This file is indexed.

/usr/share/octave/packages/symbolic-2.6.0/lambertw.m is in octave-symbolic 2.6.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
%% Copyright (C) 1998 Nicol N. Schraudolph <schraudo@inf.ethz.ch>
%% Copyright (C) 2016 Colin B. Macdonald
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.

%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @defun  lambertw (@var{z})
%% @defunx lambertw (@var{n}, @var{z})
%% Compute the Lambert W function of @var{z}.
%%
%% This function satisfies W(z).*exp(W(z)) = z, and can thus be used to express
%% solutions of transcendental equations involving exponentials or logarithms.
%%
%% @var{n} must be integer, and specifies the branch of W to be computed;
%% W(z) is a shorthand for W(0,z), the principal branch.  Branches
%% 0 and -1 are the only ones that can take on non-complex values.
%%
%% For example, the principal branch passes through the point (0, 0):
%% @example
%% @group
%% lambertw (0)
%%   @result{} ans = 0
%% @end group
%% @end example
%% And the 0 and -1 branches coincide for the following real value:
%% @example
%% @group
%% x = -1/exp (1);
%% lambertw (x)
%%   @result{} ans = -1
%% lambertw (-1, x)
%%   @result{} ans = -1
%% @end group
%% @end example
%%
%% If either @var{n} or @var{z} are non-scalar, the function is mapped to each
%% element; both may be non-scalar provided their dimensions agree.
%% For example, we can repeat the above calculation as:
%% @example
%% @group
%% lambertw ([0 -1], x)
%%   @result{} ans =
%%       -1  -1
%% @end group
%% @end example
%%
%% This implementation should return values within 2.5*eps of its
%% counterpart in Maple V, release 3 or later.  Please report any
%% discrepancies to the author, Nici Schraudolph <schraudo@@inf.ethz.ch>.
%%
%% For further algorithmic details, see:
%%
%% Corless, Gonnet, Hare, Jeffrey, and Knuth (1996), `On the Lambert
%% W Function', Advances in Computational Mathematics 5(4):329-359.
%%
%% @seealso{@@sym/lambertw}
%% @end defun

function w = lambertw(b,z)
    if (nargin == 1)
        z = b;
        b = 0;
    else
        %% some error checking
        if (nargin ~= 2)
            print_usage ();
        else
            if (any(round(real(b)) ~= b))
                error('branch number for lambertw must be integer')
            end
        end
    end

    %% series expansion about -1/e
    %
    % p = (1 - 2*abs(b)).*sqrt(2*e*z + 2);
    % w = (11/72)*p;
    % w = (w - 1/3).*p;
    % w = (w + 1).*p - 1
    %
    % first-order version suffices:
    %
    w = (1 - 2*abs(b)).*sqrt(2*exp(1)*z + 2) - 1;

    %% asymptotic expansion at 0 and Inf
    %
    v = log(z + (z == 0 | b == 0)) + 2*pi*1i*b;
    v = v - log(v + (v == 0));

    %% choose strategy for initial guess
    %
    c = abs(z + 1/exp(1));
    c = (c > 1.45 - 1.1*abs(b));
    c = c | (b.*imag(z) > 0) | (~imag(z) & (b == 1));
    w = (1 - c).*w + c.*v;

    %% Halley iteration
    %
    for n = 1:10
        p = exp(w);
        t = w.*p - z;
        f = (w ~= -1);
        t = f.*t./(p.*(w + f) - 0.5*(w + 2.0).*t./(w + f));
        w = w - t;
        done = (abs (real (t)) < (2.48*eps)*(1.0 + abs (real (w))) & ...
                abs (imag (t)) < (2.48*eps)*(1.0 + abs (imag (w))));
        if (all (done))
          break
        end
    end

    % special treatment for infinity and nan
    isnaninf = (isinf (z) & isreal (z)) | isnan (z);

    % don't show the warning if we're going to overwrite that entry
    if (~ all (done | isnaninf))
      warning ('iteration limit reached, result of lambertw may be inaccurate');
    end

    if (any (isnaninf))
      % broadcast z and b to same size
      if (isscalar (z) && ~isscalar (b))
        z = repmat (z, size (b));
      elseif (~isscalar (z) && isscalar (b))
        b = repmat (b, size (z));
      end

      w(isnan (z)) = nan;

      I = isinf (z) & isreal (z) & (z > 0);
      w(I) = inf + 2*b(I)*pi*1i;

      I = isinf (z) & isreal (z) & (z < 0);
      w(I) = inf + (2*b(I) + 1)*pi*1i;

    end
end


%!assert (isequal (lambertw (0), 0))
%!assert (isequal (lambertw (0, 0), 0))

%!assert (lambertw (-1/exp(1)), -1, 2*eps)
%!assert (lambertw (0, -1/exp(1)), -1, 2*eps)
%!assert (lambertw (-1, -1/exp(1)), -1, 2*eps)

%!test
%! x = [1 2 3 pi 10 100 1000 12345];
%! W = lambertw (x);
%! assert (W.*exp (W), x, -3*eps)

%!test
%! x = [1 2 3 pi 10 100 1000 12345];
%! k = [-3 -2 -1 0 1 2 3 4];
%! W = lambertw (k, x);
%! assert (W.*exp (W), x, -10*eps)

%!test
%! % input shape preserved
%! x = [0 1; 2 3];
%! b = x;
%! W = lambertw (b, x);
%! assert (W.*exp (W), x, -10*eps)

%!test
%! % input shape preserved
%! x = [0 1; 2 3];
%! b = 0;
%! W = lambertw (b, x);
%! assert (W.*exp (W), x, -10*eps)

%!test
%! % input shape preserved
%! x = 10;
%! b = [0 1; 2 3];
%! W = lambertw (b, x);
%! assert (W.*exp (W), x*ones (size (b)), -10*eps)

%!assert (isnan (lambertw (nan)))

%!test
%! % limiting behaviour as z large
%! k = 3;
%! A = lambertw (k, 1e100);
%! assert (abs (imag (A) - 2*pi*k) < 0.1)

%!test
%! % limiting behaviour as z large, up imag axis
%! k = 1;
%! A = lambertw (k, 1e100*1i);
%! assert (abs (imag (A) - (2*k+0.5)*pi) < 0.1)

%!test
%! % limiting behaviour as z large, down imag axis
%! k = -2;
%! A = lambertw (k, -1e100*1i);
%! assert (abs (imag (A) - (2*k-0.5)*pi) < 0.1)

%!test
%! % limiting behaviour as z large, near branch
%! k = 3;
%! A = lambertw (k, -1e100);
%! B = lambertw (k, -1e100 + 1i);
%! C = lambertw (k, -1e100 - 1i);
%! assert (abs (imag (A) - (2*k+1)*pi) < 0.1)
%! assert (abs (imag (B) - (2*k+1)*pi) < 0.1)
%! assert (abs (imag (C) - (2*k-1)*pi) < 0.1)

%!test
%! % infinities and nan
%! A = lambertw ([inf exp(1) -inf nan]);
%! B = [inf  1  inf + pi*1i nan];
%! assert (isequaln (A, B))

%!test
%! % infinities and nan
%! A = lambertw (3, [inf 1 -inf nan]);
%! B = [inf + 2*3*pi*1i  lambertw(3,1)  inf + (2*3+1)*pi*1i  nan];
%! assert (isequaln (A, B))

%!test
%! % infinities and nan
%! A = lambertw ([0 1 2 0], [inf -inf nan exp(1)]);
%! B = [inf  inf+3*pi*1i  nan  1];
%! assert (isequaln (A, B))

%!test
%! % scalar infinity z, vector b
%! A = lambertw ([1 2 -3], inf);
%! B = [lambertw(1, inf)  lambertw(2, inf)  lambertw(-3, inf)];
%! assert (isequal (A, B))

%!test
%! % scalar -infinity z, vector b
%! A = lambertw ([1 2 -3], -inf);
%! B = [lambertw(1, -inf)  lambertw(2, -inf)  lambertw(-3, -inf)];
%! assert (isequal (A, B))

%!test
%! % scalar z nan, vector b
%! A = lambertw ([1 2 -3], nan);
%! B = [nan nan nan];
%! assert (isequaln (A, B))