This file is indexed.

/usr/include/singular/singular/kernel/linear_algebra/MinorProcessor.h is in libsingular4-dev-common 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
#ifndef MINOR_PROCESSOR_H
#define MINOR_PROCESSOR_H

#include <kernel/linear_algebra/Cache.h>
#include <kernel/linear_algebra/Minor.h>

struct spolyrec; typedef struct spolyrec polyrec; typedef polyrec* poly;
struct ip_sring; typedef struct ip_sring* ring; typedef struct ip_sring const* const_ring;

struct sip_sideal; typedef struct sip_sideal *       ideal;

// #include <assert.h>
#include <string>

/* write "##define COUNT_AND_PRINT_OPERATIONS x" if you want
   to count all basic operations and have them printed when
   one of the methods documented herein will be invoked;
   otherwise, comment this line;
   x = 1: only final counters (after computing ALL
          specified minors) will be printed, i.e., no
          intermediate results;
   x = 2: print counters after the computation of each
          minor; this will be much more information
   x = 3: print also all intermediate matrices with the
          numbers of monomials in each entry;
          this will be much much more information */
//#define COUNT_AND_PRINT_OPERATIONS 2

void printCounters (char* prefix, bool resetToZero);

/*! \class MinorProcessor
    \brief Class MinorProcessor implements the key methods for computing one
    or all sub-determinantes of a given size in a pre-defined matrix; either
    without caching or by using a cache.

    After defining the entire matrix (e.g. 10 x 14) using<br>
    MinorProcessor::defineMatrix (const int, const int, const int*),<br>
    the user may do two different things:<br>
    1. He/she can simply compute a minor in this matrix using<br>
    MinorProcessor::getMinor (const int, const int*, const int*,
                              Cache<MinorKey, MinorValue>&), or<br>
    MinorProcessor::getMinor (const int, const int*, const int*);<br>
    depending on whether a cache shall or shall not be used, respectively.<br>
    In the first case, the user simply provides all row and column indices of
    the desired minor.
    2. He/she may define a smaller sub-matrix (e.g. 8 x 7) using
    MinorValue::defineSubMatrix (const int, const int*, const int, const int*).
    Afterwards, he/she may compute all minors of an even smaller size (e.g.
    5 x 5) that consist exclusively of rows and columns of this (8 x 7)
    sub-matrix (inside the entire 10 x 14 matrix).<br>
    The implementation at hand eases the iteration over all such minors. Also
    in the second case there are both implementations, i.e., with and without
    using a cache.<br><br>
    MinorProcessor makes use of MinorKey, MinorValue, and Cache. The
    implementation of all mentioned classes (MinorKey, MinorValue, and
    MinorProcessor) is generic to allow for the use of different types of
    keys and values.
    \author Frank Seelisch, http://www.mathematik.uni-kl.de/~seelisch
*/
class MinorProcessor
{
  protected:
    /**
    * A static method for computing the maximum number of retrievals of a
    * minor.<br>
    * More concretely, we are given a matrix of size \c rows x \c columns. We
    * furthermore assume that we have - as part of this matrix - a minor of
    * size \c containerMinorSize x \c containerMinorSize. Now we are
    * interested in the number of times a minor of yet smaller size
    * \c minorSize x \c minorSize will be needed when we compute the
    * containerMinor by Laplace's Theorem.<br>
    * The method returns the combinatorial results for both cases:
    * containerMinor is fixed within the matrix
    * (<c>multipleMinors == false</c>), or it can vary inside the matrix
    * (<c>multipleMinors == true</c>).<br>
    * The notion is here that we want to cache the small minor of size
    * \c minorSize x \c minorSize, i.e. compute it just once.
    * @param rows the number of rows of the underlying matrix
    * @param columns the number of columns of the underlying matrix
    * @param containerMinorSize the size of the container minor
    * @param minorSize the size of the small minor (which may be retrieved
    *        multiple times)
    * @param multipleMinors decides whether containerMinor is fixed within
    *        the underlying matrix or not
    * @return the number of times, the small minor will be needed when
    *         computing one or all containerMinors
    */
    static int NumberOfRetrievals (const int rows, const int columns,
                                   const int containerMinorSize,
                                   const int minorSize,
                                   const bool multipleMinors);
    /**
    * A static method for computing the binomial coefficient i over j.
    * \par Assert
    * The method checks whether <em>i >= j >= 0</em>.
    * @param i a positive integer greater than or equal to \a j
    * @param j a positive integer less than or equal to \a i, and greater
    *        than or equal to \e 0.
    * @return the binomial coefficient i over j
    */
    static int IOverJ (const int i, const int j);

    /**
    * A static method for computing the factorial of i.
    * \par Assert
    * The method checks whether <em>i >= 0</em>.
    * @param i an integer greater than or equal to \a 0
    * @return the factorial of i
    */
    static int Faculty (const int i);

    /**
    * A method for iterating through all possible subsets of \c k rows and
    * \c k columns inside a pre-defined submatrix of a pre-defined matrix.<br>
    * The method will set \c _rowKey and \c columnKey to represent the
    * next possbile subsets of \c k rows and columns inside the submatrix
    * determined by \c _globalRowKey and \c _globalColumnKey.<br>
    * When first called, this method will just shift \c _rowKey and
    * \c _columnKey to point to the first sensible choices. Every subsequent
    * call will move to the next \c _columnKey until there is no next.
    * In this situation, a next \c _rowKey will be set, and \c _columnKey
    * again to the first possible choice.<br>
    * Finally, in case there is also no next \c _rowkey, the method returns
    * \c false. (Otherwise \c true is returned.)
    * @param k the size of the minor / all minors of interest
    * @return true iff there is a next possible choice of rows and columns
    */
    bool setNextKeys (const int k);

    /**
    * private store for the rows and columns of the container minor within
    * the underlying matrix;
    * \c _container will be used to fix a submatrix (e.g. 40 x 50) of a
    * larger matrix (e.g. 70 x 100). This is usefull when we would like to
    * compute all minors of a given size (e.g. 4 x 4) inside such a
    * pre-defined submatrix.
    */
    MinorKey _container;

    /**
    * private store for the number of rows in the container minor;
    * This is set by MinorProcessor::defineSubMatrix (const int, const int*,
    *                                                 const int, const int*).
    */
    int _containerRows;

    /**
    * private store for the number of columns in the container minor;
    * This is set by MinorProcessor::defineSubMatrix (const int, const int*,
    *                                                 const int, const int*).
    */
    int _containerColumns;

    /**
    * private store for the rows and columns of the minor of interest;
    * Usually, this minor will encode subsets of the rows and columns in
    * _container.
    */
    MinorKey _minor;

    /**
    * private store for the dimension of the minor(s) of interest
    */
    int _minorSize;

    /**
    * private store for the number of rows in the underlying matrix
    */
    int _rows;

    /**
    * private store for the number of columns in the underlying matrix
    */
    int _columns;

    /**
    * A method for identifying the row or column with the most zeros.<br>
    * Using Laplace's Theorem, a minor can more efficiently be computed when
    * developing along this best line.
    * The returned index \c bestIndex is 0-based within the pre-defined
    * matrix. If some row has the most zeros, then the (0-based) row index is
    * returned. If, contrarywise, some column has the most zeros, then
    * <c>x = - 1 - c</c> where \c c is the column index, is returned.
    * (Note that in this case \c c can be reconstructed by computing
    * <c>c = - 1 - x</c>.)
    * @param k the size of the minor / all minors of interest
    * @param mk the representation of rows and columns of the minor of
    *        interest
    * @return an int encoding which row or column has the most zeros
    */
    int getBestLine (const int k, const MinorKey& mk) const;

    /**
    * A method for testing whether a matrix entry is zero.
    * @param absoluteRowIndex the absolute (zero-based) row index
    * @param absoluteColumnIndex the absolute (zero-based) column index
    * @return true iff the specified matrix entry is zero
    */
    virtual bool isEntryZero (const int absoluteRowIndex,
                              const int absoluteColumnIndex) const;
  public:
    /**
    * The default constructor
    */
    MinorProcessor ();

    /**
     * A destructor for deleting an instance. We must make this destructor
     * virtual so that destructors of all derived classes will automatically
     * also call the destructor of the base class MinorProcessor.
     */
     virtual ~MinorProcessor ();

    /**
    * A method for defining a sub-matrix within a pre-defined matrix.
    * @param numberOfRows the number of rows in the sub-matrix
    * @param rowIndices an array with the (0-based) indices of rows inside
    *        the pre-defined matrix
    * @param numberOfColumns the number of columns in the sub-matrix
    * @param columnIndices an array with the (0-based) indices of columns
    *        inside the pre-defined matrix
    * @see MinorValue::defineMatrix (const int, const int, const int*)
    */
    void defineSubMatrix (const int numberOfRows, const int* rowIndices,
                          const int numberOfColumns, const int* columnIndices);

    /**
    * Sets the size of the minor(s) of interest.<br>
    * This method needs to be performed before beginning to compute all minors
    * of size \a minorSize inside a pre-defined submatrix of an underlying
    * (also pre-defined) matrix.
    * @param minorSize the size of the minor(s) of interest
    * @see MinorValue::defineSubMatrix (const int, const int*, const int,
    *                                   const int*)
    */
    void setMinorSize (const int minorSize);

    /**
    * A method for checking whether there is a next choice of rows and columns
    * when iterating through all minors of a given size within a pre-defined
    * sub-matrix of an underlying matrix.<br>
    * The number of rows and columns has to be set before using
    * MinorValue::setMinorSize(const int).<br>
    * After calling MinorValue::hasNextMinor (), the current sets of rows and
    * columns may be inspected using
    * MinorValue::getCurrentRowIndices(int* const) const and
    * MinorValue::getCurrentColumnIndices(int* const) const.
    * @return true iff there is a next choice of rows and columns
    * @see MinorProcessor::getMinor (const int, const int*, const int*)
    * @see MinorValue::getCurrentRowIndices(int* const) const
    * @see MinorValue::getCurrentColumnIndices(int* const) const
    */
    bool hasNextMinor ();

    /**
    * A method for obtaining the current set of rows corresponding to the
    * current minor when iterating through all minors of a given size within
    * a pre-defined sub-matrix of an underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * The user of this method needs to know the number of rows in order to
    * know which entries of the newly filled \c target will be valid.
    * @param target an int array to be filled with the row indices
    * @see MinorProcessor::hasNextMinor ()
    */
    void getCurrentRowIndices (int* const target) const;

    /**
    * A method for obtaining the current set of columns corresponding to the
    * current minor when iterating through all minors of a given size within
    * a pre-defined sub-matrix of an underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * The user of this method needs to know the number of columns in order to
    * know which entries of the newly filled \c target will be valid.
    * @param target an int array to be filled with the column indices
    * @see MinorProcessor::hasNextMinor ()
    */
    void getCurrentColumnIndices (int* const target) const;

    /**
    * A method for providing a printable version of the represented
    * MinorProcessor.
    * @return a printable version of the given instance as instance of class
    * string
    */
   virtual std::string toString () const;

    /**
    * A method for printing a string representation of the given
    * MinorProcessor to std::cout.
    */
    void print () const;
};

/*! \class IntMinorProcessor
    \brief Class IntMinorProcessor is derived from class MinorProcessor.

    This class implements the special case of integer matrices.
    \author Frank Seelisch, http://www.mathematik.uni-kl.de/~seelisch
*/
class IntMinorProcessor : public MinorProcessor
{
  private:
    /**
    * private store for integer matrix entries
    */
    int* _intMatrix;

    /**
    * A method for retrieving the matrix entry.
    * @param rowIndex the absolute (zero-based) row index
    * @param columnIndex the absolute (zero-based) column index
    * @return the specified matrix entry
    */
    int getEntry (const int rowIndex, const int columnIndex) const;

    /**
    * A method for computing the value of a minor, using a cache.<br>
    * The sub-matrix is specified by \c mk. Computation works recursively
    * using Laplace's Theorem. We always develop along the row or column with
    * the most zeros; see
    * MinorProcessor::getBestLine (const int k, const MinorKey& mk).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis. Moreover, if the given
    * characteristic is non-zero, all results will be computed modulo this
    * characteristic.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        comuted
    * @param multipleMinors decides whether we compute just one or all minors
    *        of a specified size
    * @param c a cache to be used for caching reusable sub-minors
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivateLaplace (const int k,
                                                   const MinorKey& mk,
                                                   const int characteristic,
                                                   const ideal& iSB)
    */
    IntMinorValue getMinorPrivateLaplace (const int k, const MinorKey& mk,
                                          const bool multipleMinors,
                                          Cache<MinorKey, IntMinorValue>& c,
                                          int characteristic,
                                          const ideal& iSB);

    /**
    * A method for computing the value of a minor, without using a cache.<br>
    * The sub-matrix is specified by \c mk. Computation works recursively
    * using Laplace's Theorem. We always develop along the row or column with
    * the most zeros; see
    * MinorProcessor::getBestLine (const int k, const MinorKey& mk).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis. Moreover, if the given
    * characteristic is non-zero, all results will be computed modulo this
    * characteristic.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        comuted
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivateLaplace (const int k,
                                                   const MinorKey& mk,
                                                   const bool multipleMinors,
                                                   Cache<MinorKey,
                                                         IntMinorValue>& c,
                                                   int characteristic,
                                                   const ideal& iSB)
    */
    IntMinorValue getMinorPrivateLaplace (const int k, const MinorKey& mk,
                                          const int characteristic,
                                          const ideal& iSB);

    /**
    * A method for computing the value of a minor using Bareiss's
    * algorithm.<br>
    * The sub-matrix is specified by \c mk.
    * If an ideal is given, it is assumed to be a standard basis. In this
    * case, all results will be reduced w.r.t. to this basis. Moreover, if the
    * given characteristic is non-zero, all results will be computed modulo
    * this characteristic.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        computed
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivateLaplace (const int k,
                                                   const MinorKey& mk,
                                                   const int characteristic,
                                                   const ideal& iSB)
    */
    IntMinorValue getMinorPrivateBareiss (const int k, const MinorKey& mk,
                                          const int characteristic,
                                          const ideal& iSB);
  protected:
    /**
    * A method for testing whether a matrix entry is zero.
    * @param absoluteRowIndex the absolute (zero-based) row index
    * @param absoluteColumnIndex the absolute (zero-based) column index
    * @return true iff the specified matrix entry is zero
    */
    bool isEntryZero (const int absoluteRowIndex,
                      const int absoluteColumnIndex) const;
  public:
    /**
    * A constructor for creating an instance.
    */
    IntMinorProcessor ();

    /**
    * A destructor for deleting an instance.
    */
    ~IntMinorProcessor ();

    /**
    * A method for defining a matrix with integer entries.
    * @param numberOfRows the number of rows
    * @param numberOfColumns the number of columns
    * @param matrix the matrix entries in a linear array, i.e., from left to
    *        right and top to bottom
    * @see MinorValue::defineSubMatrix (const int, const int*, const int,
    *                                   const int*)
    */
    void defineMatrix (const int numberOfRows, const int numberOfColumns,
                       const int* matrix);

    /**
    * A method for computing the value of a minor without using a cache.<br>
    * The sub-matrix is determined by \c rowIndices and \c columnIndices.
    * Computation works either by Laplace's algorithm or by Bareiss's
    * algorithm.<br>
    * If an ideal is given, it is assumed to be a standard basis. In this
    * case, all results will be reduced w.r.t. to this basis. Moreover, if the
    * given characteristic is non-zero, all results will be computed modulo
    * this characteristic.
    * @param dimension the size of the minor to be computed
    * @param rowIndices 0-based indices of the rows of the minor
    * @param columnIndices 0-based indices of the column of the minor
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @param algorithm either "Bareiss" or "Laplace"
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinor (const int dimension,
                                     const int* rowIndices,
                                     const int* columnIndices,
                                     Cache<MinorKey, IntMinorValue>& c,
                                     const int characteristic,
                                     const ideal& iSB)
    */
    IntMinorValue getMinor (const int dimension, const int* rowIndices,
                            const int* columnIndices,
                            const int characteristic, const ideal& iSB,
                            const char* algorithm);

    /**
    * A method for computing the value of a minor using a cache.<br>
    * The sub-matrix is determined by \c rowIndices and \c columnIndices.
    * Computation works by Laplace's algorithm together with caching of
    * subdeterminants.<br>
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis. Moreover, if the given
    * characteristic is non-zero, all results will be computed modulo this
    * characteristic.
    * @param dimension the size of the minor to be computed
    * @param rowIndices 0-based indices of the rows of the minor
    * @param columnIndices 0-based indices of the column of the minor
    * @param c the cache for storing subdeterminants
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinor (const int dimension,
                                     const int* rowIndices,
                                     const int* columnIndices,
                                     const int characteristic,
                                     const ideal& iSB,
                                     const char* algorithm)
    */
    IntMinorValue getMinor (const int dimension, const int* rowIndices,
                            const int* columnIndices,
                            Cache<MinorKey, IntMinorValue>& c,
                            const int characteristic,  const ideal& iSB);

    /**
    * A method for obtaining the next minor when iterating
    * through all minors of a given size within a pre-defined sub-matrix of an
    * underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * Computation works by Laplace's algorithm (without using a cache) or by
    * Bareiss's algorithm.<br>
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis. Moreover, if the given
    * characteristic is non-zero, all results will be computed modulo this
    * characteristic.
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @param algorithm either "Bareiss" or "Laplace"
    * @return the next minor
    * @see IntMinorValue::getNextMinor (Cache<MinorKey, IntMinorValue>& c,
    *                                   const int characteristic,
    *                                   const ideal& iSB)
    */
    IntMinorValue getNextMinor (const int characteristic, const ideal& iSB,
                                const char* algorithm);

    /**
    * A method for obtaining the next minor when iterating
    * through all minors of a given size within a pre-defined sub-matrix of an
    * underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * Computation works using the cache \a c which may already contain useful
    * results from previous calls of
    * IntMinorValue::getNextMinor (Cache<MinorKey, IntMinorValue>& c,
                                   const int characteristic,
                                   const ideal& iSB).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis. Moreover, if the given
    * characteristic is non-zero, all results will be computed modulo this
    * characteristic.
    * @param c the cache
    * @param characteristic 0 or the characteristic of the underlying
    *        coefficient ring/field
    * @param iSB NULL or a standard basis
    * @return the next minor
    * @see IntMinorValue::getNextMinor (const int characteristic,
    *                                   const ideal& iSB,
    *                                   const char* algorithm)
    */
    IntMinorValue getNextMinor (Cache<MinorKey, IntMinorValue>& c,
                                const int characteristic,
                                const ideal& iSB);

    /**
    * A method for providing a printable version of the represented
    * MinorProcessor.
    * @return a printable version of the given instance as instance of class
    *         string
    */
   std::string toString () const;
};

/*! \class PolyMinorProcessor
    \brief Class PolyMinorProcessor is derived from class MinorProcessor.

    This class implements the special case of polynomial matrices.
    \author Frank Seelisch, http://www.mathematik.uni-kl.de/~seelisch
*/
class PolyMinorProcessor : public MinorProcessor
{
  private:
    /**
    * private store for polynomial matrix entries
    */
    poly* _polyMatrix;

    /**
    * A method for retrieving the matrix entry.
    * @param rowIndex the absolute (zero-based) row index
    * @param columnIndex the absolute (zero-based) column index
    * @return the specified matrix entry
    */
    poly getEntry (const int rowIndex, const int columnIndex) const;

    /**
    * A method for computing the value of a minor, using a cache.<br>
    * The sub-matrix is specified by \c mk. Computation works recursively
    * using Laplace's Theorem. We always develop along the row or column with
    * the most zeros; see
    * MinorProcessor::getBestLine (const int k, const MinorKey& mk).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        comuted
    * @param multipleMinors decides whether we compute just one or all minors
    *        of a specified size
    * @param c a cache to be used for caching reusable sub-minors
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivateLaplace (const int k,
    *                                              const MinorKey& mk,
    *                                              const ideal& iSB)
    */
    PolyMinorValue getMinorPrivateLaplace (const int k, const MinorKey& mk,
                                           const bool multipleMinors,
                                           Cache<MinorKey, PolyMinorValue>& c,
                                           const ideal& iSB);

    /**
    * A method for computing the value of a minor, without using a cache.<br>
    * The sub-matrix is specified by \c mk. Computation works recursively
    * using Laplace's Theorem. We always develop along the row or column with
    * the most zeros; see
    * MinorProcessor::getBestLine (const int k, const MinorKey& mk).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        comuted
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivate (const int, const MinorKey&,
    *                                       const bool,
    *                                       Cache<MinorKey, MinorValue>&)
    */
    PolyMinorValue getMinorPrivateLaplace (const int k, const MinorKey& mk,
                                           const ideal& iSB);

    /**
    * A method for computing the value of a minor, without using a cache.<br>
    * The sub-matrix is specified by \c mk. Computation works
    * using Bareiss's algorithm.
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param k the number of rows and columns in the minor to be comuted
    * @param mk the representation of rows and columns of the minor to be
    *        comuted
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinorPrivateLaplace (const int k,
    *                                              const MinorKey& mk,
    *                                              const ideal& iSB)
    */
    PolyMinorValue getMinorPrivateBareiss (const int k, const MinorKey& mk,
                                           const ideal& iSB);
  protected:
    /**
    * A method for testing whether a matrix entry is zero.
    * @param absoluteRowIndex the absolute (zero-based) row index
    * @param absoluteColumnIndex the absolute (zero-based) column index
    * @return true iff the specified matrix entry is zero
    */
    bool isEntryZero (const int absoluteRowIndex,
                      const int absoluteColumnIndex) const;
  public:
    /**
    * A constructor for creating an instance.
    */
    PolyMinorProcessor ();

    /**
    * A destructor for deleting an instance.
    */
    ~PolyMinorProcessor ();

    /**
    * A method for defining a matrix with polynomial entries.
    * @param numberOfRows the number of rows
    * @param numberOfColumns the number of columns
    * @param polyMatrix the matrix entries in a linear array, i.e., from left
    *        to right and top to bottom
    * @see MinorValue::defineSubMatrix (const int, const int*, const int,
    *                                   const int*)
    */
    void defineMatrix (const int numberOfRows, const int numberOfColumns,
                       const poly* polyMatrix);

    /**
    * A method for computing the value of a minor, without using a cache.<br>
    * The sub-matrix is determined by \c rowIndices and \c columnIndices.
    * Computation works either by Laplace's algorithm or by Bareiss's
    * algorithm.<br>
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param dimension the size of the minor to be computed
    * @param rowIndices 0-based indices of the rows of the minor
    * @param columnIndices 0-based indices of the column of the minor
    * @param algorithm either "Laplace" or "Bareiss"
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::getMinor (const int dimension,
    *                                const int* rowIndices,
    *                                const int* columnIndices,
    *                                Cache<MinorKey, PolyMinorValue>& c,
    *                                const ideal& iSB)
    */
    PolyMinorValue getMinor (const int dimension, const int* rowIndices,
                             const int* columnIndices, const char* algorithm,
                             const ideal& iSB);

    /**
    * A method for computing the value of a minor, using a cache.<br>
    * The sub-matrix is determined by \c rowIndices and \c columnIndices.
    * Computation works recursively using Laplace's Theorem. We always develop
    * along the row or column with most zeros; see
    * MinorProcessor::getBestLine (const int, const int, const int).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param dimension the size of the minor to be computed
    * @param rowIndices 0-based indices of the rows of the minor
    * @param columnIndices 0-based indices of the column of the minor
    * @param c a cache to be used for caching reusable sub-minors
    * @param iSB NULL or a standard basis
    * @return an instance of MinorValue representing the value of the
    *         corresponding minor
    * @see MinorProcessor::(const int dimension, const int* rowIndices,
    *                       const int* columnIndices, const char* algorithm,
    *                       const ideal& iSB)
    */
    PolyMinorValue getMinor (const int dimension, const int* rowIndices,
                             const int* columnIndices,
                             Cache<MinorKey, PolyMinorValue>& c,
                             const ideal& iSB);

    /**
    * A method for obtaining the next minor when iterating
    * through all minors of a given size within a pre-defined sub-matrix of an
    * underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * Computation works either by Laplace's algorithm (without using a cache)
    * or by Bareiss's algorithm.<br>
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param algorithm either "Laplace" or "Bareiss"
    * @param iSB NULL or a standard basis
    * @return true iff there is a next choice of rows and columns
    * @see PolyMinorValue::getNextMinor (Cache<MinorKey, PolyMinorValue>& c,
    *                                    const ideal& iSB)
    */
    PolyMinorValue getNextMinor (const char* algorithm, const ideal& iSB);

    /**
    * A method for obtaining the next minor when iterating
    * through all minors of a given size within a pre-defined sub-matrix of an
    * underlying matrix.<br>
    * This method should only be called after MinorProcessor::hasNextMinor ()
    * had been called and yielded \c true.<br>
    * Computation works using Laplace's algorithm and a cache \a c which may
    * already contain useful results from previous calls of
    * PolyMinorValue::getNextMinor (Cache<MinorKey, PolyMinorValue>& c,
    *                               const ideal& iSB).
    * If an ideal is given, it is assumed to be a standard basis. In this case,
    * all results will be reduced w.r.t. to this basis.
    * @param iSB NULL or a standard basis
    * @return the next minor
    * @see PolyMinorValue::getNextMinor (const char* algorithm,
    *                                    const ideal& iSB)
    */
    PolyMinorValue getNextMinor (Cache<MinorKey, PolyMinorValue>& c,
                                 const ideal& iSB);

    /**
    * A method for providing a printable version of the represented
    * MinorProcessor.
    * @return a printable version of the given instance as instance of class
    *         string
    */
   std::string toString () const;
};

#endif
/* MINOR_PROCESSOR_H */