This file is indexed.

/usr/share/octave/packages/symbolic-2.6.0/assume.m is in octave-symbolic 2.6.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
%% Copyright (C) 2017 Colin B. Macdonald
%%
%% This file is part of OctSymPy.
%%
%% OctSymPy is free software; you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published
%% by the Free Software Foundation; either version 3 of the License,
%% or (at your option) any later version.
%%
%% This software is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty
%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
%% the GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public
%% License along with this software; see the file COPYING.
%% If not, see <http://www.gnu.org/licenses/>.

%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @deffn  Command assume {@var{x} @var{cond}}
%% @deffnx Command assume {@var{x} @var{cond} @var{cond2} @dots{}}
%% @deffnx Command assume {@var{x} @var{y} @dots{} @var{cond} @var{cond2} @dots{}}
%% Specify assumptions for a symbolic variable (replace existing).
%%
%% Example:
%% @example
%% @group
%% syms n x y
%% assume n integer
%% assume x y real
%% assumptions
%%   @result{} ans =
%%     @{
%%       [1,1] = n: integer
%%       [1,2] = x: real
%%       [1,3] = y: real
%%     @}
%% @end group
%% @end example
%%
%% To clear assumptions on a variable, use @code{assume x clear}, for example:
%% @example
%% @group
%% assume x y clear
%% assumptions
%%   @result{} ans =
%%     @{
%%       [1,1] = n: integer
%%     @}
%% @end group
%% @end example
%%
%% For more precise control over assumptions, @pxref{@@sym/assume}
%% and @pxref{@@sym/assumeAlso}.
%%
%% @seealso{@@sym/assume, @@sym/assumeAlso, assumptions, sym, syms}
%% @end deffn


function assume(varargin)

  assert (nargout == 0, 'assume: use functional form if you want output');

  assert (nargin > 1, 'assume: general algebraic assumptions are not supported');

  %% Find symbol/assumptions boundary and verify input
  valid_asm = assumptions ('possible');
  lastvar = -1;
  for n = 1:nargin
    assert (ischar (varargin{n}), 'assume: command form expects string inputs only')
    if (ismember (varargin{n}, valid_asm))
      if (lastvar < 0)
        lastvar = n - 1;
      end
    elseif (strcmp (varargin{n}, 'clear'))
      assert (n == nargin, 'assume: "clear" should be the final argument')
      assert (lastvar < 0, 'assume: should not combine "clear" with other assumptions')
      lastvar = n - 1;
    elseif (lastvar > 0)
      error('assume: cannot have symbols after assumptions')
    else
      assert (isvarname (varargin{n}), 'assume: only symbols can have assumptions')
    end
  end

  if (lastvar < 0)
    error ('assume: no assumptions were given')
  end
  if (lastvar == 0)
    error ('assume: cannot have only assumptions w/o symbols')
  end

  asm = varargin((lastvar+1):end);
  vars = varargin(1:lastvar);

  %% loop over each variable
  for n = 1:length (vars)
    vals = evalin ('caller', vars{n});
    newvals = cell(1, numel (vals));
    [newvals{:}] = assume (vals, asm{:});

    for i = 1:length (newvals)
      newx = newvals{i};
      xstr = newx.flat;

      % ---------------------------------------------
      % Muck around in the caller's namespace, replacing syms
      % that match 'xstr' (a string) with the 'newx' sym.
      context = 'caller';
      % ---------------------------------------------
      S = evalin(context, 'whos');
      evalin(context, '[];');  % clear 'ans'
      for i = 1:numel(S)
        obj = evalin(context, S(i).name);
        [newobj, flag] = symreplace(obj, xstr, newx);
        if flag, assignin(context, S(i).name, newobj); end
      end
      % ---------------------------------------------

    end
  end
end


%!error <if you want output>
%! a = assume('a', 'real')

%!error <cannot have only assumptions>
%! assume positive integer

%!error <no assumptions>
%! assume x y

%!error <should be the final>
%! assume x clear real

%!error <algebraic assumptions are not supported>
%! assume a>0

%!error <only symbols>
%! assume 'x/pi' integer

%!test
%! syms x
%! assume x positive
%! a = assumptions(x);
%! assert(strcmp(a, 'x: positive'))
%! assume x even
%! a = assumptions(x);
%! assert(strcmp(a, 'x: even'))

%!test
%! % multiple assumptions
%! syms x
%! assume x positive integer
%! [tilde, a] = assumptions(x, 'dict');
%! assert(a{1}.integer)
%! assert(a{1}.positive)

%!test
%! % does workspace
%! syms x positive
%! x2 = x;
%! f = sin(x);
%! assume x negative
%! a = assumptions(x);
%! assert(strcmp(a, 'x: negative'))
%! a = assumptions(x2);
%! assert(strcmp(a, 'x: negative'))
%! a = assumptions(f);
%! assert(strcmp(a, 'x: negative'))

%!error <undefined>
%! % does not create new variable x
%! clear x
%! assume x real

%!error <undefined>
%! % no explicit variable named x
%! clear x
%! f = 2*sym('x');
%! assume x real

%!test
%! % clear does workspace
%! syms x positive
%! f = 2*x;
%! assume x clear
%! assert (isempty (assumptions (f)));
%! assert (isempty (assumptions ()));

%!test
%! syms x y
%! f = sin (2*x);
%! assume x y real
%! assert (strcmp (assumptions (x), 'x: real'))
%! assert (strcmp (assumptions (y), 'y: real'))
%! assert (strcmp (assumptions (f), 'x: real'))

%!test
%! syms x y
%! f = sin (2*x);
%! assume x y positive even
%! assert (strcmp (assumptions (x), 'x: positive, even') || strcmp (assumptions (x), 'x: even, positive'))
%! assert (strcmp (assumptions (y), 'y: positive, even') || strcmp (assumptions (y), 'y: even, positive'))
%! assert (strcmp (assumptions (f), 'x: positive, even') || strcmp (assumptions (f), 'x: even, positive'))

%!test
%! % works from variable names not symbols
%! syms x y
%! a = [x y];
%! assume a real
%! assert (strcmp (assumptions (x), 'x: real'))
%! assert (strcmp (assumptions (y), 'y: real'))

%!test
%! % works from variable names not symbols
%! y = sym('x');
%! f = 2*y;
%! assume y real
%! assert (strcmp (assumptions (f), 'x: real'))

%!test
%! % matrix of symbols
%! syms a b c d
%! A = [a b; c d];
%! assume A real
%! assert (strcmp (assumptions (a), 'a: real'))
%! assert (strcmp (assumptions (b), 'b: real'))
%! assert (strcmp (assumptions (c), 'c: real'))
%! assert (strcmp (assumptions (d), 'd: real'))