This file is indexed.

/usr/include/polymake/topaz/FlipVisitor.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* Copyright (c) 1998-2016
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germainy)
http://www.polymake.org

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/graph/graph_iterators.h"
#include "polymake/graph/DoublyConnectedEdgeList.h"

namespace polymake { namespace topaz {

using namespace graph;

typedef Set< Vector<Rational> > Cone; 
typedef Map< Cone , int > Indexed_Cones;
typedef std::list<int> flip_sequence;
typedef Map< Vector<Rational> , int > Fan_Vertices;
typedef std::list< Set<int> > Fan_Max_Cells;


class FlipVisitor : public NodeVisitor<> {

friend class DoublyConnectedEdgeList;
friend class SecondaryFan;



private: 

// the graph we want to iterate through, gets build during iterating
Graph< Directed >& delaunay_graph;

// the base triangulation
DoublyConnectedEdgeList& dcel;

// collect all cones, IDs as its corresponding node in the delaunay_graph
Indexed_Cones cones;

// for each node of the graph we save the list of indices to flip to the corresponding dcel
Map< int , flip_sequence > flipIds_to_node; 

// a set of all vertices of the fan, each of which is labeled - we only need this to define a polyhedral complex
Fan_Vertices fan_vertices; 

// a list where each entry is a Set that represents a maximal cone of the fan, e.g. {0,1,2,4} is the cone with the rays with labels 1,2,3 and 5; NOTE THE INDEX SHIFT! (we ignore the origin)
Fan_Max_Cells fan_cells; 

// counter for the number vertices of the fan, equal to 1 + number of rays
int fan_num_vert; 

// number of punctures +1
int dim;

// we store the ray indices of the facets at the coordinate hyperplane boundary for the extension to a complete fan by the all -1 vector
Fan_Max_Cells boundary_facets;

public:

// this is needed for the BFS++ to not just stop in depth one
static const bool visit_all_edges=true;

FlipVisitor( Graph<Directed>& G, DoublyConnectedEdgeList& dcel )
   : delaunay_graph(G)
   , dcel(dcel)
{ 
   // this is the dimension of the fan +1, or equivalently the number of punctures +1
   dim = dcel.DelaunayInequalities().cols();

   // the flip word of the first cone is obtained by finding the triangulation that is Delaunay for all weights = 1
   flip_sequence start_flips = dcel.flipToDelaunayAlt( ones_vector<Rational>(dim) );
   flipIds_to_node[0] = start_flips;    
  
   Cone first_cone = dcel.coneRays();  
   // add the first cone, from the starting dcel
   cones[ first_cone ] = 0;  
   
   // the origin is always a vertex of the fan, for purposes of calculations we need to make sure that it is mapped to 0 by the Map "fan_vertices"
   Vector<Rational> origin = Vector<Rational>(dim); 
   origin[0] = 1;
   fan_vertices[ origin ] = 0;
   
   // since we just added the first cone we set the vertex-counter to 1
   fan_num_vert = 1;   
   
   // updating fan_vertices, fan_num_vert and fan_cells resp. the first cone
   add_cone( first_cone ); 

   // flip back to input triangulation
   dcel.flipEdges( start_flips , true );
}



bool operator()( int n ) 
{
   return operator()( n , n );
}



/* Preconditions: 1) the node n_to is part of the Delaunay graph, 
   2) the flip sequence that transforms the base DCEL into the one corresponding to n_to ("flipIds_to_node[ n_to ]") is known and 
   3) so is the corresponding cone in Indexed_Cones.
   
   After this operation all the neighbors of n_to are in the graph (with the corr. edges) with their flip sequences and 
   cones respectively
*/

bool operator()( int n_from , int n_to ) 
{
   if ( visited.contains( n_to ) ) return false;

   // we flip the start-triangulation T(0) to the triangulation T(n_to) corresponding to node n_to
   dcel.flipEdges( flipIds_to_node[ n_to ] );                                     

   // calculate the secondary cone of triangulation n_to
   perl::Object p("polytope::Polytope<Rational>");
   Matrix<Rational> M = dcel.DelaunayInequalities();
   p.take("INEQUALITIES") << M;
   IncidenceMatrix<> rays_in_facets = p.give("VERTICES_IN_FACETS"); 
   Matrix<Rational> rays = p.give("VERTICES");
   Matrix<Rational> facets = p.give("FACETS");
   
   // We compute a point outside each valid facet of the n_to-cone, the parameter 0 < epsilon < 1 is the distance of the point to its corresponding facet.
   // The point shall be contained in a top-dimensional cone that meets the n_to-cone in this facet.
   // If this is not the case, we consider a new point with distance epsilon^2 and try again
   for( int i = 0 ; i < facets.rows() ; i++ )
   {  
      flip_sequence new_flips{};
      
      // we store the facets at the coordinate hyperplanes for purposes of the fan estension to a complete fan 
      if( dcel.nonZeros( facets[i] ) == 1 && facets[i][0] == 0 )
      {                                                                         
         Set< int > boundary_rays_ids;                                           
         for( const auto it: rays_in_facets[i] )
         {
            if( rays[it][0] == 0 )
            {
            boundary_rays_ids += fan_vertices[ dcel.normalize( rays[it] ) ] - 1;     
            }
         }
         boundary_facets.push_back( boundary_rays_ids );                         
      }                                                                             
      
      if( dcel.validFacet( facets[i] ) )
      {
         Set< Vector<Rational> > facet_rays;
         for( const auto it: rays_in_facets[i] ) 
         {
            facet_rays += dcel.normalize( rays[it] );
         }

         Cone new_cone{};
         Rational epsilon{1,10};
         bool cone_is_neighbor = false;
         while( cone_is_neighbor == false )
         {                                                                      
            Vector<Rational> neighbor_point = neighborConePoint( facets[i] , facet_rays , epsilon );
         
            // we use the flip algorithm to determine a flip sequence that makes the triangulation Delaunay w.r.t. the weights given by neighbor_point
            new_flips = dcel.flipToDelaunayAlt( neighbor_point );                
            // calculate cone,  and check if really neighbored in facet[i]; if not  take epsilon^2 and start over
            new_cone = dcel.coneRays();                                          
            if( incl( facet_rays , new_cone ) == -1 )
            {
               cone_is_neighbor = true;                                          
            }
            else
            {
               dcel.flipEdges( new_flips , true );                              
               epsilon = epsilon*epsilon;
            }
         }
         // add a new node to the graph and save all the corresponding data ( flip sequence, add_cone, cones ) 
         if ( !cones.exists( new_cone ) && new_cone.size() > dim-1 )     
         {
            int new_id = delaunay_graph.add_node();                              
                                                                                
            delaunay_graph.add_edge( n_to , new_id );                            

            flip_sequence new_flipIds{ flipIds_to_node[n_to] };
            new_flipIds.insert( new_flipIds.end() , new_flips.begin() , new_flips.end() );
            flipIds_to_node[ new_id ] = new_flipIds;                            

            cones[ new_cone ] = new_id;
            add_cone( new_cone );
         }
      
      }
      // flip back to T(n_to)                                                    
      dcel.flipEdges( new_flips , true );
      
   }
   
   // flip back to T(0)                                                       
   dcel.flipEdges( flipIds_to_node[n_to] , true );

   visited += n_to;
   return true;
}



// when adding a cone we update the input data for the fan, namely the vertices and the maximal cells

void add_cone ( Cone new_cone )
{                                                                                                                                                                                                                                               
   Set<int> fan_cell;
   for ( const auto it:  new_cone ) 
   {
      // case: the vertex is new
      if( !fan_vertices.exists(it) )
      {
         fan_vertices[ it ] = fan_num_vert;
         fan_cell += fan_num_vert-1; // the -1 is an index shift, the fan_cells do not consider vertex 0 with index 0 and we relabel the verticesby -1
         fan_num_vert++;
      }
      // case: the vertex is already known by some previous cone 
      else
      {
         if( fan_vertices[it] != 0 ) fan_cell += fan_vertices[it]-1;
      }
   }
   fan_cells.push_back( fan_cell );
}



int getfan_num_vert() const
{  
   return fan_num_vert; 
}

int getdim() const
{ 
   return dim; 
}

Fan_Max_Cells getfan_cells() const
{ 
   return fan_cells; 
}

Fan_Vertices getfan_vertices() const
{ 
   return fan_vertices; 
}


Fan_Max_Cells getboundary_facets() const
{
   return boundary_facets;
}

Map< int , flip_sequence > getflipIds_to_node() const
{ 
   return flipIds_to_node; 
}


// Given a facet of a 0-pointed cone via its inner normal vector & a set of the rays of this facet we return a point outside the cone near to the facet

Vector<Rational> neighborConePoint( Vector<Rational> facet_normal , Set< Vector<Rational> > facet_vertices , Rational epsilon )
{                       
   Rational eps( epsilon );                        
   Vector<Rational> point(dim);                    
   Vector<Rational> sum(dim);
   for( const auto it: facet_vertices )
   {
      if( it[0] == 0 ) sum += it;                  
   }
   bool positive = false;
   while( positive == false )
   {        
      point = 1/eps * sum;                        
      point = point - eps * facet_normal;        
      positive = true;
      for( int i = 1 ; i < point.size() ; i++ )
      {  
         if( point[i] <= 0 ) positive = false;
      }
                                                   
      eps = eps*eps;                                  
   }
   return point; 
}



// the flip algorithm, we flip edges that are non-Delaunay w.r.t. the weights as long as there are some

flip_sequence flipToDelaunay( DoublyConnectedEdgeList& dcel , Vector<Rational> weights )
{
   flip_sequence flip_ids{};
   int non_delaunay = dcel.is_Delaunay( weights );
   while( non_delaunay != -1 )
   {                                      
      dcel.flipEdge( non_delaunay );
      flip_ids.push_back( non_delaunay );
      non_delaunay = dcel.is_Delaunay( weights );
   }
   return flip_ids;
}




friend std::pair< Matrix<Rational> , Array<Set<int> > > DCEL_secondary_fan_input( DoublyConnectedEdgeList& dcel );
friend Indexed_Cones DCEL_secondary_fan( DoublyConnectedEdgeList& dcel );
friend Matrix<Rational> DCEL_secondary_fan_input_vertices( DoublyConnectedEdgeList& dcel );
friend Array< Set<int> > DCEL_secondary_fan_input_cells( DoublyConnectedEdgeList& dcel );


                                                              
}; // end class flip visitor




} //end topaz namespace
} //end polymake namespace

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: