/usr/share/pari/doc/usersch7.tex is in pari-doc 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | % Copyright (c) 2000 The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Elliptic curves and arithmetic geometry}
This chapter is quite short, but is added as a placeholder, since
we expect the library to expand in that direction.
\section{Elliptic curves}
Elliptic curves are represented in the Weierstrass model
$$ (E): y^2z + a_1xyz + a_3 yz = x^3 + a_2 x^2z + a_4 xz^2 + a_6z^3, $$
by the $5$-tuple $[a_1,a_2,a_3,a_4,a_6]$. Points in the projective
plane are represented as follows: the point at infinity $(0:1:0)$ is coded
as \kbd{[0]}, a finite point $(x:y:1)$ outside the projective line at infinity
$z = 0$ is coded as $[x,y]$. Note that other points at infinity than $(0:1:0)$
cannot be represented; this is harmless, since they do not belong to any of
the elliptic curves $E$ above.
\emph{Points on the curve} are just projective points as described above,
they are not tied to a curve in any way: the same point may be used in
conjunction with different curves, provided it satisfies their equations (if
it does not, the result is usually undefined). In particular, the point at
infinity belongs to all elliptic curves.
As with \tet{factor} for polynomial factorization, the $5$-tuple
$[a_1,a_2,a_3,a_4,a_6]$ implicitly defines a base ring over which the curve
is defined. Point coordinates must be operation-compatible with this
base ring (\kbd{gadd}, \kbd{gmul}, \kbd{gdiv} involving them should not give
errors).
\subsec{Types of elliptic curves}
We call a $5$-tuble as above an \kbd{ell5}; most functions require an
\kbd{ell} structure, as returned by \tet{ellinit}, which contains additional
data (usually dynamically computed as needed), depending on the base field.
\fun{GEN}{ellinit}{GEN E, GEN D, long prec}, returns an \tet{ell} structure,
attached to the elliptic curve $E$ : either an \kbd{ell5}, a pair $[a_4,a_6]$
or a \typ{STR} in Cremona's notation, e.g. \kbd{"11a1"}. The optional $D$
(\kbd{NULL} to omit) describes the domain over which the curve is defined.
\subsec{Type checking}
\fun{void}{checkell}{GEN e} raise an error unless $e$ is a \var{ell}.
\fun{void}{checkell5}{GEN e} raise an error unless $e$ is an \var{ell}
or an \var{ell5}.
\fun{void}{checkellpt}{GEN z} raise an error unless $z$ is a point
(either finite or at infinity).
\fun{long}{ell_get_type}{GEN e} returns the domain type over which the curve
is defined, one of
\tet{t_ELL_Q} the field of rational numbers;
\tet{t_ELL_NF} a number field;
\tet{t_ELL_Qp} the field of $p$-adic numbers, for some prime $p$;
\tet{t_ELL_Fp} a prime finite field, base field elements are represented as
\kbd{Fp}, i.e.~a \typ{INT} reduced modulo~$p$;
\tet{t_ELL_Fq} a non-prime finite field (a prime finite field can also be
represented by this subtype, but this is inefficient), base field elements
are represented as \typ{FFELT};
\tet{t_ELL_Rg} none of the above.
\fun{void}{checkell_Fq}{GEN e} checks whether $e$ is an \kbd{ell}, defined
over a finite field (either prime or non-prime). Otherwise the function
raises a \tet{pari_err_TYPE} exception.
\fun{void}{checkell_Q}{GEN e} checks whether $e$ is an \kbd{ell}, defined
over $\Q$. Otherwise the function raises a \tet{pari_err_TYPE} exception.
\fun{void}{checkell_Qp}{GEN e} checks whether $e$ is an \kbd{ell}, defined
over some $\Q_p$. Otherwise the function raises a \tet{pari_err_TYPE}
exception.
\fun{void}{checkellisog}{GEN v} raise an error unless $v$ is an isogeny,
from \tet{ellisogeny}.
\subsec{Extracting info from an \kbd{ell} structure}
These functions expect an \kbd{ell} argument. If the required data is not
part of the structure, it is computed then inserted, and the new value is
returned.
\subsubsec{All domains}
\fun{GEN}{ell_get_a1}{GEN e}
\fun{GEN}{ell_get_a2}{GEN e}
\fun{GEN}{ell_get_a3}{GEN e}
\fun{GEN}{ell_get_a4}{GEN e}
\fun{GEN}{ell_get_a6}{GEN e}
\fun{GEN}{ell_get_b2}{GEN e}
\fun{GEN}{ell_get_b4}{GEN e}
\fun{GEN}{ell_get_b6}{GEN e}
\fun{GEN}{ell_get_b8}{GEN e}
\fun{GEN}{ell_get_c4}{GEN e}
\fun{GEN}{ell_get_c6}{GEN e}
\fun{GEN}{ell_get_disc}{GEN e}
\fun{GEN}{ell_get_j}{GEN e}
\subsubsec{Curves over $\Q$}
\fun{GEN}{ellQ_get_N}{GEN e} returns the curve conductor
\fun{void}{ellQ_get_Nfa}{GEN e, GEN *N, GEN *faN} sets $N$ to the conductor
and \kbd{faN} to its factorization
\fun{int}{ell_is_integral}{GEN e} return $1$ if $e$ is given by an integral
model, and $0$ otherwise.
\fun{long}{ellQ_get_CM}{GEN e} if $e$ has CM by a principal imaginary
quadratic order, return its discriminant. Else return $0$.
\fun{long}{ellap_CM_fast}{GEN e, ulong p, long CM} assuming that $p$
does not divide the discriminant of $E$ (in particular, $E$ has good
reduction at $p$), and that \kbd{CM} is as given by \tet{ellQ_get_CM},
return the trace of Frobenius for $E/\F_p$. This is meant to quickly compute
lots of $a_p$, esp.~when $e$ has CM by a principal quadratic order.
\fun{long}{ellrootno_global}{GEN e} returns $[c, [c_{p_1}, \dots,c_{p_k}]]$,
where the \typ{INT} $c\in \{-1,1\}$ is the global root number, and the
$c_{p_i}$ are the local root numbers at all prime divisors of the conductor,
ordered as in \kbd{faN} above.
\fun{GEN}{ellheightoo}{GEN E, GEN P, long prec} given $P = [x,y]$ an affine
point on $E$, return the (canonical) local height at infinity
$\lambda_\infty(P) \in \R$.
\fun{long}{ellorder_Q}{GEN E, GEN P} return the order of $P\in E(\Q)$, using
the impossible value $0$ for a point of infinite order. Ultimately called
by the generic \tet{ellorder} function.
\fun{GEN}{point_to_a4a6}{GEN E, GEN P, GEN p, GEN *a4} given $E/\Q$,
$p\neq 2,3$ not dividing the discriminant of $E$ and $P\in E(\Q)$ outside the
kernel of reduction, return the image of $P$ on the short Weierstrass
model $y^2 = x^3 + a_4x + a_6$ isomorphic to the reduction $E_p$ of $E$ at $p$.
Also set \kbd{a4} to the $a_4$ coefficient in the above model. This function
allows quick computations modulo varying primes $p$, avoiding the overhead of
\kbd{ellinit}$(E,p)$, followed by a change of coordinates. It produces data
suitable for \kbd{FpE} routines.
\fun{GEN}{point_to_a4a6_Fl}{GEN E, GEN P, ulong p, ulong *pa4} as
\tet{point_to_a4a6}, returning a \kbd{Fle}.
\fun{GEN}{elldatagenerators}{GEN E} returns generators for $E(\Q)$
extracted from Cremona's table.
\fun{GEN}{ellanal_globalred}{GEN e, GEN *v} takes an \var{ell} over $\Q$
and returns a global minimal model $E$ (in \kbd{ellinit} form, over $\Q$) for
$e$ suitable for analytic computations related to the curve $L$ series: it
contains \kbd{ellglobalred} data, as well as global and local root numbers. If
\kbd{v} is not \kbd{NULL}, set \kbd{*v} to the needed change of variable:
\kbd{NULL} if $e$ was already the standard minimal model, such that $E =
\kbd{ellchangecurve(e,v)}$ otherwise. Compared to the direct use of
\kbd{ellchangecurve} followed by \kbd{ellrootno}, this function avoids
converting unneeded dynamic data and avoids potential memory leaks
(the changed curve would have had to be deleted using \tet{obj_free}). The
original curve $e$ is updated as well with the same information.
\fun{GEN}{ellanal_globalred_all}{GEN e, GEN *v, GEN *N, GEN *tam} as
\tet{ellanal_globalred}; further set \kbd{*N} to the curve conductor
and \kbd{*tam} to the product of the local Tamagawa numbers, including
the factor at infinity (multiply by the number of connected components
of $e(\R)$).
\fun{GEN}{ellintegralmodel}{GEN e, GEN *pv} return an integral model
for $e$ (in \kbd{ellinit} form, over $\Q$). Set $v = \kbd{NULL}$ (already
integral, we returned $e$ itself), else to the variable change
$[u,0,0,0]$ making $e$ integral. We have $u = 1/t$, $t > 1$.
\fun{GEN}{ellintegralmodel_i}{GEN e, GEN *pv} shallow version of
\kbd{ellintegralmodel}.
\misctitle{Deprecated routines}
\fun{GEN}{elltors0}{GEN e, long flag} this function is deprecated; use
\tet{elltors}
\subsubsec{Curves over a number field \var{nf}}
Let $K$ be the number field over which $E$ is defined, given by
a \var{nf} or \var{bnf} structure.
\fun{GEN}{ellnf_get_nf}{GEN E} returns the underlying \kbd{nf}.
\fun{GEN}{ellnf_get_bnf}{GEN x} returns \kbd{NULL} if $K$ does not contain
a \var{bnf} structure, else return the \var{bnf}.
\subsubsec{Curves over $\Q_p$}
\fun{GEN}{ellQp_get_p}{GEN E} returns $p$
\fun{long}{ellQp_get_prec}{GEN E} returns the default $p$-adic accuracy to
which we must compute approximate results attached to $E$.
\fun{GEN}{ellQp_get_zero}{GEN x} returns $O(p^n)$, where $n$ is the default
$p$-adic accuracy as above.
The following functions are only defined when $E$ has multiplicative
reduction (Tate curves):
\fun{GEN}{ellQp_Tate_uniformization}{GEN E, long prec} returns a
\typ{VEC} containing $u^2, u, q, [a,b]$, at $p$-adic precision \kbd{prec}.
\fun{GEN}{ellQp_u}{GEN E, long prec} returns $u$.
\fun{GEN}{ellQp_u2}{GEN E, long prec} returns $u^2$.
\fun{GEN}{ellQp_q}{GEN E, long prec} returns the Tate period $q$.
\fun{GEN}{ellQp_ab}{GEN E, long prec} returns $[a,b]$.
\fun{GEN}{ellQp_AGM}{GEN E, long prec} returns $[a,b,R,v]$, where
$v$ is an integer, $a, b, R$ are vectors describing the sequence of
$2$-isogenous curves $E_i: y^2 = x(x+A_i)(x+A_i-B_i)$, $i \geq 1$
converging to the singular curve $E_\infty: y^2 = x^2(x+M)$. We have
$a[i] = A[i] p^v$, $b[i] = B[i] p^v$, $R[i] = A_i - B_i$. These are used in
\kbd{ellpointtoz} and \kbd{ellztopoint}.
\fun{GEN}{ellQp_L}{GEN E, long prec} returns the ${\cal L}$-invariant $L$.
\fun{GEN}{ellQp_root}{GEN E, long prec} returns $e_1$.
\subsubsec{Curves over a finite field $\F_q$}
\fun{GEN}{ellff_get_p}{GEN E} returns the characteristic
\fun{GEN}{ellff_get_field}{GEN E} returns $p$ if $\F_q$ is a prime field, and
a \typ{FFELT} belonging to $\F_q$ otherwise.
\fun{GEN}{ellff_get_card}{GEN E} returns $\#E(\F_q)$
\fun{GEN}{ellff_get_gens}{GEN E} returns a minimal set of generators for
$E(\F_q)$.
\fun{GEN}{ellff_get_group}{GEN E} returns \kbd{ellgroup}$(E)$.
\fun{GEN}{ellff_get_o}{GEN E} returns $[d, \kbd{factor{d}}]$, where $d$ is
the exponent of $E(\F_q)$.
\fun{GEN}{ellff_get_a4a6}{GEN E} returns a canonical ``short model'' for $E$,
and the corresponding change of variable $[u,r,s,t]$. For $p\neq 2,3$,
this is $[A_4,A_6,[u,r,s,t]]$, corresponding to $y^2 = x^3 + A_4x + A_6$,
where $A_4 = -27c_4$, $A_6 = -54c_6$, $[u,r,s,t] = [6, 3b_2,3a_1,108a_3]$.
\item If $p = 3$ and the curve is ordinary ($b_2\neq 0$), this is
$[[b_2], A_6, [1,v,-a_1,-a_3]]$, corresponding to
$$y^2 = x^3 + b_2 x^2 + A_6,$$
where $v = b_4/b_2$, $A_6 = b_6 - v(b_4+v^2)$.
\item If $p = 3$ and the curve is supersingular ($b_2 = 0$), this is
$[-b_4, b_6, [1,0,-a_1,-a_3]]$, corresponding to
$$y^2 = x^3 + 2b_4 x + b_6.$$
\item If $p = 2$ and the curve is ordinary ($a_1 \neq 0$), return
$[A_2,A_6,[a_1^{-1}, da_1^{-2}, 0, (a_4+d^2)a_1^{-1}]]$, corresponding to
$$ y^2 + xy = x^3 + A_2 x^2 + A_6,$$
where
$d = a_3/a_1$, $a_1^2 A_2 = (a_2 + d)$ and
$$ a_1^6 A_6 = d^3 + a_2 d^2 + a_4 d + a_6 + (a_4^2 + d^4)a_1^{-2}.$$
\item If $p = 2$ and the curve is supersingular ($a_1 = 0$, $a_3\neq 0$), return
$[[a_3, A_4, 1/a_3], A_6, [1,a_2,0,0]]$, corresponding to
$$ y^2 + a_3 y = x^3 + A_4 x + A_6,$$
where $A_4 = a_2^2 + a_4$, $ A_6 = a_2a_4 + a_6$. The value $1/a_3$ is
included in the vector since it is frequently needed in computations.
\subsubsec{Curves over $\C$} (This includes curves over $\Q$!)
\fun{long}{ellR_get_prec}{GEN E} returns the default accuracy to
which we must compute approximate results attached to $E$.
\fun{GEN}{ellR_ab}{GEN E, long prec} returns $[a,b]$
\fun{GEN}{ellR_omega}{GEN x, long prec} returns periods
$[\omega_1,\omega_2]$.
\fun{GEN}{ellR_eta}{GEN E, long prec} returns quasi-periods
$[\eta_1,\eta_2]$.
\fun{GEN}{ellR_roots}{GEN E, long prec} returns $[e_1,e_2,e_3]$. If $E$ is
defined over $\R$, then $e_1$ is real. If furthermore $\disc E > 0$, then
$e_1 > e_2 > e_3$.
\fun{long}{ellR_get_sign}{GEN E} if $E$ is defined over $\R$ returns the
signe of its discriminant, otherwise return $0$.
\subsec{Points}
\fun{int}{ell_is_inf}{GEN z} tests whether the point $z$ is the point at
infinity.
\fun{GEN}{ellinf}{} returns the point at infinity \kbd{[0]}.
\subsec{Change of variables}
\fun{GEN}{ellchangeinvert}{GEN w} given a change of variables $w =
[u,r,s,t]$, returns the inverse change of variables $w'$, such that if $E' =
\kbd{ellchangecurve(E, w)}$, then $E = \kbd{ellchangecurve}(E, w')$.
\subsec{Generic helper functions}
The naming scheme assumes an affine equation
$F(x,y) = f(x) - (y^2 + h(x)y) = 0$
in standard Weierstrass form: $f = x^3+a_2x^2+a_4x+a_6$, $h = a_1x + a_3$.
\fun{GEN}{ellbasechar}{GEN E} returns the characteristic of the base ring over
which $E$ is defined.
\fun{GEN}{ec_bmodel}{GEN E} returns the polynomial $4x^3 + b_2x^2 + 2b_4x +
b_6$.
\fun{GEN}{ec_f_evalx}{GEN E, GEN x} returns $f(x)$.
\fun{GEN}{ec_h_evalx}{GEN E, GEN x} returns $h(x)$.
\fun{GEN}{ec_dFdx_evalQ}{GEN E, GEN Q} returns $3x^2 + 2a_2x + a_4 -a_1y$,
where $Q = [x,y]$.
\fun{GEN}{ec_dFdy_evalQ}{GEN E, GEN Q} returns $-(2y + a_1 x + a_3)$,
where $Q = [x,y]$.
\fun{GEN}{ec_dmFdy_evalQ}{GEN e, GEN Q} returns $2y + a_1 x + a_3$,
where $Q = [x,y]$.
\fun{GEN}{ec_2divpol_evalx}{GEN E, GEN x} returns
$4x^3 + b_2x^2 + 2b_4x + b_6$.
\fun{GEN}{ec_half_deriv_2divpol_evalx}{GEN E, GEN x} returns
$6x^2 + b_2x + b_4$.
\subsec{Functions to handle elliptic curves over finite fields}
\subsubsec{Tolerant routines}
\fun{GEN}{ellap}{GEN E, GEN p} given a prime number $p$ and an elliptic curve
defined over $\Q$ or $\Q_p$ (assumed integral and minimal at $p$), computes
the trace of Frobenius $a_p = p+1 - \#E(\F_p)$. If $E$ is defined over
a non-prime finite field $\F_q$, ignore $p$ and return $q+1 - \#E(\F_q)$.
When $p$ is implied ($E$ defined over $\Q_p$ or a finite field), $p$ can be
omitted (set to \kbd{NULL}).
\subsubsec{Curves defined a non-prime finite field}
In this subsection, we assume that \tet{ell_get_type}$(E)$ is \tet{t_ELL_Fq}.
(As noted above, a curve defined over $\Z/p\Z$ can be represented as a
\tet{t_ELL_Fq}.)
\fun{GEN}{FF_elltwist}{GEN E} returns the coefficients
$[a_1,a_2,a_3,a_4,a_6]$ of the quadratic twist of $E$.
\fun{GEN}{FF_ellmul}{GEN E, GEN P, GEN n} returns $[n]P$ where $n$ is an
integer and $P$ is a point on the curve $E$.
\fun{GEN}{FF_ellrandom}{GEN E} returns a random point in $E(\F_q)$.
This function never returns the point at infinity, unless this is the
only point on the curve.
\fun{GEN}{FF_ellorder}{GEN E, GEN P, GEN o} returns the order of the point
$P$, where $o$ is a multiple of the order of $P$, or its factorization.
\fun{GEN}{FF_ellcard}{GEN E} returns $\#E(\F_q)$.
\fun{GEN}{FF_ellcard_SEA}{GEN E, ulong s}
This function returns $\#E(\F_q)$, using the Schoof-Elkies-Atkin
algorithm. Assume $p\neq 2,3$.
The parameter $s$ has the same meaning as in \kbd{Fp\_ellcard\_SEA}.
\fun{GEN}{FF_ellgens}{GEN E} returns the generators of the group $E(\F_q)$.
\fun{GEN}{FF_elllog}{GEN E, GEN P, GEN G, GEN o} Let \kbd{G} be a point of
order \kbd{o}, return $e$ such that $[e]P=G$. If $e$ does not exists, the
result is undefined.
\fun{GEN}{FF_ellgroup}{GEN E} returns the Abelian group $E(\F_q)$ in the form
$[h,\kbd{cyc},\kbd{gen}]$.
\fun{GEN}{FF_ellweilpairing}{GEN E, GEN P, GEN Q, GEN m} returns the
Weil pairing of the points of $m$-torsion $P$ and $Q$.
\fun{GEN}{FF_elltatepairing}{GEN E, GEN P, GEN Q, GEN m} returns the Tate
pairing of $P$ and $Q$, where $[m]P = 0$.
\section{Arithmetic on elliptic curve over a finite field in simple form}
The functions in this section no longer operate on elliptic curve structures,
as seen up to now. They are used to implement those higher-level functions
without using cached information and thus require suitable explicitly
enumerated data.
\subsec{Helper functions}
\fun{GEN}{elltrace_extension}{GEN t, long n, GEN q} Let $E$ some elliptic curve
over $\F_q$ such that the trace of the Frobenius is $t$, returns the trace of
the Frobenius over $\F_q^n$.
\subsec{Elliptic curves over $\F_p$, $p>3$}
Let $p$ a prime number and $E$ the elliptic curve given by the equation
$E:y^2=x^3+a_4\*x+a_6$, with $a_4$ and $a_6$ in $\F_p$. A \kbd{FpE} is a
point of $E(\F_p)$. Since an affine point and $a_4$ determine an unique
$a6$, most functions do not take $a_6$ as an argument. A \kbd{FpE} is either
the point at infinity (\kbd{ellinf()}) or a $FpV$ whith two components. The
parameters $a_4$ and $a_6$ are given as \typ{INT}s when required.
\fun{GEN}{Fp_ellj}{GEN a4, GEN a6, GEN p}
returns the $j$-invariant of the curve $E$.
\fun{int}{Fp_elljissupersingular}{GEN j, GEN p} returns $1$ if $j$ is the
$j$-invariant of a supersingular curve over $\F_p$, $0$ otherwise.
\fun{GEN}{Fp_ellcard}{GEN a4, GEN a6, GEN p} returns the cardinality of the
group $E(\F_p)$.
\fun{GEN}{Fp_ellcard_SEA}{GEN a4, GEN a6, GEN p, ulong s}
This function returns $\#E(\F_p)$, using the Schoof-Elkies-Atkin algorithm.
If the \kbd{seadata} package is installed, the function will be faster.
The extra flag \kbd{s}, if set to a non-zero value, causes the computation to
return \kbd{gen\_0} (an impossible cardinality) if one of the small primes
$\ell$ divides the curve order but does not divide $s$.
For cryptographic applications, where one is usually interested in curves of
prime order, setting $s=1$ efficiently weeds out most uninteresting curves; if
curves of order a power of $2$ times a prime are acceptable, set $s=2$.
\fun{GEN}{Fp_ffellcard}{GEN a4, GEN a6, GEN q, long n, GEN p} returns the
cardinality of the group $E(\F_q)$ where $q=p^n$.
\fun{GEN}{Fp_ellgroup}{GEN a4, GEN a6, GEN N, GEN p, GEN *pm} returns the
group structure $D$ of the group $E(\F_p)$, which is assumed to be of order $N$
and set \kbd{*pm} to $m$.
\fun{GEN}{Fp_ellgens}{GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN p} returns
generators of the group $E(\F_p)$ with the base change \kbd{ch} (see
\kbd{FpE\_changepoint}), where $D$ and $m$ are as returned by
\kbd{Fp\_ellgroup}.
\fun{GEN}{Fp_elldivpol}{GEN a4, GEN a6, long n, GEN p} returns the $n$-division
polynomial of the elliptic curve $E$.
\fun{void}{Fp_elltwist}{GEN a4, GEN a6, GEN p, GEN *pA4, GEN *pA6}
sets \kbd{*pA4} and \kbd{*pA6} to the corresponding parameters for the
quadratic twist of $E$.
\subsec{\kbd{FpE}}
\fun{GEN}{FpE_add}{GEN P, GEN Q, GEN a4, GEN p} returns the sum $P+Q$
in the group $E(\F_p)$, where $E$ is defined by $E:y^2=x^3+a_4\*x+a_6$,
for any value of $a_6$ compatible with the points given.
\fun{GEN}{FpE_sub}{GEN P, GEN Q, GEN a4, GEN p} returns $P-Q$.
\fun{GEN}{FpE_dbl}{GEN P, GEN a4, GEN p} returns $2.P$.
\fun{GEN}{FpE_neg}{GEN P, GEN p} returns $-P$.
\fun{GEN}{FpE_mul}{GEN P, GEN n, GEN a4, GEN p} return $n.P$.
\fun{GEN}{FpE_changepoint}{GEN P, GEN m, GEN a4, GEN p} returns the image
$Q$ of the point $P$ on the curve $E:y^2=x^3+a_4\*x+a_6$ by the coordinate
change $m$ (which is a \kbd{FpV}).
\fun{GEN}{FpE_changepointinv}{GEN P, GEN m, GEN a4, GEN p} returns the image
$Q$ on the curve $E:y^2=x^3+a_4\*x+a_6$ of the point $P$ by the inverse of the
coordinate change $m$ (which is a \kbd{FpV}).
\fun{GEN}{random_FpE}{GEN a4, GEN a6, GEN p} returns a random point on
$E(\F_p)$, where $E$ is defined by $E:y^2=x^3+a_4\*x+a_6$.
\fun{GEN}{FpE_order}{GEN P, GEN o, GEN a4, GEN p} returns the order of $P$ in
the group $E(\F_p)$, where $o$ is a multiple of the order of $P$, or its
factorization.
\fun{GEN}{FpE_log}{GEN P, GEN G, GEN o, GEN a4, GEN p} Let \kbd{G} be a
point of order \kbd{o}, return $e$ such that $e.P=G$. If $e$ does not exists,
the result is currently undefined.
\fun{GEN}{FpE_tatepairing}{GEN P, GEN Q, GEN m, GEN a4, GEN p} returns the
Tate pairing of the point of $m$-torsion $P$ and the point $Q$.
\fun{GEN}{FpE_weilpairing}{GEN P, GEN Q, GEN m, GEN a4, GEN p} returns the
Weil pairing of the points of $m$-torsion $P$ and $Q$.
\fun{GEN}{FpE_to_mod}{GEN P, GEN p} returns $P$ as a vector of \typ{INTMOD}s.
\fun{GEN}{RgE_to_FpE}{GEN P, GEN p} returns the \kbd{FpE} obtained by applying
\kbd{Rg\_to\_Fp} coefficientwise.
\subsec{\kbd{Fle}}
Let $p$ be a prime \kbd{ulong}, and $E$ the elliptic curve given by the
equation $E:y^2=x^3+a_4\*x+a_6$, where $a_4$ and $a_6$ are \kbd{ulong}.
A \kbd{Fle} is either the point at infinity (\kbd{ellinf()}), or a \kbd{Flv}
with two components $[x,y]$.
\fun{long}{Fl_elltrace}{ulong a4, ulong a6, ulong p} returns the trace $t$ of
the Frobenius of $E(\F_p)$. The cardinality of $E(\F_p)$ is thus $p+1-t$,
which might not fit in an \kbd{ulong}.
\fun{long}{Fl_elltrace_CM}{long CM, ulong a4, ulong a6, ulong p} as
\tet{Fl_elltrace}. If \kbd{CM} is $0$, use the standard algorithm; otherwise
assume the curve has CM by a principal imaginary quadratic order of
discriminant \kbd{CM} and use a faster algorithm. Useful when the curve is
the reduction of $E/\Q$, which has CM by a principal order, and we need the
trace of Frobenius for many distinct $p$, see \tet{ellQ_get_CM}.
\fun{ulong}{Fl_elldisc}{ulong a4, ulong a6, ulong p}
returns the discriminant of the curve $E$.
\fun{ulong}{Fl_elldisc_pre}{ulong a4, ulong a6, ulong p, ulong pi}
returns the discriminant of the curve $E$, assuming $pi$ is the pseudo inverse
of $p$.
\fun{ulong}{Fl_ellj}{ulong a4, ulong a6, ulong p}
returns the $j$-invariant of the curve $E$.
\fun{ulong}{Fl_ellj_pre}{ulong a4, ulong a6, ulong p, ulong pi}
returns the $j$-invariant of the curve $E$, assuming $pi$ is the pseudo inverse
of $p$.
\fun{void}{Fl_ellj_to_a4a6}{ulong j, ulong p, ulong *pa4, ulong *pa6}
sets \kbd{*pa4} to $a_4$ and \kbd{*pa6} to $a_6$ where $a_4$ and $a_6$
define a fixed elliptic curve with $j$-invariant $j$.
\fun{void}{Fl_elltwist}{ulong a4, ulong a6, ulong p, ulong *pA4, ulong *pA6}
set \kbd{*pA4} to $A_4$ and \kbd{*pA6} to $A_6$ where $A_4$ and $A_6$
define the twist of $E$.
\fun{void}{Fl_elltwist_disc}{ulong a4, ulong a6, ulong D, ulong p, ulong *pA4,
ulong *pA6}
sets \kbd{*pA4} to $A_4$ and \kbd{*pA6} to $A_6$ where $A_4$ and $A_6$
define the twist of $E$ by the discriminant $D$.
\fun{GEN}{Fle_add}{GEN P, GEN Q, ulong a4, ulong p}
\fun{GEN}{Fle_dbl}{GEN P, ulong a4, ulong p}
\fun{GEN}{Fle_sub}{GEN P, GEN Q, ulong a4, ulong p}
\fun{GEN}{Fle_mul}{GEN P, GEN n, ulong a4, ulong p}
\fun{GEN}{Fle_mulu}{GEN P, ulong n, ulong a4, ulong p}
\fun{GEN}{Fle_order}{GEN P, GEN o, ulong a4, ulong p}
\fun{GEN}{Fle_log}{GEN P, GEN G, GEN o, ulong a4, ulong p}
\fun{GEN}{random_Fle}{ulong a4, ulong a6, ulong p}
\fun{GEN}{random_Fle_pre}{ulong a4, ulong a6, ulong p, ulong pi}
\fun{GEN}{Fle_changepoint}{GEN x, GEN ch, ulong p}, \kbd{ch} is assumed
to give the change of coordinates $[u,r,s,t]$ as a \typ{VECSMALL}.
\fun{GEN}{Fle_changepointinv}{GEN x, GEN ch, ulong p}, as \tet{Fle_changepoint}
\subsec{\kbd{Flj}}
Let $p$ be a prime \kbd{ulong}, and $E$ the elliptic curve given by the
equation $E:y^2=x^3+a_4\*x+a_6$, where $a_4$ and $a_6$ are \kbd{ulong}.
A \kbd{Flj} is a \kbd{Flv} with three components $[x,y,z]$, representing
the affine point $[x/z^2,y/z^3]$ in Jacobian coordinates, the point at
infinity being represented by $[1, 1, 0]$. The following must holds:
$y^2=x^3+a_4\*x\*z^4+a_6\*z^6$. For all non-zero $u$, the points
$[u^2\*x,u^3\*y,u\*z]$ and $[x,y,z]$ are representing the same affine point.
Below, \kbd{pi} is assumed to be the precomputed inverse of $p$.
\fun{GEN}{Fle_to_Flj}{GEN P} convert a \kbd{Fle} to an equivalent \kbd{Flj}.
\fun{GEN}{Flj_to_Fle_pre}{GEN P} convert a \kbd{Flj} to the equivalent
\kbd{Fle}.
\fun{GEN}{Flj_add_pre}{GEN P, GEN Q, ulong a4, ulong p, ulong pi}
\fun{GEN}{Flj_dbl_pre}{GEN P, ulong a4, ulong p, ulong pi}
\fun{GEN}{Flj_neg}{GEN P, ulong p} return $-P$.
\fun{GEN}{Flj_mulu_pre}{GEN P, ulong n, ulong a4, ulong p, ulong pi}
\fun{GEN}{random_Flj_pre}{ulong a4, ulong a6, ulong p, ulong pi}
\subsec{Elliptic curves over $\F_{2^n}$}
Let $T$ be an irreducible \kbd{F2x} and $E$ the
elliptic curve given by either the equation
$E:y^2+x*y=x^3+a_2\*x^2+a_6$, where $a_2, a_6$ are \kbd{F2x} in
$\F_2[X]/(T)$ (ordinary case) or $E:y^2+a_3*y=x^3+a_4\*x+a_6$, where
$a_3, a_4, a_6$ are \kbd{F2x} in $\F_2[X]/(T)$ (supersingular case).
A \kbd{F2xqE} is a point of $E(\F_2[X]/(T))$. In the supersingular case, the
parameter \kbd{a2} is actually the \typ{VEC} $[a_3,a_4,a_3^{-1}]$.
\fun{GEN}{F2xq_ellcard}{GEN a2, GEN a6, GEN T}
Return the order of the group $E(\F_2[X]/(T))$.
\fun{GEN}{F2xq_ellgroup}{GEN a2, GEN a6, GEN N, GEN T, GEN *pm}
Return the group structure $D$ of the group $E(\F_2[X]/(T))$,
which is assumed to be of order $N$ and set \kbd{*pm} to $m$.
\fun{GEN}{F2xq_ellgens}{GEN a2, GEN a6, GEN ch, GEN D, GEN m, GEN T}
Returns generators of the group $E(\F_2[X]/(T))$ with the base change \kbd{ch}
(see \kbd{F2xqE\_changepoint}), where $D$ and $m$ are as returned by
\kbd{F2xq\_ellgroup}.
\fun{void}{F2xq_elltwist}{GEN a4, GEN a6, GEN T, GEN *a4t, GEN *a6t}
sets \kbd{*a4t} and \kbd{*a6t} to the parameters of the quadratic twist of $E$.
\subsec{\kbd{F2xqE}}
\fun{GEN}{F2xqE_changepoint}{GEN P, GEN m, GEN a2, GEN T} returns the image
$Q$ of the point $P$ on the curve $E:y^2+x*y=x^3+a_2\*x^2+a_6$ by the coordinate
change $m$ (which is a \kbd{F2xqV}).
\fun{GEN}{F2xqE_changepointinv}{GEN P, GEN m, GEN a2, GEN T} returns the image
$Q$ on the curve $E:y^2=x^3+a_4\*x+a_6$ of the point $P$ by the inverse of the
coordinate change $m$ (which is a \kbd{F2xqV}).
\fun{GEN}{F2xqE_add}{GEN P, GEN Q, GEN a2, GEN T}
\fun{GEN}{F2xqE_sub}{GEN P, GEN Q, GEN a2, GEN T}
\fun{GEN}{F2xqE_dbl}{GEN P, GEN a2, GEN T}
\fun{GEN}{F2xqE_neg}{GEN P, GEN a2, GEN T}
\fun{GEN}{F2xqE_mul}{GEN P, GEN n, GEN a2, GEN T}
\fun{GEN}{random_F2xqE}{GEN a2, GEN a6, GEN T}
\fun{GEN}{F2xqE_order}{GEN P, GEN o, GEN a2, GEN T} returns the order of $P$ in
the group $E(\F_2[X]/(T))$, where $o$ is a multiple of the order of $P$, or its
factorization.
\fun{GEN}{F2xqE_log}{GEN P, GEN G, GEN o, GEN a2, GEN T} Let \kbd{G} be a
point of order \kbd{o}, return $e$ such that $e.P=G$. If $e$ does not exists,
the result is currently undefined.
\fun{GEN}{F2xqE_tatepairing}{GEN P, GEN Q, GEN m, GEN a2, GEN T} returns the
Tate pairing of the point of $m$-torsion $P$ and the point $Q$.
\fun{GEN}{F2xqE_weilpairing}{GEN Q, GEN Q, GEN m, GEN a2, GEN T} returns the
Weil pairing of the points of $m$-torsion $P$ and $Q$.
\fun{GEN}{RgE_to_F2xqE}{GEN P, GEN T} returns the \kbd{F2xqE} obtained by
applying \kbd{Rg\_to\_F2xq} coefficientwise.
\subsec{Elliptic curves over $\F_q$, small characteristic $p>2$ }
Let $p$ be a prime \kbd{ulong}, $T$ an irreducible \kbd{Flx} mod $p$, and $E$
the elliptic curve given by the equation $E:y^2=x^3+a_4\*x+a_6$, where $a_4$
and $a_6$ are \kbd{Flx} in $\F_p[X]/(T)$. A \kbd{FlxqE} is a point of
$E(\F_p[X]/(T))$.
In the special case $p = 3$, ordinary elliptic curves ($j(E)\neq 0$) cannot
be represented as above, but admit a model $E:y^2 = x^3+a_2\*x^2+a_6$ with
$a_2$ and $a_6$ being \kbd{Flx} in $\F_3[X]/(T)$. In that case, the parameter
\kbd{a2} is actually stored as a \typ{VEC}, $[a_2]$, to avoid ambiguities.
\fun{GEN}{Flxq_ellj}{GEN a4, GEN a6, GEN T, ulong p}
returns the $j$-invariant of the curve $E$.
\fun{void}{Flxq_ellj_to_a4a6}{GEN j, GEN T, ulong p, GEN *pa4, GEN *pa6}
sets \kbd{*pa4} to $a_4$ and \kbd{*pa6} to $a_6$ where $a_4$ and $a_6$
define a fixed elliptic curve with $j$-invariant $j$.
\fun{GEN}{Flxq_ellcard}{GEN a4, GEN a6, GEN T, ulong p}
returns the order of $E(\F_p[X]/(T))$.
\fun{GEN}{Flxq_ellgroup}{GEN a4, GEN a6, GEN N, GEN T, ulong p, GEN *pm}
returns the group structure $D$ of the group $E(\F_p[X]/(T))$,
which is assumed to be of order $N$ and sets \kbd{*pm} to $m$.
\fun{GEN}{Flxq_ellgens}{GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, ulong p}
returns generators of the group $E(\F_p[X]/(T))$ with the base change \kbd{ch}
(see \kbd{FlxqE\_changepoint}), where $D$ and $m$ are as returned by
\kbd{Flxq\_ellgroup}.
\fun{void}{Flxq_elltwist}{GEN a4, GEN a6, GEN T, ulong p, GEN *pA4, GEN *pA6}
sets \kbd{*pA4} and \kbd{*pA6} to the corresponding parameters for the
quadratic twist of $E$.
\subsec{\kbd{FlxqE}}
\fun{GEN}{FlxqE_changepoint}{GEN P, GEN m, GEN a4, GEN T, ulong p} returns
the image $Q$ of the point $P$ on the curve $E:y^2=x^3+a_4\*x+a_6$ by the
coordinate change $m$ (which is a \kbd{FlxqV}).
\fun{GEN}{FlxqE_changepointinv}{GEN P, GEN m, GEN a4, GEN T, ulong p} returns
the image $Q$ on the curve $E:y^2=x^3+a_4\*x+a_6$ of the point $P$ by the
inverse of the coordinate change $m$ (which is a \kbd{FlxqV}).
\fun{GEN}{FlxqE_add}{GEN P, GEN Q, GEN a4, GEN T, ulong p}
\fun{GEN}{FlxqE_sub}{GEN P, GEN Q, GEN a4, GEN T, ulong p}
\fun{GEN}{FlxqE_dbl}{GEN P, GEN a4, GEN T, ulong p}
\fun{GEN}{FlxqE_neg}{GEN P, GEN T, ulong p}
\fun{GEN}{FlxqE_mul}{GEN P, GEN n, GEN a4, GEN T, ulong p}
\fun{GEN}{random_FlxqE}{GEN a4, GEN a6, GEN T, ulong p}
\fun{GEN}{FlxqE_order}{GEN P, GEN o, GEN a4, GEN T, ulong p} returns the
order of $P$ in the group $E(\F_p[X]/(T))$, where $o$ is a multiple of the
order of $P$, or its factorization.
\fun{GEN}{FlxqE_log}{GEN P, GEN G, GEN o, GEN a4, GEN T, ulong p} Let \kbd{G}
be a point of order \kbd{o}, return $e$ such that $e.P=G$. If $e$ does not
exists, the result is currently undefined.
\fun{GEN}{FlxqE_tatepairing}{GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p}
returns the Tate pairing of the point of $m$-torsion $P$ and the point $Q$.
\fun{GEN}{FlxqE_weilpairing}{GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p}
returns the Weil pairing of the points of $m$-torsion $P$ and $Q$.
\fun{GEN}{RgE_to_FlxqE}{GEN P, GEN T, ulong p} returns the \kbd{FlxqE}
obtained by applying \kbd{Rg\_to\_Flxq} coefficientwise.
\subsec{Elliptic curves over $\F_q$, large characteristic }
Let $p$ be a prime number, $T$ an irreducible polynomial mod $p$, and $E$ the
elliptic curve given by the equation $E:y^2=x^3+a_4\*x+a_6$ with $a_4$ and
$a_6$ in $\F_p[X]/(T)$. A \kbd{FpXQE} is a point of $E(\F_p[X]/(T))$.
\fun{GEN}{FpXQ_ellj}{GEN a4, GEN a6, GEN T, GEN p}
returns the $j$-invariant of the curve $E$.
\fun{int}{FpXQ_elljissupersingular}{GEN j, GEN T, GEN p} returns $1$ if $j$ is
the $j$-invariant of a supersingular curve over $\F_p[X]/(T)$, $0$ otherwise.
\fun{GEN}{FpXQ_ellcard}{GEN a4, GEN a6, GEN T, GEN p}
returns the order of $E(\F_p[X]/(T))$.
\fun{GEN}{Fq_ellcard_SEA}{GEN a4, GEN a6, GEN q, GEN T, GEN p, ulong s}
This function returns $\#E(\F_p[X]/(T))$, using the Schoof-Elkies-Atkin
algorithm.
Assume $p\neq 2,3$, and $q$ is the cardinality of $\F_p[X]/(T)$.
The parameter $s$ has the same meaning as in \kbd{Fp\_ellcard\_SEA}.
If the \kbd{seadata} package is installed, the function will be faster.
\fun{GEN}{FpXQ_ellgroup}{GEN a4, GEN a6, GEN N, GEN T, GEN p, GEN *pm}
Return the group structure $D$ of the group $E(\F_p[X]/(T))$,
which is assumed to be of order $N$ and set \kbd{*pm} to $m$.
\fun{GEN}{FpXQ_ellgens}{GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, GEN p}
Returns generators of the group $E(\F_p[X]/(T))$ with the base change \kbd{ch}
(see \kbd{FpXQE\_changepoint}), where $D$ and $m$ are as returned by
\kbd{FpXQ\_ellgroup}.
\fun{GEN}{FpXQ_elldivpol}{GEN a4, GEN a6, long n, GEN T, GEN p} returns the
$n$-division polynomial of the elliptic curve $E$.
\fun{GEN}{Fq_elldivpolmod}{GEN a4,GEN a6, long n, GEN h, GEN T, GEN p}
returns the $n$-division polynomial of the elliptic curve $E$ modulo the
polynomial $h$.
\fun{void}{FpXQ_elltwist}{GEN a4, GEN a6, GEN T, GEN p, GEN *pA4, GEN *pA6}
sets \kbd{*pA4} and \kbd{*pA6} to the corresponding parameters for the
quadratic twist of $E$.
\subsec{\kbd{FpXQE}}
\fun{GEN}{FpXQE_changepoint}{GEN P, GEN m, GEN a4, GEN T, GEN p} returns the
image $Q$ of the point $P$ on the curve $E:y^2=x^3+a_4\*x+a_6$ by the
coordinate change $m$ (which is a \kbd{FpXQV}).
\fun{GEN}{FpXQE_changepointinv}{GEN P, GEN m, GEN a4, GEN T, GEN p} returns
the image $Q$ on the curve $E:y^2=x^3+a_4\*x+a_6$ of the point $P$ by the
inverse of the coordinate change $m$ (which is a \kbd{FpXQV}).
\fun{GEN}{FpXQE_add}{GEN P, GEN Q, GEN a4, GEN T, GEN p}
\fun{GEN}{FpXQE_sub}{GEN P, GEN Q, GEN a4, GEN T, GEN p}
\fun{GEN}{FpXQE_dbl}{GEN P, GEN a4, GEN T, GEN p}
\fun{GEN}{FpXQE_neg}{GEN P, GEN T, GEN p}
\fun{GEN}{FpXQE_mul}{GEN P, GEN n, GEN a4, GEN T, GEN p}
\fun{GEN}{random_FpXQE}{GEN a4, GEN a6, GEN T, GEN p}
\fun{GEN}{FpXQE_log}{GEN P, GEN G, GEN o, GEN a4, GEN T, GEN p} Let \kbd{G} be a
point of order \kbd{o}, return $e$ such that $e.P=G$. If $e$ does not exists,
the result is currently undefined.
\fun{GEN}{FpXQE_order}{GEN P, GEN o, GEN a4, GEN T, GEN p} returns the order
of $P$ in the group $E(\F_p[X]/(T))$, where $o$ is a multiple of the order of
$P$, or its factorization.
\fun{GEN}{FpXQE_tatepairing}{GEN P,GEN Q, GEN m, GEN a4, GEN T, GEN p}
returns the Tate pairing of the point of $m$-torsion $P$ and the point $Q$.
\fun{GEN}{FpXQE_weilpairing}{GEN P,GEN Q, GEN m, GEN a4, GEN T, GEN p}
returns the Weil pairing of the points of $m$-torsion $P$ and $Q$.
\fun{GEN}{RgE_to_FpXQE}{GEN P, GEN T, GEN p} returns the \kbd{FpXQE} obtained
by applying \kbd{Rg\_to\_FpXQ} coefficientwise.
\section{Functions related to modular polynomials}
Variants of \tet{polmodular}, returning the modular polynomial of prime
level $L$ for the invariant coded by \kbd{inv} (0: $j$, 1: Weber-$f$, see
\tet{polclass} for the full list).
\fun{GEN}{polmodular_ZXX}{long L, long inv, long xvar, long yvar}
returns a bivariate polynomial in variables \kbd{xvar} and
\kbd{yvar}.
\fun{GEN}{polmodular_ZM}{long L, long inv} returns a matrix of
(integral) coefficients.
\fun{GEN}{Fp_polmodular_evalx}{long L, long inv, GEN J, GEN p, long v,
int derivs} returns the modular polynomial evaluated
at $J$ modulo the prime $p$ in the variable $v$ (if \kbd{derivs} is non-zero,
returns a vector containing the modular polynomial and its first and second
derivatives, all evaluated at $J$ modulo~$p$).
\section{Other curves}
The following functions deal with hyperelliptic curves in weighted projective
space $\P_{(1,d,1)}$, with coordinates $(x,y,z)$ and a model of the form
$ y^2 = T(x,z)$, where $T$ is homogeneous of degree $2d$, and squarefree.
Thus the curve is nonsingular of genus $d-1$.
\fun{long}{hyperell_locally_soluble}{GEN T, GEN p} assumes that $T\in\Z[X]$ is
integral. Returns $1$ if the curve is locally soluble over $\Q_p$, $0$
otherwise.
\fun{long}{nf_hyperell_locally_soluble}{GEN nf, GEN T, GEN pr} let $K$
be a number field, attached to \kbd{nf}, \kbd{pr} a \var{prid} attached
to some maximal ideal $\goth{p}$; assumes that $T\in\Z_K[X]$ is integral.
Returns $1$ if the curve is locally soluble over $K_{\goth{p}}$.
\newpage
|