
{
return cols(this->hidden().get_container1());
}
const typename base_t::container2& get_container2() const
{
return cols(this->hidden().get_container2());
}
int size() const
{
int c=get_container1().size();
if (!c) c=get_container2().size();
return c;
}
};
/* ----------
* ColChain
* ---------- */
template <typename MatrixRef1, typename MatrixRef2>
class ColChain
: public container_pair_base<MatrixRef1, MatrixRef2>
, public inherit_generic< ColChain<MatrixRef1,MatrixRef2>,
cons<typename deref<MatrixRef1>::type, typename deref<MatrixRef2>::type> >::type {
typedef container_pair_base<MatrixRef1, MatrixRef2> base_t;
typedef typename deref<MatrixRef1>::type matrix1_type;
typedef typename deref<MatrixRef2>::type matrix2_type;
public:
typedef typename container_traits<MatrixRef1>::value_type value_type;
static_assert(std::is_same<value_type, typename container_traits<MatrixRef2>::value_type>::value,
"blocks with different element types");
typedef typename compatible<typename container_traits<MatrixRef1>::reference,
typename container_traits<MatrixRef2>::reference>::type
reference;
typedef typename compatible<typename container_traits<MatrixRef1>::const_reference,
typename container_traits<MatrixRef2>::const_reference>::type
const_reference;
ColChain(typename base_t::first_arg_type m1, typename base_t::second_arg_type m2)
: base_t(m1, m2)
{
const int r1=m1.rows(), r2=m2.rows();
if (r1) {
if (r2) {
if (r1!=r2) throw std::runtime_error("block matrix - different number of rows");
} else {
this->src2.get_object().stretch_rows(r1);
}
} else if (r2) {
this->src1.get_object().stretch_rows(r2);
}
}
ColChain& operator= (const ColChain& other) { return ColChain::generic_type::operator=(other); }
using ColChain::generic_type::operator=;
};
template <typename MatrixRef1, typename MatrixRef2>
struct spec_object_traits< ColChain<MatrixRef1, MatrixRef2> >
: spec_object_traits< RowChain<MatrixRef1, MatrixRef2> > {};
template <typename MatrixRef1, typename MatrixRef2>
struct check_container_feature<ColChain<MatrixRef1, MatrixRef2>, sparse> {
static const bool value=check_container_ref_feature<MatrixRef1, sparse>::value ||
check_container_ref_feature<MatrixRef2, sparse>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
struct check_container_feature<ColChain<MatrixRef1, MatrixRef2>, pure_sparse> {
static const bool value=check_container_ref_feature<MatrixRef1, pure_sparse>::value &&
check_container_ref_feature<MatrixRef2, pure_sparse>::value;
};
template <typename MatrixRef1, typename MatrixRef2>
class matrix_random_access_methods< ColChain<MatrixRef1, MatrixRef2> > {
typedef ColChain<MatrixRef1,MatrixRef2> master;
public:
typename compatible<typename container_traits<MatrixRef1>::reference,
typename container_traits<MatrixRef2>::reference>::type
operator() (int i, int j)
{
master& me=static_cast<master&>(*this);
const int c1=me.get_container1().cols();
if (j < c1) return me.get_container1()(i,j);
return me.get_container2()(i,j-c1);
}
typename compatible<typename container_traits<MatrixRef1>::const_reference,
typename container_traits<MatrixRef2>::const_reference>::type
operator() (int i, int j) const
{
const master& me=static_cast<const master&>(*this);
const int c1=me.get_container1().cols();
if (j < c1) return me.get_container1()(i,j);
return me.get_container2()(i,j-c1);
}
};
template <typename MatrixRef1, typename MatrixRef2>
class Rows< ColChain<MatrixRef1,MatrixRef2> >
: public modified_container_pair_impl< Rows< ColChain<MatrixRef1, MatrixRef2> >,
mlist< Container1Tag< masquerade<pm::Rows, MatrixRef1> >,
Container2Tag< masquerade<pm::Rows, MatrixRef2> >,
OperationTag< BuildBinary<operations::concat> >,
MasqueradedTop > > {
typedef modified_container_pair_impl<Rows> base_t;
protected:
~Rows();
public:
typename base_t::container1& get_container1()
{
return rows(this->hidden().get_container1());
}
typename base_t::container2& get_container2()
{
return rows(this->hidden().get_container2());
}
const typename base_t::container1& get_container1() const
{
return rows(this->hidden().get_container1());
}
const typename base_t::container2& get_container2() const
{
return rows(this->hidden().get_container2());
}
int size() const
{
int r=get_container1().size();
if (!r) r=get_container2().size();
return r;
}
};
template <typename MatrixRef1, typename MatrixRef2>
class Cols< ColChain<MatrixRef1,MatrixRef2> >
: public container_chain_impl< Cols< ColChain<MatrixRef1, MatrixRef2> >,
mlist< Container1Tag< masquerade<pm::Cols, MatrixRef1> >,
Container2Tag< masquerade<pm::Cols, MatrixRef2> >,
MasqueradedTop > > {
typedef container_chain_impl<Cols> base_t;
protected:
~Cols();
public:
typename base_t::container1& get_container1()
{
return cols(this->hidden().get_container1());
}
typename base_t::container2& get_container2()
{
return cols(this->hidden().get_container2());
}
const typename base_t::container1& get_container1() const
{
return cols(this->hidden().get_container1());
}
const typename base_t::container2& get_container2() const
{
return cols(this->hidden().get_container2());
}
int size() const
{
return get_container1().size() + get_container2().size();
}
};
/* ------------------------------
* base for SingleRow, SingleCol
* ------------------------------ */
template <typename LineRef>
class single_line_matrix {
protected:
single_value_container<LineRef> _line;
static const bool is_always_const=object_traits< single_value_container<LineRef> >::is_always_const;
public:
typedef typename single_value_container<LineRef>::arg_type arg_type;
single_line_matrix(arg_type arg) : _line(arg) {}
typename single_value_container<LineRef>::reference get_line() { return _line.front(); }
typename single_value_container<LineRef>::const_reference get_line() const { return _line.front(); }
};
} // end namespace pm
namespace polymake {
using pm::Transposed;
using pm::Symmetric;
using pm::NonSymmetric;
using pm::SkewSymmetric;
}
namespace std {
// due to silly overloading rules
template <typename Matrix> inline
void swap(pm::Transposed<Matrix>& m1, pm::Transposed<Matrix>& m2)
{
m1.swap(m2);
}
template <typename MatrixRef, typename RowIndexSetRef, typename ColIndexSetRef> inline
void swap(pm::MatrixMinor<MatrixRef,RowIndexSetRef,ColIndexSetRef>& m1,
pm::MatrixMinor<MatrixRef,RowIndexSetRef,ColIndexSetRef>& m2)
{
m1.swap(m2);
}
template <typename MatrixRef1, typename MatrixRef2> inline
void swap(pm::RowChain<MatrixRef1,MatrixRef2>& m1, pm::RowChain<MatrixRef1,MatrixRef2>& m2)
{
m1.swap(m2);
}
template <typename MatrixRef1, typename MatrixRef2> inline
void swap(pm::ColChain<MatrixRef1,MatrixRef2>& m1, pm::ColChain<MatrixRef1,MatrixRef2>& m2)
{
m1.swap(m2);
}
}
#endif // POLYMAKE_INTERNAL_MATRIX_METHODS_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|