/usr/include/viennacl/linalg/qr-method-common.hpp is in libviennacl-dev 1.7.1+dfsg1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | #ifndef VIENNACL_LINALG_QR_METHOD_COMMON_HPP
#define VIENNACL_LINALG_QR_METHOD_COMMON_HPP
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
#include <cmath>
#ifdef VIENNACL_WITH_OPENCL
#include "viennacl/ocl/device.hpp"
#include "viennacl/ocl/handle.hpp"
#include "viennacl/ocl/kernel.hpp"
#include "viennacl/linalg/opencl/kernels/svd.hpp"
#endif
#ifdef VIENNACL_WITH_CUDA
#include "viennacl/linalg/cuda/matrix_operations.hpp"
#endif
#include "viennacl/meta/result_of.hpp"
#include "viennacl/vector.hpp"
#include "viennacl/matrix.hpp"
//#include <boost/numeric/ublas/vector.hpp>
//#include <boost/numeric/ublas/io.hpp>
/** @file viennacl/linalg/qr-method-common.hpp
@brief Common routines used for the QR method and SVD. Experimental.
*/
namespace viennacl
{
namespace linalg
{
const std::string SVD_HOUSEHOLDER_UPDATE_QR_KERNEL = "house_update_QR";
const std::string SVD_MATRIX_TRANSPOSE_KERNEL = "transpose_inplace";
const std::string SVD_INVERSE_SIGNS_KERNEL = "inverse_signs";
const std::string SVD_GIVENS_PREV_KERNEL = "givens_prev";
const std::string SVD_FINAL_ITER_UPDATE_KERNEL = "final_iter_update";
const std::string SVD_UPDATE_QR_COLUMN_KERNEL = "update_qr_column";
const std::string SVD_HOUSEHOLDER_UPDATE_A_LEFT_KERNEL = "house_update_A_left";
const std::string SVD_HOUSEHOLDER_UPDATE_A_RIGHT_KERNEL = "house_update_A_right";
const std::string SVD_HOUSEHOLDER_UPDATE_QL_KERNEL = "house_update_QL";
namespace detail
{
static const double EPS = 1e-10;
static const vcl_size_t ITER_MAX = 50;
template <typename SCALARTYPE>
SCALARTYPE pythag(SCALARTYPE a, SCALARTYPE b)
{
return std::sqrt(a*a + b*b);
}
template <typename SCALARTYPE>
SCALARTYPE sign(SCALARTYPE val)
{
return (val >= 0) ? SCALARTYPE(1) : SCALARTYPE(-1);
}
// DEPRECATED: Replace with viennacl::linalg::norm_2
template <typename VectorType>
typename VectorType::value_type norm_lcl(VectorType const & x, vcl_size_t size)
{
typename VectorType::value_type x_norm = 0.0;
for(vcl_size_t i = 0; i < size; i++)
x_norm += std::pow(x[i], 2);
return std::sqrt(x_norm);
}
template <typename VectorType>
void normalize(VectorType & x, vcl_size_t size)
{
typename VectorType::value_type x_norm = norm_lcl(x, size);
for(vcl_size_t i = 0; i < size; i++)
x[i] /= x_norm;
}
template <typename VectorType>
void householder_vector(VectorType & v, vcl_size_t start)
{
typedef typename VectorType::value_type ScalarType;
ScalarType x_norm = norm_lcl(v, v.size());
ScalarType alpha = -sign(v[start]) * x_norm;
v[start] += alpha;
normalize(v, v.size());
}
template <typename SCALARTYPE>
void transpose(matrix_base<SCALARTYPE> & A)
{
(void)A;
#ifdef VIENNACL_WITH_OPENCL
viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(A).context());
if(A.row_major())
{
viennacl::linalg::opencl::kernels::svd<SCALARTYPE, row_major>::init(ctx);
viennacl::ocl::kernel & kernel = viennacl::ocl::get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, row_major>::program_name(), SVD_MATRIX_TRANSPOSE_KERNEL);
viennacl::ocl::enqueue(kernel(A,
static_cast<cl_uint>(A.internal_size1()),
static_cast<cl_uint>(A.internal_size2())
)
);
}
else
{
viennacl::linalg::opencl::kernels::svd<SCALARTYPE, row_major>::init(ctx);
viennacl::ocl::kernel & kernel = viennacl::ocl::get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, column_major>::program_name(), SVD_MATRIX_TRANSPOSE_KERNEL);
viennacl::ocl::enqueue(kernel(A,
static_cast<cl_uint>(A.internal_size1()),
static_cast<cl_uint>(A.internal_size2())
)
);
}
#endif
}
template <typename T>
void cdiv(T xr, T xi, T yr, T yi, T& cdivr, T& cdivi)
{
// Complex scalar division.
T r;
T d;
if (std::fabs(yr) > std::fabs(yi))
{
r = yi / yr;
d = yr + r * yi;
cdivr = (xr + r * xi) / d;
cdivi = (xi - r * xr) / d;
}
else
{
r = yr / yi;
d = yi + r * yr;
cdivr = (r * xr + xi) / d;
cdivi = (r * xi - xr) / d;
}
}
template<typename SCALARTYPE>
void prepare_householder_vector(
matrix_base<SCALARTYPE>& A,
vector_base<SCALARTYPE>& D,
vcl_size_t size,
vcl_size_t row_start,
vcl_size_t col_start,
vcl_size_t start,
bool is_column
)
{
//boost::numeric::ublas::vector<SCALARTYPE> tmp = boost::numeric::ublas::scalar_vector<SCALARTYPE>(size, 0);
std::vector<SCALARTYPE> tmp(size);
copy_vec(A, D, row_start, col_start, is_column);
fast_copy(D.begin(), D.begin() + vcl_ptrdiff_t(size - start), tmp.begin() + vcl_ptrdiff_t(start));
detail::householder_vector(tmp, start);
fast_copy(tmp, D);
}
} //detail
}
}
#endif
|