This file is indexed.

/usr/include/singular/singular/coeffs/coeffs.h is in libsingular4-dev-common 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
/*! \file coeffs/coeffs.h Coefficient rings, fields and other domains suitable for Singular polynomials

  The main interface for Singular coefficients: \ref coeffs is the main handler for Singular numbers
*/
/****************************************
*  Computer Algebra System SINGULAR     *
****************************************/

#ifndef COEFFS_H
#define COEFFS_H

# include <misc/auxiliary.h>
#include <omalloc/omalloc.h>

#include <misc/sirandom.h>
/* for assume: */
#include <reporter/reporter.h>
#include <reporter/s_buff.h>
#include <factory/factory.h>

#include <coeffs/si_gmp.h>
#include <coeffs/Enumerator.h>
#include <coeffs/numstats.h> // for STATISTIC(F) counting macro

class CanonicalForm;

enum n_coeffType
{
  n_unknown=0,
  n_Zp, /**< \F{p < 2^31} */
  n_Q,  /**< rational (GMP) numbers */
  n_R,  /**< single prescision (6,6) real numbers */
  n_GF, /**< \GF{p^n < 2^16} */
  n_long_R, /**< real floating point (GMP) numbers */
  n_polyExt, /**< used to represent polys as coeffcients */
  n_algExt,  /**< used for all algebraic extensions, i.e.,
                the top-most extension in an extension tower
                is algebraic */
  n_transExt,  /**< used for all transcendental extensions, i.e.,
                  the top-most extension in an extension tower
                  is transcendental */
  n_long_C, /**< complex floating point (GMP) numbers */
  n_Z, /**< only used if HAVE_RINGS is defined  */
  n_Zn, /**< only used if HAVE_RINGS is defined */
  n_Znm, /**< only used if HAVE_RINGS is defined */
  n_Z2m, /**< only used if HAVE_RINGS is defined */
  n_CF /**< ? */
};

extern const unsigned short fftable[];

struct snumber;
typedef struct snumber *   number;

/* standard types */
struct ip_sring;
typedef struct ip_sring *         ring;
typedef struct ip_sring const *   const_ring;

/// @class coeffs coeffs.h coeffs/coeffs.h
///
/// The main handler for Singular numbers which are suitable for Singular polynomials.
///
/// With it one may implement a ring, a field, a domain etc.
///
struct n_Procs_s;
typedef struct  n_Procs_s  *coeffs;
typedef struct  n_Procs_s  const * const_coeffs;

typedef number (*numberfunc)(number a, number b, const coeffs r);

/// maps "a", which lives in src, into dst
typedef number (*nMapFunc)(number a, const coeffs src, const coeffs dst);


/// Abstract interface for an enumerator of number coefficients for an
/// object, e.g. a polynomial
typedef IEnumerator<number> ICoeffsEnumerator;

/// goes over coeffs given by the ICoeffsEnumerator and changes them.
/// Additionally returns a number;
typedef void (*nCoeffsEnumeratorFunc)(ICoeffsEnumerator& numberCollectionEnumerator, number& output, const coeffs r);

extern omBin rnumber_bin;

#define FREE_RNUMBER(x) omFreeBin((void *)x, rnumber_bin)
#define ALLOC_RNUMBER() (number)omAllocBin(rnumber_bin)
#define ALLOC0_RNUMBER() (number)omAlloc0Bin(rnumber_bin)


/// Creation data needed for finite fields
typedef struct
{
  int GFChar;
  int GFDegree;
  const char* GFPar_name;
} GFInfo;

typedef struct
{
  short      float_len; /**< additional char-flags, rInit */
  short      float_len2; /**< additional char-flags, rInit */
  const char* par_name; /**< parameter name */
} LongComplexInfo;


enum n_coeffRep
{
  n_rep_unknown=0,
  n_rep_int,      /**< (int), see modulop.h */
  n_rep_gap_rat,  /**< (number), see longrat.h */
  n_rep_gap_gmp,  /**< (), see rinteger.h, new impl. */
  n_rep_poly,     /**< (poly), see algext.h */
  n_rep_rat_fct,  /**< (fraction), see transext.h */
  n_rep_gmp,      /**< (mpz_ptr), see rmodulon,h */
  n_rep_float,    /**< (float), see shortfl.h */
  n_rep_gmp_float,  /**< (gmp_float), see  */
  n_rep_gmp_complex,/**< (gmp_complex), see gnumpc.h */
  n_rep_gf        /**< (int), see ffields.h */
};

struct n_Procs_s
{
   // administration of coeffs:
   coeffs next;
   int     ref;
   n_coeffRep rep;
   n_coeffType type;
   /// how many variables of factory are already used by this coeff
   int     factoryVarOffset;

   // general properties:
   /// TRUE, if nNew/nDelete/nCopy are dummies
   BOOLEAN has_simple_Alloc;
   /// TRUE, if std should make polynomials monic (if nInvers is cheap)
   /// if false, then a gcd routine is used for a content computation
   BOOLEAN has_simple_Inverse;

   /// TRUE, if cf is a field
   BOOLEAN is_field;
   /// TRUE, if cf is a domain
   BOOLEAN is_domain;

   // tests for numbers.cc:
   BOOLEAN (*nCoeffIsEqual)(const coeffs r, n_coeffType n, void * parameter);

   /// output of coeff description via Print
   void (*cfCoeffWrite)(const coeffs r, BOOLEAN details);

   /// string output of coeff description
   char* (*cfCoeffString)(const coeffs r);

   /// default name of cf, should substitue cfCoeffWrite, cfCoeffString
   char* (*cfCoeffName)(const coeffs r);

   // ?
   // initialisation:
   //void (*cfInitChar)(coeffs r, int parameter); // do one-time initialisations
   void (*cfKillChar)(coeffs r); //  undo all initialisations
                                // or NULL
   void (*cfSetChar)(const coeffs r); // initialisations after each ring change
                                // or NULL
   // general stuff
   //   if the ring has a meaningful Euclidean structure, hopefully
   //   supported by cfQuotRem, then
   //     IntMod, Div should give the same result
   //     Div(a,b) = QuotRem(a,b, &IntMod(a,b))
   //   if the ring is not Euclidean or a field, then IntMod should return 0
   //   and Div the exact quotient. It is assumed that the function is
   //   ONLY called on Euclidean rings or in the case of an exact division.
   //
   //   cfDiv does an exact division, but has to handle illegal input
   //   cfExactDiv does an exact division, but no error checking
   //   (I'm not sure I understant and even less that this makes sense)
   numberfunc cfMult, cfSub ,cfAdd ,cfDiv, cfIntMod, cfExactDiv;

   /// init with an integer
   number  (*cfInit)(long i,const coeffs r);

   /// init with a GMP integer
   number  (*cfInitMPZ)(mpz_t i, const coeffs r);

   /// how complicated, (0) => 0, or positive
   int     (*cfSize)(number n, const coeffs r);

   /// convertion to long, 0 if impossible
   long    (*cfInt)(number &n, const coeffs r);

   /// Converts a non-negative number n into a GMP number, 0 if impossible
   void     (*cfMPZ)(mpz_t result, number &n, const coeffs r);

   /// changes argument  inline: a:= -a
   /// return -a! (no copy is returned)
   /// the result should be assigned to the original argument: e.g. a = n_InpNeg(a,r)
   number  (*cfInpNeg)(number a, const coeffs r);
   /// return 1/a
   number  (*cfInvers)(number a, const coeffs r);
   /// return a copy of a
   number  (*cfCopy)(number a, const coeffs r);
   number  (*cfRePart)(number a, const coeffs r);
   number  (*cfImPart)(number a, const coeffs r);

   /// print a given number (long format)
   void    (*cfWriteLong)(number a, const coeffs r);

   /// print a given number in a shorter way, if possible
   /// e.g. in K(a): a2 instead of a^2
   void    (*cfWriteShort)(number a, const coeffs r);

   // it is legal, but not always useful to have cfRead(s, a, r)
   //   just return s again.
   // Useful application (read constants which are not an projection
   // from int/bigint:
   // Let ring r = R,x,dp;
   // where R is a coeffs having "special" "named" elements (ie.
   // the primitive element in some algebraic extension).
   // If there is no interpreter variable of the same name, it is
   // difficult to create non-trivial elements in R.
   // Hence one can use the string to allow creation of R-elts using the
   // unbound name of the special element.
   const char *  (*cfRead)(const char * s, number * a, const coeffs r);

   void    (*cfNormalize)(number &a, const coeffs r);

   BOOLEAN (*cfGreater)(number a,number b, const coeffs r),
            /// tests
           (*cfEqual)(number a,number b, const coeffs r),
           (*cfIsZero)(number a, const coeffs r),
           (*cfIsOne)(number a, const coeffs r),
       // IsMOne is used for printing os polynomials:
       // -1 is only printed for constant monomials
           (*cfIsMOne)(number a, const coeffs r),
       //GreaterZero is used for printing of polynomials:
       //  a "+" is only printed in front of a coefficient
       //  if the element is >0. It is assumed that any element
       //  failing this will start printing with a leading "-"
           (*cfGreaterZero)(number a, const coeffs r);

   void    (*cfPower)(number a, int i, number * result, const coeffs r);
   number  (*cfGetDenom)(number &n, const coeffs r);
   number  (*cfGetNumerator)(number &n, const coeffs r);
   //CF: a Euclidean ring is a commutative, unitary ring with an Euclidean
   //  function f s.th. for all a,b in R, b ne 0, we can find q, r s.th.
   //  a = qb+r and either r=0 or f(r) < f(b)
   //  Note that neither q nor r nor f(r) are unique.
   number  (*cfGcd)(number a, number b, const coeffs r);
   number  (*cfSubringGcd)(number a, number b, const coeffs r);
   number  (*cfExtGcd)(number a, number b, number *s, number *t,const coeffs r);
   //given a and b in a Euclidean setting, return s,t,u,v sth.
   //  sa + tb = gcd
   //  ua + vb = 0
   //  sv + tu = 1
   //  ie. the 2x2 matrix (s t | u v) is unimodular and maps (a,b) to (g, 0)
   //CF: note, in general, this cannot be derived from ExtGcd due to
   //    zero divisors
   number  (*cfXExtGcd)(number a, number b, number *s, number *t, number *u, number *v, const coeffs r);
   //in a Euclidean ring, return the Euclidean norm as a bigint (of type number)
   number  (*cfEucNorm)(number a, const coeffs r);
   //in a principal ideal ring (with zero divisors): the annihilator
   // NULL otherwise
   number  (*cfAnn)(number a, const coeffs r);
   //find a "canonical representative of a modulo the units of r
   //return NULL if a is already normalized
   //otherwise, the factor.
   //(for Z: make positive, for z/nZ make the gcd with n
   //aparently it is GetUnit!
   //in a Euclidean ring, return the quotient and compute the remainder
   //rem can be NULL
   number  (*cfQuotRem)(number a, number b, number *rem, const coeffs r);
   number  (*cfLcm)(number a, number b, const coeffs r);
   number  (*cfNormalizeHelper)(number a, number b, const coeffs r);
   void    (*cfDelete)(number * a, const coeffs r);

   //CF: tries to find a canonical map from src -> dst
   nMapFunc (*cfSetMap)(const coeffs src, const coeffs dst);

   void    (*cfWriteFd)(number a, FILE *f, const coeffs r);
   number  (*cfReadFd)( s_buff f, const coeffs r);

   /// Inplace: a *= b
   void    (*cfInpMult)(number &a, number b, const coeffs r);

   /// Inplace: a += b
   void    (*cfInpAdd)(number &a, number b, const coeffs r);

   /// rational reconstruction: "best" rational a/b with a/b = p mod n
   //  or a = bp mod n
   //  CF: no idea what this would be in general
   //     it seems to be extended to operate coefficient wise in extensions.
   //     I presume then n in coeffs_BIGINT while p in coeffs
   number  (*cfFarey)(number p, number n, const coeffs);

   /// chinese remainder
   /// returns X with X mod q[i]=x[i], i=0..rl-1
   //CF: by the looks of it: q[i] in Z (coeffs_BIGINT)
   //    strange things happen in naChineseRemainder for example.
   number  (*cfChineseRemainder)(number *x, number *q,int rl, BOOLEAN sym,CFArray &inv_cache,const coeffs);

   /// degree for coeffcients: -1 for 0, 0 for "constants", ...
   int (*cfParDeg)(number x,const coeffs r);

   /// create i^th parameter or NULL if not possible
   number  (*cfParameter)(const int i, const coeffs r);

   /// a function returning random elements
   number (*cfRandom)(siRandProc p, number p1, number p2, const coeffs cf);

   /// function pointer behind n_ClearContent
   nCoeffsEnumeratorFunc cfClearContent;

   /// function pointer behind n_ClearDenominators
   nCoeffsEnumeratorFunc cfClearDenominators;

   /// conversion to CanonicalForm(factory) to number
   number (*convFactoryNSingN)( const CanonicalForm n, const coeffs r);
   CanonicalForm (*convSingNFactoryN)( number n, BOOLEAN setChar, const coeffs r );


   /// the 0 as constant, NULL by default
   number nNULL;

   /// Number of Parameters in the coeffs (default 0)
   int iNumberOfParameters;

   /// array containing the names of Parameters (default NULL)
   char const **  pParameterNames;
   // NOTE that it replaces the following:
// char* complex_parameter; //< the name of sqrt(-1) in n_long_C , i.e. 'i' or 'j' etc...?
// char * m_nfParameter; //< the name of parameter in n_GF

   /////////////////////////////////////////////
   // the union stuff

   //-------------------------------------------

  /* for extension fields we need to be able to represent polynomials,
     so here is the polynomial ring: */
  ring          extRing;

  //number     minpoly;  //< no longer needed: replaced by
  //                     //< extRing->qideal->[0]


  int        ch;  /* characteristic, set by the local *InitChar methods;
                     In field extensions or extensions towers, the
                     characteristic can be accessed from any of the
                     intermediate extension fields, i.e., in this case
                     it is redundant along the chain of field extensions;
                     CONTRARY to SINGULAR as it was, we do NO LONGER use
                     negative values for ch;
                     for rings, ch will also be set and is - per def -
                     the smallest number of 1's that sum up to zero;
                     however, in this case ch may not fit in an int,
                     thus ch may contain a faulty value */

  short      float_len; /* additional char-flags, rInit */
  short      float_len2; /* additional char-flags, rInit */

//  BOOLEAN   CanShortOut; //< if the elements can be printed in short format
//                       // this is set to FALSE if a parameter name has >2 chars
//  BOOLEAN   ShortOut; //< if the elements should print in short format

// ---------------------------------------------------
  // for n_GF

  int m_nfCharQ;  ///< the number of elements: q
  int m_nfM1;       ///< representation of -1
  int m_nfCharP;  ///< the characteristic: p
  int m_nfCharQ1; ///< q-1
  unsigned short *m_nfPlus1Table;
  int *m_nfMinPoly;

// ---------------------------------------------------
// for Zp:
  unsigned short *npInvTable;
  unsigned short *npExpTable;
  unsigned short *npLogTable;
   //   int npPrimeM; // NOTE: npPrimeM is deprecated, please use ch instead!
  int npPminus1M; ///< characteristic - 1
//-------------------------------------------
   int     (*cfDivComp)(number a,number b,const coeffs r);
   BOOLEAN (*cfIsUnit)(number a,const coeffs r);
   number  (*cfGetUnit)(number a,const coeffs r);
   //CF: test if b divides a
   BOOLEAN (*cfDivBy)(number a, number b, const coeffs r);
  /* The following members are for representing the ring Z/n,
     where n is not a prime. We distinguish four cases:
     1.) n has at least two distinct prime factors. Then
         modBase stores n, modExponent stores 1, modNumber
         stores n, and mod2mMask is not used;
     2.) n = p^k for some odd prime p and k > 1. Then
         modBase stores p, modExponent stores k, modNumber
         stores n, and mod2mMask is not used;
     3.) n = 2^k for some k > 1; moreover, 2^k - 1 fits in
         an unsigned long. Then modBase stores 2, modExponent
         stores k, modNumber is not used, and mod2mMask stores
         2^k - 1, i.e., the bit mask '111..1' of length k.
     4.) n = 2^k for some k > 1; but 2^k - 1 does not fit in
         an unsigned long. Then modBase stores 2, modExponent
         stores k, modNumber stores n, and mod2mMask is not
         used;
     Cases 1.), 2.), and 4.) are covered by the implementation
     in the files rmodulon.h and rmodulon.cc, whereas case 3.)
     is implemented in the files rmodulo2m.h and rmodulo2m.cc. */
  mpz_ptr    modBase;
  unsigned long modExponent;
  mpz_ptr    modNumber;
  unsigned long mod2mMask;
  //returns coeffs with updated ch, modNumber and modExp
  coeffs (*cfQuot1)(number c, const coeffs r);

  /*CF: for blackbox rings, contains data needed to define the ring.
   * contents depends on the actual example.*/
  void * data;
#ifdef LDEBUG
   // must be last entry:
   /// Test: is "a" a correct number?
   // DB as in debug, not data base.
   BOOLEAN (*cfDBTest)(number a, const char *f, const int l, const coeffs r);
#endif
};

// test properties and type
/// Returns the type of coeffs domain
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
{ assume(r != NULL); return r->type; }

/// one-time initialisations for new coeffs
/// in case of an error return NULL
coeffs nInitChar(n_coeffType t, void * parameter);

/// "copy" coeffs, i.e. increment ref
static FORCE_INLINE coeffs nCopyCoeff(const coeffs r)
{ assume(r!=NULL); r->ref++; return r;}

/// undo all initialisations
void nKillChar(coeffs r);

/// initialisations after each ring change
static FORCE_INLINE void nSetChar(const coeffs r)
{ STATISTIC(nSetChar);  assume(r!=NULL); assume(r->cfSetChar != NULL); r->cfSetChar(r); }

void           nNew(number * a);
#define n_New(n, r)           nNew(n)


/// Return the characteristic of the coeff. domain.
static FORCE_INLINE int n_GetChar(const coeffs r)
{ STATISTIC(n_GetChar); assume(r != NULL); return r->ch; }


// the access methods (part 2):

/// return a copy of 'n'
static FORCE_INLINE number n_Copy(number n,    const coeffs r)
{ STATISTIC(n_Copy);   assume(r != NULL); assume(r->cfCopy!=NULL); return r->cfCopy(n, r); }

/// delete 'p'
static FORCE_INLINE void   n_Delete(number* p, const coeffs r)
{ STATISTIC(n_Delete);   assume(r != NULL); assume(r->cfDelete!= NULL); r->cfDelete(p, r); }

/// TRUE iff 'a' and 'b' represent the same number;
/// they may have different representations
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
{ STATISTIC(n_Equal); assume(r != NULL); assume(r->cfEqual!=NULL); return r->cfEqual(a, b, r); }

/// TRUE iff 'n' represents the zero element
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
{ STATISTIC(n_IsZero); assume(r != NULL); assume(r->cfIsZero!=NULL); return r->cfIsZero(n,r); }

/// TRUE iff 'n' represents the one element
static FORCE_INLINE BOOLEAN n_IsOne(number n,  const coeffs r)
{ STATISTIC(n_IsOne); assume(r != NULL); assume(r->cfIsOne!=NULL); return r->cfIsOne(n,r); }

/// TRUE iff 'n' represents the additive inverse of the one element, i.e. -1
static FORCE_INLINE BOOLEAN n_IsMOne(number n, const coeffs r)
{ STATISTIC(n_IsMOne); assume(r != NULL); assume(r->cfIsMOne!=NULL); return r->cfIsMOne(n,r); }

/// ordered fields: TRUE iff 'n' is positive;
/// in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long
///          representing n
/// in C:    TRUE iff (Im(n) != 0 and Im(n) >= 0) or
///                   (Im(n) == 0 and Re(n) >= 0)
/// in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0))
/// in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0)
///                            or (LC(numerator(n) is not a constant)
/// in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1)
/// in Z/mZ: TRUE iff the internal mpz is greater than zero
/// in Z: TRUE iff n > 0
///
/// !!! Recommendation: remove implementations for unordered fields
/// !!!                 and raise errors instead, in these cases
/// !!! Do not follow this recommendation: while writing polys,
/// !!! between 2 monomials will be an additional + iff !n_GreaterZero(next coeff)
///     Then change definition to include n_GreaterZero => printing does NOT
///     start with -
///
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
{ STATISTIC(n_GreaterZero); assume(r != NULL); assume(r->cfGreaterZero!=NULL); return r->cfGreaterZero(n,r); }

/// ordered fields: TRUE iff 'a' is larger than 'b';
/// in Z/pZ: TRUE iff la > lb, where la and lb are the long's representing
//                             a and b, respectively
/// in C:    TRUE iff (Im(a) > Im(b))
/// in K(a)/<p(a)>: TRUE iff (a != 0 and (b == 0 or deg(a) > deg(b))
/// in K(t_1, ..., t_n): TRUE only if one or both numerator polynomials are
///                      zero or if their degrees are equal. In this case,
///                      TRUE if LC(numerator(a)) > LC(numerator(b))
/// in Z/2^kZ: TRUE if n_DivBy(a, b)
/// in Z/mZ: TRUE iff the internal mpz's fulfill the relation '>'
/// in Z: TRUE iff a > b
///
/// !!! Recommendation: remove implementations for unordered fields
/// !!!                 and raise errors instead, in these cases
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
{ STATISTIC(n_Greater); assume(r != NULL); assume(r->cfGreater!=NULL); return r->cfGreater(a,b,r); }

/// TRUE iff n has a multiplicative inverse in the given coeff field/ring r
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
{ STATISTIC(n_IsUnit); assume(r != NULL); assume(r->cfIsUnit!=NULL); return r->cfIsUnit(n,r); }

static FORCE_INLINE coeffs n_CoeffRingQuot1(number c, const coeffs r)
{ STATISTIC(n_CoeffRingQuot1); assume(r != NULL); assume(r->cfQuot1 != NULL); return r->cfQuot1(c, r); }

#ifdef HAVE_RINGS
static FORCE_INLINE int n_DivComp(number a, number b, const coeffs r)
{ STATISTIC(n_DivComp); assume(r != NULL); assume(r->cfDivComp!=NULL); return r->cfDivComp (a,b,r); }

/// in Z: 1
/// in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that
///                                   is co-prime with k
/// in Z/2^kZ: largest odd divisor of n (taken in Z)
/// other cases: not implemented
// CF: shold imply that n/GetUnit(n) is normalized in Z/kZ
//   it would make more sense to return the inverse...
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
{ STATISTIC(n_GetUnit); assume(r != NULL); assume(r->cfGetUnit!=NULL); return r->cfGetUnit(n,r); }

#endif

/// a number representing i in the given coeff field/ring r
static FORCE_INLINE number n_Init(long i,       const coeffs r)
{ STATISTIC(n_Init); assume(r != NULL); assume(r->cfInit!=NULL); return r->cfInit(i,r); }

/// conversion of a GMP integer to number
static FORCE_INLINE number n_InitMPZ(mpz_t n,     const coeffs r)
{ STATISTIC(n_InitMPZ); assume(r != NULL); assume(r->cfInitMPZ != NULL); return r->cfInitMPZ(n,r); }

/// conversion of n to an int; 0 if not possible
/// in Z/pZ: the representing int lying in (-p/2 .. p/2]
static FORCE_INLINE long n_Int(number &n,       const coeffs r)
{ STATISTIC(n_Int); assume(r != NULL); assume(r->cfInt!=NULL); return r->cfInt(n,r); }

/// conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE void n_MPZ(mpz_t result, number &n,       const coeffs r)
{ STATISTIC(n_MPZ); assume(r != NULL); assume(r->cfMPZ!=NULL); r->cfMPZ(result, n, r); }


/// in-place negation of n
/// MUST BE USED: n = n_InpNeg(n) (no copy is returned)
static FORCE_INLINE number n_InpNeg(number n,     const coeffs r)
{ STATISTIC(n_InpNeg); assume(r != NULL); assume(r->cfInpNeg!=NULL); return r->cfInpNeg(n,r); }

/// return the multiplicative inverse of 'a';
/// raise an error if 'a' is not invertible
///
/// !!! Recommendation: rename to 'n_Inverse'
static FORCE_INLINE number n_Invers(number a,  const coeffs r)
{ STATISTIC(n_Invers); assume(r != NULL); assume(r->cfInvers!=NULL); return r->cfInvers(a,r); }

/// return a non-negative measure for the complexity of n;
/// return 0 only when n represents zero;
/// (used for pivot strategies in matrix computations with entries from r)
static FORCE_INLINE int    n_Size(number n,    const coeffs r)
{ STATISTIC(n_Size); assume(r != NULL); assume(r->cfSize!=NULL); return r->cfSize(n,r); }

/// inplace-normalization of n;
/// produces some canonical representation of n;
///
/// !!! Recommendation: remove this method from the user-interface, i.e.,
/// !!!                 this should be hidden
static FORCE_INLINE void   n_Normalize(number& n, const coeffs r)
{ STATISTIC(n_Normalize); assume(r != NULL); assume(r->cfNormalize!=NULL); r->cfNormalize(n,r); }

/// write to the output buffer of the currently used reporter
//CF: the "&" should be removed, as one wants to write constants as well
static FORCE_INLINE void   n_WriteLong(number n,  const coeffs r)
{ STATISTIC(n_WriteLong); assume(r != NULL); assume(r->cfWriteLong!=NULL); r->cfWriteLong(n,r); }

/// write to the output buffer of the currently used reporter
/// in a shortest possible way, e.g. in K(a): a2 instead of a^2
static FORCE_INLINE void   n_WriteShort(number n,  const coeffs r)
{ STATISTIC(n_WriteShort); assume(r != NULL); assume(r->cfWriteShort!=NULL); r->cfWriteShort(n,r); }

static FORCE_INLINE void   n_Write(number n,  const coeffs r, const BOOLEAN bShortOut = TRUE)
{ STATISTIC(n_Write); if (bShortOut) n_WriteShort(n, r); else n_WriteLong(n, r); }


/// !!! Recommendation: This method is too cryptic to be part of the user-
/// !!!                 interface. As defined here, it is merely a helper
/// !!!                 method for parsing number input strings.
static FORCE_INLINE const char *n_Read(const char * s, number * a, const coeffs r)
{ STATISTIC(n_Read); assume(r != NULL); assume(r->cfRead!=NULL); return r->cfRead(s, a, r); }

/// return the denominator of n
/// (if elements of r are by nature not fractional, result is 1)
static FORCE_INLINE number n_GetDenom(number& n, const coeffs r)
{ STATISTIC(n_GetDenom); assume(r != NULL); assume(r->cfGetDenom!=NULL); return r->cfGetDenom(n, r); }

/// return the numerator of n
/// (if elements of r are by nature not fractional, result is n)
static FORCE_INLINE number n_GetNumerator(number& n, const coeffs r)
{ STATISTIC(n_GetNumerator); assume(r != NULL); assume(r->cfGetNumerator!=NULL); return r->cfGetNumerator(n, r); }

/// return the quotient of 'a' and 'b', i.e., a/b;
/// raises an error if 'b' is not invertible in r
/// exception in Z: raises an error if 'a' is not divisible by 'b'
/// always: n_Div(a,b,r)*b+n_IntMod(a,b,r)==a
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
{ STATISTIC(n_Div); assume(r != NULL); assume(r->cfDiv!=NULL); return r->cfDiv(a,b,r); }

/// assume that there is a canonical subring in cf and we know
/// that division is possible for these a and b in the subring,
/// n_ExactDiv performs it, may skip additional tests.
/// Can always be substituted by n_Div at the cost of larger  computing time.
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
{ STATISTIC(n_ExactDiv); assume(r != NULL); assume(r->cfExactDiv!=NULL); return r->cfExactDiv(a,b,r); }

/// for r a field, return n_Init(0,r)
/// always: n_Div(a,b,r)*b+n_IntMod(a,b,r)==a
/// n_IntMod(a,b,r) >=0
static FORCE_INLINE number n_IntMod(number a, number b, const coeffs r)
{ STATISTIC(n_IntMod); assume(r != NULL); return r->cfIntMod(a,b,r); }

/// fill res with the power a^b
static FORCE_INLINE void   n_Power(number a, int b, number *res, const coeffs r)
{ STATISTIC(n_Power); assume(r != NULL); assume(r->cfPower!=NULL); r->cfPower(a,b,res,r); }

/// return the product of 'a' and 'b', i.e., a*b
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
{ STATISTIC(n_Mult); assume(r != NULL); assume(r->cfMult!=NULL); return r->cfMult(a, b, r); }

/// multiplication of 'a' and 'b';
/// replacement of 'a' by the product a*b
static FORCE_INLINE void n_InpMult(number &a, number b, const coeffs r)
{ STATISTIC(n_InpMult); assume(r != NULL); assume(r->cfInpMult!=NULL); r->cfInpMult(a,b,r); }

/// addition of 'a' and 'b';
/// replacement of 'a' by the sum a+b
static FORCE_INLINE void n_InpAdd(number &a, number b, const coeffs r)
{ STATISTIC(n_InpAdd); assume(r != NULL); assume(r->cfInpAdd!=NULL); r->cfInpAdd(a,b,r);

#ifdef HAVE_NUMSTATS
  // avoid double counting
  if( r->cfIsZero(a,r) ) STATISTIC(n_CancelOut);
#endif
}

/// return the sum of 'a' and 'b', i.e., a+b
static FORCE_INLINE number n_Add(number a, number b, const coeffs r)
{ STATISTIC(n_Add); assume(r != NULL); assume(r->cfAdd!=NULL); const number sum = r->cfAdd(a, b, r);

#ifdef HAVE_NUMSTATS
  // avoid double counting
  if( r->cfIsZero(sum,r) ) STATISTIC(n_CancelOut);
#endif

 return sum;
}


/// return the difference of 'a' and 'b', i.e., a-b
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
{ STATISTIC(n_Sub); assume(r != NULL); assume(r->cfSub!=NULL); const number d = r->cfSub(a, b, r);

#ifdef HAVE_NUMSTATS
  // avoid double counting
  if( r->cfIsZero(d,r) ) STATISTIC(n_CancelOut);
#endif

  return d;
}

/// in Z: return the gcd of 'a' and 'b'
/// in Z/nZ, Z/2^kZ: computed as in the case Z
/// in Z/pZ, C, R: not implemented
/// in Q: return the gcd of the numerators of 'a' and 'b'
/// in K(a)/<p(a)>: not implemented
/// in K(t_1, ..., t_n): not implemented
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
{ STATISTIC(n_Gcd); assume(r != NULL); assume(r->cfGcd!=NULL); return r->cfGcd(a,b,r); }
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
{ STATISTIC(n_SubringGcd); assume(r != NULL); assume(r->cfSubringGcd!=NULL); return r->cfSubringGcd(a,b,r); }

/// beware that ExtGCD is only relevant for a few chosen coeff. domains
/// and may perform something unexpected in some cases...
static FORCE_INLINE number n_ExtGcd(number a, number b, number *s, number *t, const coeffs r)
{ STATISTIC(n_ExtGcd); assume(r != NULL); assume(r->cfExtGcd!=NULL); return r->cfExtGcd (a,b,s,t,r); }
static FORCE_INLINE number n_XExtGcd(number a, number b, number *s, number *t, number *u, number *v, const coeffs r)
{ STATISTIC(n_XExtGcd); assume(r != NULL); assume(r->cfXExtGcd!=NULL); return r->cfXExtGcd (a,b,s,t,u,v,r); }
static FORCE_INLINE number  n_EucNorm(number a, const coeffs r)
{ STATISTIC(n_EucNorm); assume(r != NULL); assume(r->cfEucNorm!=NULL); return r->cfEucNorm (a,r); }
/// if r is a ring with zero divisors, return an annihilator!=0 of b
/// otherwise return NULL
static FORCE_INLINE number  n_Ann(number a, const coeffs r)
{ STATISTIC(n_Ann); assume(r != NULL); return r->cfAnn (a,r); }
static FORCE_INLINE number  n_QuotRem(number a, number b, number *q, const coeffs r)
{ STATISTIC(n_QuotRem); assume(r != NULL); assume(r->cfQuotRem!=NULL); return r->cfQuotRem (a,b,q,r); }


/// in Z: return the lcm of 'a' and 'b'
/// in Z/nZ, Z/2^kZ: computed as in the case Z
/// in Z/pZ, C, R: not implemented
/// in K(a)/<p(a)>: not implemented
/// in K(t_1, ..., t_n): not implemented
static FORCE_INLINE number n_Lcm(number a, number b, const coeffs r)
{ STATISTIC(n_Lcm); assume(r != NULL); assume(r->cfLcm!=NULL); return r->cfLcm(a,b,r); }

/// assume that r is a quotient field (otherwise, return 1)
/// for arguments (a1/a2,b1/b2) return (lcm(a1,b2)/1)
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
{ STATISTIC(n_NormalizeHelper); assume(r != NULL); assume(r->cfNormalizeHelper!=NULL); return r->cfNormalizeHelper(a,b,r); }

/// set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
{ STATISTIC(n_SetMap); assume(src != NULL && dst != NULL); assume(dst->cfSetMap!=NULL); return dst->cfSetMap(src,dst); }

#ifdef LDEBUG
/// test whether n is a correct number;
/// only used if LDEBUG is defined
static FORCE_INLINE BOOLEAN n_DBTest(number n, const char *filename, const int linenumber, const coeffs r)
{ STATISTIC(n_Test); assume(r != NULL); assume(r->cfDBTest != NULL); return r->cfDBTest(n, filename, linenumber, r); }
#else
// is it really necessary to define this function in any case?
/// test whether n is a correct number;
/// only used if LDEBUG is defined
static FORCE_INLINE BOOLEAN n_DBTest(number, const char*, const int, const coeffs)
{ STATISTIC(n_Test);  return TRUE; }
#endif

/// BOOLEAN n_Test(number a, const coeffs r)
#define n_Test(a,r)  n_DBTest(a, __FILE__, __LINE__, r)

/// output the coeff description
static FORCE_INLINE void   n_CoeffWrite(const coeffs r, BOOLEAN details = TRUE)
{ STATISTIC(n_CoeffWrite); assume(r != NULL); assume(r->cfCoeffWrite != NULL); r->cfCoeffWrite(r, details); }

// Tests:
#ifdef HAVE_RINGS
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_Z2m); }

static FORCE_INLINE BOOLEAN nCoeff_is_Ring_ModN(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_Zn); }

static FORCE_INLINE BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_Znm); }

static FORCE_INLINE BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_Z); }

static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
{ assume(r != NULL); return (r->is_field==0); }
#else
#define nCoeff_is_Ring_2toM(A) 0
#define nCoeff_is_Ring_ModN(A) 0
#define nCoeff_is_Ring_PtoM(A) 0
#define nCoeff_is_Ring_Z(A)    0
#define nCoeff_is_Ring(A)      0
#endif

/// returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
{
  assume(r != NULL);
  return (r->is_domain);
}

/// test whether 'a' is divisible 'b';
/// for r encoding a field: TRUE iff 'b' does not represent zero
/// in Z: TRUE iff 'b' divides 'a' (with remainder = zero)
/// in Z/nZ: TRUE iff (a = 0 and b divides n in Z) or
///                   (a != 0 and b/gcd(a, b) is co-prime with n, i.e.
///                                              a unit in Z/nZ)
/// in Z/2^kZ: TRUE iff ((a = 0 mod 2^k) and (b = 0 or b is a power of 2))
///                  or ((a, b <> 0) and (b/gcd(a, b) is odd))
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
{ STATISTIC(n_DivBy); assume(r != NULL);
#ifdef HAVE_RINGS
  if( nCoeff_is_Ring(r) )
  {
    assume(r->cfDivBy!=NULL); return r->cfDivBy(a,b,r);
  }
#endif
  return !n_IsZero(b, r);
}

static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym,CFArray &inv_cache,const coeffs r)
{ STATISTIC(n_ChineseRemainderSym); assume(r != NULL); assume(r->cfChineseRemainder != NULL); return r->cfChineseRemainder(a,b,rl,sym,inv_cache,r); }

static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
{ STATISTIC(n_Farey); assume(r != NULL); assume(r->cfFarey != NULL); return r->cfFarey(a,b,r); }

static FORCE_INLINE int n_ParDeg(number n, const coeffs r)
{ STATISTIC(n_ParDeg); assume(r != NULL); assume(r->cfParDeg != NULL); return r->cfParDeg(n,r); }

/// Returns the number of parameters
static FORCE_INLINE int n_NumberOfParameters(const coeffs r)
{ STATISTIC(n_NumberOfParameters); assume(r != NULL); return r->iNumberOfParameters; }

/// Returns a (const!) pointer to (const char*) names of parameters
static FORCE_INLINE char const * * n_ParameterNames(const coeffs r)
{ STATISTIC(n_ParameterNames); assume(r != NULL); return r->pParameterNames; }

/// return the (iParameter^th) parameter as a NEW number
/// NOTE: parameter numbering: 1..n_NumberOfParameters(...)
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
{ assume(r != NULL);
  assume((iParameter >= 1) || (iParameter <= n_NumberOfParameters(r)));
  assume(r->cfParameter != NULL);
  STATISTIC(n_Param); return r->cfParameter(iParameter, r);
}

static FORCE_INLINE number  n_RePart(number i, const coeffs cf)
{ STATISTIC(n_RePart); assume(cf != NULL); assume(cf->cfRePart!=NULL); return cf->cfRePart(i,cf); }

static FORCE_INLINE number  n_ImPart(number i, const coeffs cf)
{ STATISTIC(n_ImPart); assume(cf != NULL); assume(cf->cfImPart!=NULL); return cf->cfImPart(i,cf); }

/// returns TRUE, if r is not a field and r has non-trivial units
static FORCE_INLINE BOOLEAN nCoeff_has_Units(const coeffs r)
{ assume(r != NULL); return ((getCoeffType(r)==n_Zn) || (getCoeffType(r)==n_Z2m) || (getCoeffType(r)==n_Znm)); }

static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_Zp; }

static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r, int p)
{ assume(r != NULL); return ((getCoeffType(r)==n_Zp) && (r->ch == p)); }

static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_Q && (r->is_field); }

static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_Z || ((getCoeffType(r)==n_Q) && (!r->is_field)); }

static FORCE_INLINE BOOLEAN nCoeff_is_Q_or_BI(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_Q; }

static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r) /* R, long R, long C */
{ assume(r != NULL);  return (getCoeffType(r)==n_R) || (getCoeffType(r)==n_long_R) || (getCoeffType(r)==n_long_C); }
// (r->ringtype == 0) && (r->ch ==  -1); ??

static FORCE_INLINE BOOLEAN nCoeff_is_R(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_R; }

static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_GF; }

static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r, int q)
{ assume(r != NULL); return (getCoeffType(r)==n_GF) && (r->ch == q); }

/* TRUE iff r represents an algebraic or transcendental extension field */
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
{
  assume(r != NULL);
  return (getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt);
}

/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
   svn trunk);
   intension: should be TRUE iff the given r is an extension field above
   some Z/pZ;
   actually: TRUE iff the given r is an extension tower of arbitrary
   height above some field of characteristic p (may be Z/pZ or some
   Galois field of characteristic p) */
static FORCE_INLINE BOOLEAN nCoeff_is_Zp_a(const coeffs r)
{
  assume(r != NULL);
  return ((!nCoeff_is_Ring(r)) && (n_GetChar(r) != 0) && nCoeff_is_Extension(r));
}

/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
   svn trunk);
   intension: should be TRUE iff the given r is an extension field above
   Z/pZ (with p as provided);
   actually: TRUE iff the given r is an extension tower of arbitrary
   height above some field of characteristic p (may be Z/pZ or some
   Galois field of characteristic p) */
static FORCE_INLINE BOOLEAN nCoeff_is_Zp_a(const coeffs r, int p)
{
  assume(r != NULL);
  assume(p != 0);
  return ((!nCoeff_is_Ring(r)) && (n_GetChar(r) == p) && nCoeff_is_Extension(r));
}

/* DO NOT USE (only kept for compatibility reasons towards the SINGULAR
   svn trunk);
   intension: should be TRUE iff the given r is an extension field
   above Q;
   actually: TRUE iff the given r is an extension tower of arbitrary
   height above some field of characteristic 0 (may be Q, R, or C) */
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
{
  assume(r != NULL);
  return ((n_GetChar(r) == 0) && nCoeff_is_Extension(r));
}

static FORCE_INLINE BOOLEAN nCoeff_is_long_R(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_long_R; }

static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_long_C; }

static FORCE_INLINE BOOLEAN nCoeff_is_CF(const coeffs r)
{ assume(r != NULL); return getCoeffType(r)==n_CF; }

/// TRUE, if the computation of the inverse is fast,
/// i.e. prefer leading coeff. 1 over content
static FORCE_INLINE BOOLEAN nCoeff_has_simple_inverse(const coeffs r)
{ assume(r != NULL); return r->has_simple_Inverse; }

/// TRUE if n_Delete/n_New are empty operations
static FORCE_INLINE BOOLEAN nCoeff_has_simple_Alloc(const coeffs r)
{ assume(r != NULL); return r->has_simple_Alloc; }

/// TRUE iff r represents an algebraic extension field
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_algExt); }

/// is it an alg. ext. of Q?
static FORCE_INLINE BOOLEAN nCoeff_is_Q_algext(const coeffs r)
{ assume(r != NULL); return ((n_GetChar(r) == 0) && nCoeff_is_algExt(r)); }

/// TRUE iff r represents a transcendental extension field
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
{ assume(r != NULL); return (getCoeffType(r)==n_transExt); }

/// Computes the content and (inplace) divides it out on a collection
/// of numbers
/// number @em c is the content (i.e. the GCD of all the coeffs, which
/// we divide out inplace)
/// NOTE: it assumes all coefficient numbers to be integer!!!
/// NOTE/TODO: see also the description by Hans
/// TODO: rename into n_ClearIntegerContent
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator& numberCollectionEnumerator, number& c, const coeffs r)
{ STATISTIC(n_ClearContent); assume(r != NULL); r->cfClearContent(numberCollectionEnumerator, c, r); }

/// (inplace) Clears denominators on a collection of numbers
/// number @em d is the LCM of all the coefficient denominators (i.e. the number
/// with which all the number coeffs. were multiplied)
/// NOTE/TODO: see also the description by Hans
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator& numberCollectionEnumerator, number& d, const coeffs r)
{ STATISTIC(n_ClearDenominators); assume(r != NULL); r->cfClearDenominators(numberCollectionEnumerator, d, r); }

// convenience helpers (no number returned - but the input enumeration
// is to be changed
// TODO: do we need separate hooks for these as our existing code does
// *different things* there: compare p_Cleardenom (which calls
// *p_Content) and p_Cleardenom_n (which doesn't)!!!

static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator& numberCollectionEnumerator, const coeffs r)
{ STATISTIC(n_ClearContent); number c; n_ClearContent(numberCollectionEnumerator, c, r); n_Delete(&c, r); }

static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator& numberCollectionEnumerator, const coeffs r)
{ STATISTIC(n_ClearDenominators); assume(r != NULL); number d; n_ClearDenominators(numberCollectionEnumerator, d, r); n_Delete(&d, r); }


/// print a number (BEWARE of string buffers!)
/// mostly for debugging
void   n_Print(number& a,  const coeffs r);



/// TODO: make it a virtual method of coeffs, together with:
/// Decompose & Compose, rParameter & rPar
static FORCE_INLINE char * nCoeffString(const coeffs cf)
{ STATISTIC(nCoeffString); assume( cf != NULL ); return cf->cfCoeffString(cf); }


static FORCE_INLINE char * nCoeffName (const coeffs cf)
{ STATISTIC(nCoeffName); assume( cf != NULL ); return cf->cfCoeffName(cf); }

static FORCE_INLINE number n_Random(siRandProc p, number p1, number p2, const coeffs cf)
{ STATISTIC(n_Random); assume( cf != NULL ); assume( cf->cfRandom != NULL );  return cf->cfRandom(p, p1, p2, cf); }

/// io via ssi:
static FORCE_INLINE void n_WriteFd(number a, FILE *f, const coeffs r)
{ STATISTIC(n_WriteFd); assume(r != NULL); assume(r->cfWriteFd != NULL); return r->cfWriteFd(a, f, r); }

/// io via ssi:
static FORCE_INLINE number n_ReadFd( s_buff f, const coeffs r)
{ STATISTIC(n_ReadFd); assume(r != NULL); assume(r->cfReadFd != NULL); return r->cfReadFd(f, r); }


// the following wrappers went to numbers.cc since they needed factory
// knowledge!
number n_convFactoryNSingN( const CanonicalForm n, const coeffs r);

CanonicalForm n_convSingNFactoryN( number n, BOOLEAN setChar, const coeffs r );


// TODO: remove the following functions...
// the following 2 inline functions are just convenience shortcuts for Frank's code:
static FORCE_INLINE void number2mpz(number n, coeffs c, mpz_t m){ n_MPZ(m, n, c); }
static FORCE_INLINE number mpz2number(mpz_t m, coeffs c){ return n_InitMPZ(m, c); }

#endif