This file is indexed.

/usr/include/singular/singular/kernel/linear_algebra/CacheImplementation.h is in libsingular4-dev-common 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#ifndef CACHE_IMPLEMENTATION_H
#define CACHE_IMPLEMENTATION_H

#include <reporter/reporter.h>

#include <cstdio> // for sprintf
#include <iostream>

template<class KeyClass, class ValueClass>
Cache<KeyClass, ValueClass>::Cache (const int maxEntries, const int maxWeight)
{
  _maxEntries = maxEntries;
  _maxWeight = maxWeight;
  _rank.clear();
  _key.clear();
  _value.clear();
  _weights.clear();
  _itKey = _key.end(); /* referring to past-the-end element in the list */
  _itValue = _value.end(); /* referring to past-the-end element in the list */
  _weight = 0;
}

template<class KeyClass, class ValueClass>
int Cache<KeyClass, ValueClass>::getWeight() const
{
  return _weight;
}

template<class KeyClass, class ValueClass>
int Cache<KeyClass, ValueClass>::getNumberOfEntries() const
{
  return _rank.size();
}

template<class KeyClass, class ValueClass>
void Cache<KeyClass, ValueClass>::clear()
{
  _rank.clear();
  _key.clear();
  _value.clear();
  _weights.clear();
}

template<class KeyClass, class ValueClass>
Cache<KeyClass, ValueClass>::~Cache()
{
  _rank.clear();
  _key.clear();
  _value.clear();
  _weights.clear();
}

template<class KeyClass, class ValueClass>
bool Cache<KeyClass, ValueClass>::hasKey (const KeyClass& key) const
{
  _itKey = _key.end(); // referring to past-the-end element in the list
   typename std::list<KeyClass>::const_iterator itKey;
  _itValue = _value.begin();
  /* As _key is a sorted list, the following could actually be implemented
     in logarithmic time, by bisection. However, for lists this does not work.
     But often, we can still terminate the linear loop before having visited
     all elements. */
  for (itKey = _key.begin(); itKey != _key.end(); itKey++)
  {
    int c = key.compare(*itKey);
    if (c == 0)
    {
      _itKey = itKey;
      return true;
    }
    if (c == -1) return false;
    _itValue++;
  }
  return false;
}

template<class KeyClass, class ValueClass>
ValueClass Cache<KeyClass, ValueClass>::getValue (const KeyClass& /*key*/) const
{
  if (_itKey == _key.end())
    /* _itKey refers to past-the-end element in the list;
       thus, getValue has been called although hasKey
       produced no match */
    assume(false);

  return *_itValue;
}

template<class KeyClass, class ValueClass>
bool Cache<KeyClass, ValueClass>::shrink(const KeyClass& key)
{
  /* We need to return true iff the pair with given key needed to
     be erased during the shrinking procedure. So far, we assume no: */
  bool result = false;
  /* Shrink until both bounds will be met again: */
  while (int(_key.size()) > _maxEntries || _weight > _maxWeight)
  {
    if (deleteLast(key)) result = true;
  }
  return result;
}

template<class KeyClass, class ValueClass>
int Cache<KeyClass, ValueClass>::getMaxNumberOfEntries() const
{
  return _maxEntries;
}

template<class KeyClass, class ValueClass>
int Cache<KeyClass, ValueClass>::getMaxWeight() const
{
  return _maxWeight;
}

template<class KeyClass, class ValueClass>
bool Cache<KeyClass, ValueClass>::deleteLast(const KeyClass& key)
{
  if (_rank.size() == 0)
  {
    return false; /* nothing to do */
  };
  /* We need to perform the following (empty) loop in order to
     obtain a forward-iterator pointing to the last entry of _rank.
     Note: We cannot use rbegin() because we need the iterator for
     erasing the last entry which is only implemented for forward
     iterators by std::list. */
   std::list<int>::iterator itRank;
  for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { }
  itRank--; /* Now, this forward iterator points to the last list entry. */
  int deleteIndex = *itRank; /* index of (_key, _value)-pair with worst,
                                i.e., highest _rank */
  bool result = false;

  /* now delete entries in _key and _value with index deleteIndex */
  int k = 0;
  typename std::list<KeyClass>::iterator itKey;
  typename std::list<ValueClass>::iterator itValue = _value.begin();
  typename std::list<int>::iterator itWeights = _weights.begin();
  for (itKey = _key.begin(); itKey != _key.end(); itKey++)
  {
    if (k == deleteIndex)
    {
      result = (key.compare(*itKey) == 0);
      break;
    }
    itValue++;
    itWeights++;
    k++;
  }
  _key.erase(itKey);
  int deleteWeight = *itWeights;
  _value.erase(itValue);
  _weights.erase(itWeights);

  /* adjust total weight of this cache */
  _weight -= deleteWeight;

  /* now delete last entry of _rank and decrement all those indices
  // in _rank by 1 which are larger than deleteIndex */
  _rank.erase(itRank);
  for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
  {
    if (*itRank > deleteIndex) *itRank -= 1;
  }

  return result;
}

template<class KeyClass, class ValueClass>
bool Cache<KeyClass, ValueClass>::put (const KeyClass& key,
                                       const ValueClass& value)
{
  bool keyWasContained = false;
  int oldIndexInKey = -1;
  int newIndexInKey = _key.size();  /* default to enter new (key, value)-pair
                                       is at the end of the two lists;
                                       only used in the case
                                       keyWasContained == false */
  int k = 0;
  typename std::list<KeyClass>::iterator itKey;
  // itOldValue will later only be used in the case keyWasContained == true: */
  typename std::list<ValueClass>::iterator itOldValue = _value.begin();
  /* itOldWeights will later only be used in the case
     keyWasContained == true */
  typename std::list<int>::iterator itOldWeights = _weights.begin();
  for (itKey = _key.begin(); itKey != _key.end(); itKey++)
  {
    int c = key.compare(*itKey);
    if (c == -1)
    {
      newIndexInKey = k;
      break;
    }
    if (c == 0)
    {
      keyWasContained = true;
      oldIndexInKey = k;
      break;
    }
    itOldValue++;
    itOldWeights++;
    k++;
  }
  int utility = value.getUtility();
  int newWeight = value.getWeight();
  k = 0;
  typename std::list<ValueClass>::iterator itValue = _value.begin();
  for (itValue = _value.begin(); itValue != _value.end(); itValue++)
  {
    if (itValue->getUtility() > utility) k++;
  }
  int newIndexInRank = k;

  if (keyWasContained)
  {
    /* There was already a pair of the form (key --> *). */

    /*adjusting the weight of the cache */
    ValueClass oldValue = *itOldValue;
    _weight += newWeight - *itOldWeights;

    /* overwriting old value by argument value */
    itOldValue = _value.erase(itOldValue);
    itOldWeights = _weights.erase(itOldWeights);
    ValueClass myValueCopy = value;
    _value.insert(itOldValue, myValueCopy);
    _weights.insert(itOldWeights, newWeight);

    int oldIndexInRank = -1;
    /* oldIndexInRank is to be the position in _rank such that
       _rank[oldIndexInRank] == oldIndexInKey, i.e.
       _key[_rank[oldIndexInRank]] == key: */
    std::list<int>::iterator itRank;
    k = 0;
    for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
    {
      if (*itRank == oldIndexInKey)
      {
          oldIndexInRank = k;
      }
      k++;
    }
    /* Although the key stays the same, the ranking of the (key --> value)
       pair may be completely different from before. Thus, we need to repair
       the entries of _rank: */
    if (oldIndexInRank < newIndexInRank)
    {  /* first insert, then erase */
      k = 0;
      /* insert 'oldIndexInKey' at new position 'newIndexInRank': */
      for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
      {
        if (k == newIndexInRank) break;
        k++;
      }
      _rank.insert(itRank, oldIndexInKey); /* note that this may also insert
                                              at position itRank == _rank.end(),
                                              i.e. when above loop did not
                                              terminate because of a 'break'
                                              statement */
      k = 0;
      /* erase 'oldIndexInKey' at old position 'oldIndexInRank': */
      for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
      {
        if (k == oldIndexInRank)
        {
          _rank.erase(itRank);
          break;
        }
        k++;
      }
    }
    else
    {  /* oldIndexInRank >= newIndexInRank */
      if (oldIndexInRank > newIndexInRank)
      { /* first erase, then insert */
        k = 0;
        /* erase 'oldIndexInKey' at old position 'oldIndexInRank': */
        for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
        {
          if (k == oldIndexInRank)
          {
            _rank.erase(itRank);
            break;
          }
          k++;
        }
        k = 0;
        /* insert 'oldIndexInKey' at new position 'newIndexInRank': */
        for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
        {
          if (k == newIndexInRank)
          {
            _rank.insert(itRank, oldIndexInKey);
            break;
          }
          k++;
        }
      }
    }
  }
  else
  {
    /* There is no pair of the form (key --> *). We are about to insert
       a completely new (key, value)-pair.
       After this "else" branch, we shall have _key[newIndexInKey] = key;
       _value[newIndexInKey] = value. Note that, after the above computation,
       newIndexInKey contains the correct target position.
       Let's make room for the assignment
       _rank[newIndexInRank] := newIndexInKey: */
    std::list<int>::iterator itRank;
    for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
    {
      if (newIndexInKey <= *itRank)
      {
        *itRank += 1;
      }
    }
    k = 0;
    for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
    {
      if (k == newIndexInRank) break;
      k++;
    }
    _rank.insert(itRank, newIndexInKey);
    /* let's insert new key and new value at index newIndexInKey: */
    itValue = _value.begin();
    typename std::list<int>::iterator itWeights = _weights.begin();
    k = 0;
    for (itKey = _key.begin(); itKey != _key.end(); itKey++)
    {
      if (k == newIndexInKey) break;
      itValue++;
      itWeights++;
      k++;
    }
    KeyClass myKeyCopy = key;
    ValueClass myValueCopy = value;
    _key.insert(itKey, myKeyCopy);
    _value.insert(itValue, myValueCopy);
    _weights.insert(itWeights, newWeight);
    /* adjusting the total weight of the cache: */
    _weight += newWeight;
  };
  /* We may now have to shrink the cache: */
  bool result = shrink(key);  /* true iff shrinking deletes the
                                 new (key, value)-pair */

  assume(_rank.size() == _key.size());
  assume(_rank.size() == _value.size());
  return !result; /* true iff the new (key --> value) pair is
                     actually in the cache now */
}

template<class KeyClass, class ValueClass>
std::string Cache<KeyClass, ValueClass>::toString() const
{
  char h[10];
  std::string s = "Cache:";
  s += "\n   entries: ";
  sprintf(h, "%d", getNumberOfEntries()); s += h;
  s += " of at most ";
  sprintf(h, "%d", getMaxNumberOfEntries()); s += h;
  s += "\n   weight: ";
  sprintf(h, "%d", getWeight()); s += h;
  s += " of at most ";
  sprintf(h, "%d", getMaxWeight()); s += h;
  if (_key.size() == 0)
  {
    s += "\n   no pairs, i.e. cache is empty";
  }
  else
  {
    int k = 1;
    s += "\n   (key --> value) pairs in ascending order of keys:";
    typename std::list<KeyClass>::const_iterator itKey;
    typename std::list<ValueClass>::const_iterator itValue = _value.begin();
    for (itKey = _key.begin(); itKey != _key.end(); itKey++)
    {
      s += "\n      ";
      sprintf(h, "%d", k); s += h;
      s += ". ";
      s += itKey->toString();
      s += " --> ";
      s += itValue->toString();
      itValue++;
      k++;
    }
    s += "\n   (key --> value) pairs in descending order of ranks:";
    std::list<int>::const_iterator itRank;
    int r = 1;
    for (itRank = _rank.begin(); itRank != _rank.end(); itRank++)
    {
     int index = *itRank;
     itValue = _value.begin();
     k = 0;
     for (itKey = _key.begin(); itKey != _key.end(); itKey++)
     {
         if (k == index) break;
         k++;
         itValue++;
     }
     s += "\n      ";
     sprintf(h, "%d", r); s += h;
     s += ". ";
     s += itKey->toString();
     s += " --> ";
     s += itValue->toString();
     r++;
    }
  }
  return s;
}

template<class KeyClass, class ValueClass>
void Cache<KeyClass, ValueClass>::print() const
{
  PrintS(this->toString().c_str());
}

template<class KeyClass, class ValueClass>
Cache<KeyClass, ValueClass>::Cache() { }

template<class KeyClass, class ValueClass>
Cache<KeyClass, ValueClass>::Cache(const Cache& c)
{
  _rank = c._rank;
  _value = c._value;
  _weights = c._weights;
  _key = c._key;
  _weight = c._weight;
  _maxEntries = c._maxEntries;
  _maxWeight = c._maxWeight;
}

#endif
/* CACHE_IMPLEMENTATION_H */