/usr/share/doc/smlnj-doc/mlrisc/mltree.html is in smlnj-doc 110.79-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891  | <!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- Generated by mltex2html -->
<!-- do not edit this file -->
<html>
  <head>
     <title> The MLTREE Language </title>
  </head>
  <body bgcolor="#ffffff" text="#000020" 
   link="navy" vlink="gray" alink="maroon">
  <table border=0> 
  <tr>
          <td valign=top align=left width="170">
     <!-- table of contents -->
  <table cellpadding=0 cellspacing=0 border=0 width=170 bgcolor="#e6e6e6"> 
  <tr><td>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    MLRISC
    </font>
    </td></tr></table><tr><td>
     <a href="INTRO.html"><font size="-1">MLRISC</font></a><br>
     <a href="contributors.html"><font size="-1">Contributors</font></a><br>
     <a href="requirements.html"><font size="-1">Requirements</font></a><br>
     <a href="availability.html"><font size="-1">How to Obtain MLRISC</font></a><br>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    Overview
    </font>
    </td></tr></table><tr><td>
     <a href="problem.html"><font size="-1">Problem Statement</font></a><br>
     <a href="contributions.html"><font size="-1">Contributions</font></a><br>
     <a href="mlrisc-compiler.html"><font size="-1">MLRISC Based Compiler</font></a><br>
     <a href="mlrisc-ir-rep.html"><font size="-1">MLRISC Intermediate Representation</font></a><br>
     <a href="mlrisc-gen.html"><font size="-1">MLRisc Generation</font></a><br>
     <a href="backend-opt.html"><font size="-1">Back End Optimizations</font></a><br>
     <a href="mlrisc-ra.html"><font size="-1">Register Allocation</font></a><br>
     <a href="mlrisc-md.html"><font size="-1">Machine Description</font></a><br>
     <a href="gc.html"><font size="-1">Garbage Collection Safety</font></a><br>
     <a href="sys-integration.html"><font size="-1">System Integration</font></a><br>
     <a href="optimizations.html"><font size="-1">Optimizations</font></a><br>
     <a href="mlrisc-graphics.html"><font size="-1">Graphical Interface</font></a><br>
     <a href="line-counts.html"><font size="-1">Line Counts</font></a><br>
     <a href="systems.html"><font size="-1">Systems Using MLRISC</font></a><br>
     <a href="future-work.html"><font size="-1">Future Work</font></a><br>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    System
    </font>
    </td></tr></table><tr><td>
     <a href="mlrisc-arch.html"><font size="-1">Architecture of MLRISC</font></a><br>
     <a href="mltree.html"><font size="-1"><font color="#486591"><b>The MLTREE Language</b></font></font></a><br>
     <a href="mltree-ext.html"><font size="-1">MLTree Extensions</font></a><br>
     <a href="mltree-util.html"><font size="-1">MLTree Utilities</font></a><br>
     <a href="instrsel.html"><font size="-1">Instruction Selection</font></a><br>
     <a href="asm.html"><font size="-1">Assemblers</font></a><br>
     <a href="mc.html"><font size="-1">Machine Code Emitters</font></a><br>
     <a href="delayslots.html"><font size="-1">Delay Slot Filling</font></a><br>
     <a href="span-dep.html"><font size="-1">Span Dependency Resolution</font></a><br>
     <a href="graphs.html"><font size="-1">The Graph Library</font></a><br>
     <a href="graphics.html"><font size="-1">The Graph Visualization Library</font></a><br>
     <a href="compiler-graphs.html"><font size="-1">Basic Compiler Graphs</font></a><br>
     <a href="mlrisc-ir.html"><font size="-1">The MLRISC IR</font></a><br>
     <a href="SSA.html"><font size="-1">SSA Optimizations</font></a><br>
     <a href="ILP.html"><font size="-1">ILP Optimizations</font></a><br>
     <a href="VLIW.html"><font size="-1">Optimizations for VLIW/EPIC Architectur...</font></a><br>
     <a href="ra.html"><font size="-1">Register Allocator</font></a><br>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    Back Ends
    </font>
    </td></tr></table><tr><td>
     <a href="alpha.html"><font size="-1">The Alpha Back End</font></a><br>
     <a href="hppa.html"><font size="-1">The PA RISC Back End</font></a><br>
     <a href="sparc.html"><font size="-1">The Sparc Back End</font></a><br>
     <a href="x86.html"><font size="-1">The Intel x86 Back End</font></a><br>
     <a href="ppc.html"><font size="-1">The PowerPC Back End</font></a><br>
     <a href="mips.html"><font size="-1">The MIPS Back End</font></a><br>
     <a href="C6.html"><font size="-1">The TI C6x Back End</font></a><br>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    Basic Types
    </font>
    </td></tr></table><tr><td>
     <a href="annotations.html"><font size="-1">Annotations</font></a><br>
     <a href="cells.html"><font size="-1">Cells</font></a><br>
     <a href="cluster.html"><font size="-1">Cluster</font></a><br>
     <a href="constants.html"><font size="-1">Client Defined Constants</font></a><br>
     <a href="pseudo-ops.html"><font size="-1">Client Defined Pseudo Ops</font></a><br>
     <a href="instructions.html"><font size="-1">Instructions</font></a><br>
     <a href="streams.html"><font size="-1">Instruction Streams</font></a><br>
     <a href="labelexp.html"><font size="-1">Label Expressions</font></a><br>
     <a href="labels.html"><font size="-1">Labels</font></a><br>
     <a href="regions.html"><font size="-1">Regions</font></a><br>
     <a href="regmap.html"><font size="-1">Regmap</font></a><br>
   </td></tr>
  </table>
  <!-- end of table of contents -->
      </td>
    <td width=2> </td>
    <td valign=top align=left> 
    <center><h1><font color="#486591"><b>The MLTREE Language</b></font></h1></center>
    <hr> 
      <!-- table of contents -->
  <table cellpadding=0 cellspacing=0 border=0 align=right bgcolor="#e6e6e6"> 
  <tr><td>
    </td></tr><tr><td>
    <table bgcolor="#486591" width="100%" border=0 
      cellpadding=0 cellspacing=0>
    <tr><td align=center><font color="ffffff">
    The MLTREE Language
    </font>
    </td></tr></table><tr><td>
     <a href="#link0000"><font size="-1" color="#486591">The Definitions</font></a><br>
     -<a href="#link0001"><font size="-1" color="#486591">Basic Types</font></a><br>
     -<a href="#link0002"><font size="-1" color="#486591">The Basis</font></a><br>
     <a href="#link0003"><font size="-1" color="#486591">Integer Expressions</font></a><br>
     -<a href="#link0004"><font size="-1" color="#486591">Sign and Zero Extension</font></a><br>
     -<a href="#link0005"><font size="-1" color="#486591">Conditional Move</font></a><br>
     -<a href="#link0006"><font size="-1" color="#486591">Integer Loads</font></a><br>
     -<a href="#link0007"><font size="-1" color="#486591">Miscellaneous Integer Operators</font></a><br>
     <a href="#link0008"><font size="-1" color="#486591">Floating Point Expressions</font></a><br>
     <a href="#link0009"><font size="-1" color="#486591">Condition Expressions</font></a><br>
     <a href="#link0010"><font size="-1" color="#486591">Statements</font></a><br>
     -<a href="#link0011"><font size="-1" color="#486591">Assignments</font></a><br>
     -<a href="#link0012"><font size="-1" color="#486591">Parallel Copies</font></a><br>
     -<a href="#link0013"><font size="-1" color="#486591">Jumps and Conditional Branches</font></a><br>
     -<a href="#link0014"><font size="-1" color="#486591">Calls and Returns</font></a><br>
     -<a href="#link0015"><font size="-1" color="#486591">Stores</font></a><br>
     -<a href="#link0016"><font size="-1" color="#486591">Miscelleneous Statements</font></a><br>
     <a href="#link0017"><font size="-1" color="#486591">Annotations</font></a><br>
   </td></tr>
  </table>
  <!-- end of table of contents -->
    
 
 <font color="#ff0000">MLTree</font> is the 
 register transfer language used in the MLRISC system.
 It serves two important purposes:
 <img alt="MLTree" src=pictures/png/mlrisc-ir.png align=right>
 <ol>
 <li> As an intermediate representation for a compiler front-end 
   to talk to the MLRISC system,
 <li> As specifications for instruction semantics
 </ol>
 The latter is needed for optimizations which require precise knowledge of such;
 for example, algebraic simplification and constant folding.
 <p>
 MLTree is a low-level <font color="#ff0000">typed</font> language: 
 all operations are typed by its width or precision.  
 Operations on floating point, integer, and condition code 
 are also segregated, to prevent accidental misuse. 
 MLTree is also <em>tree-oriented</em> so that it is possible to write efficient
 MLTree transformation routines that uses SML pattern matching.
 <p>
 Here are a few examples of MLTree statements.
 <font color="#000000"><small><pre>
    MV(32,t,
       ADDT(32,
         MULT(32,REG(32,b),REG(32,b)),
         MULT(32,
           MULT(32,LI(4),REG(32,a)),REG(32,c))))
 </pre></small></font>
 computes <tt>t := b*b + 4*a*c</tt>, all in 32-bit precision and overflow
 trap enabled; while
 <font color="#000000"><small><pre>
    MV(32,t,
       ADD(32,
         CVTI2I(32,SIGN_EXTEND,8,
           LOAD(8,
             ADD(32,REG(32,a),REG(32,i))))))
 </pre></small></font>
 loads the byte in address <tt>a+i</tt> and sign extend it to a 32-bit
 value. 
 <p>
 The statement
 <font color="#000000"><small><pre>
    IF([],CMP(64,GE,REG(64,a),LI 0),
          MV(64, t, REG(64, a)),
          MV(64, t, NEG(64, REG(64, a)))
      )
 </pre></small></font>
 in more traditional form means:
 <font color="#000000"><small><pre>
    if a >= 0 then 
       t := a
    else
       t := -a
 </pre></small></font> 
 This example can be also expressed in a few different ways: 
 <ol>
    <li> With the conditional move construct described in 
 Section <a href="mltree.html#sec:cond-move">Conditional Move</a>:
      <font color="#000000"><small><pre>
     MV(64, t, 
        COND(CMP(64, GE, REG(64, a)), 
             REG(64, a), 
             NEG(64, REG(64, a))))
      </pre></small></font>
   <li> With explicit branching using the conditional branch
 construct <tt>BCC</tt>:
     <font color="#000000"><small><pre>
      MV(64, t, REG(64, a));
      BCC([], CMP(64, GE, REG(64, a)), L1);
      MV(64, t, NEG(64, REG(64, a)));
      DEFINE L1;
     </pre></small></font>
 </ol>
 <a name="link0000"></a>
<h2><font color="#486591">The Definitions</font></h2>
 
 MLTree is defined in the signature <a href="../../mltree/mltree.sig" target=code><tt>MLTREE</tt></a>
 and the functor <a href="../../mltree/mltree.sml" target=code><tt>MLTreeF</tt></a>
 <p>
 The functor <tt>MLTreeF</tt> is parameterized in terms of
 the label expression type, the client supplied region datatype,
 the instruction stream type, and the client defined MLTree extensions.
 <font color="#000000"><small><pre>
   <font color="#6060a0"><b>functor</b></font> MLTreeF
     (<font color="#6060a0"><b>structure</b></font> LabelExp : <a href="labelexp.html">LABELEXP</a>
      <font color="#6060a0"><b>structure</b></font> Region : <a href="regions.html">REGION</a>
      <font color="#6060a0"><b>structure</b></font> Stream : <a href="streams.html">INSTRUCTION_STREAM</a>
      <font color="#6060a0"><b>structure</b></font> Extension : <a href="../../mltree/mltree-extension.sig" target=code>MLTREE_EXTENSION</a>
     ) : MLTREE
 </pre></small></font>
 
 <a name="link0001"></a>
<h3><font color="#486591">Basic Types</font></h3>
 
   The basic types in MLTree are statements (<font color="#ff0000"><tt>stm</tt></font>)
 integer expressions (<font color="#ff0000"><tt>rexp</tt></font>), 
 floating point expression (<font color="#ff0000"><tt>fexp</tt></font>), 
 and conditional expressions (<font color="#ff0000"><tt>ccexp</tt></font>). 
 Statements are evaluated for their effects,
 while expressions are evaluated for their value. (Some expressions
 could also have trapping effects.  The semantics of traps are unspecified.)
 These types are parameterized by an extension
 type, which we can use to extend the set of MLTree 
 operators.  How this is used is described in Section <a href="mltree-ext.html#sec:mltree-extension">MLTree Extensions</a>.
 <p>
 References to registers are represented internally as integers, and are denoted
 as the type <tt>reg</tt>. In addition, we use the types <tt>src</tt> and <tt>dst</tt>
 as abbreviations for source and destination registers.
 <font color="#000000"><small><pre>
    <font color="#6060a0"><b>type</b></font> reg = int
    <font color="#6060a0"><b>type</b></font> src = reg
    <font color="#6060a0"><b>type</b></font> dst = reg
 </pre></small></font>
 
 All operators on MLTree are <em>typed</em>
 by the number of bits that 
 they work on.  For example, 32-bit addition between <tt>a</tt> and <tt>b</tt>
 is written as <tt>ADD(32,a,b)</tt>, while 64-bit addition between the same
 is written as <tt>ADD(64,a,b)</tt>.  Floating point operations are
 denoted in the same manner.  For example, IEEE single-precision floating
 point add is written as <tt>FADD(32,a,b)</tt>, while the same in
 double-precision is written as <tt>FADD(64,a,b)</tt> 
 <p>
 Note that these types are low level.  Higher level distinctions such
 as signed and unsigned integer value, are not distinguished by the type.  
 Instead, operators are usually partitioned into signed and unsigned versions, 
 and it is legal (and often useful!) to mix signed and unsigned operators in
 an expression.
 <p>
 Currently, we don't provide a direct way to specify non-IEEE floating point 
 together with
 IEEE floating point arithmetic.  If this distinction is needed then
 it can be encoded using the extension mechanism described
 in Section <a href="mltree-ext.html#sec:mltree-extension">MLTree Extensions</a>.
 <p>
 We use the types <tt>ty</tt> and <tt>fty</tt> to stand for the number of
 bits in integer and floating point operations.  
 <font color="#000000"><small><pre>
   <font color="#6060a0"><b>type</b></font> ty  = int
   <font color="#6060a0"><b>type</b></font> fty = int
 </pre></small></font>
 
 <a name="link0002"></a>
<h3><font color="#486591">The Basis</font></h3>
 The signature <a href="../../mltree/mltree-basis.sig" target=code>MLTREE_BASIS</a>
 defines the basic helper types used in the MLTREE signature.  
 <font color="#000000"><small><pre>
 <font color="#6060a0"><b>signature</b></font> MLTREE_BASIS =
 <font color="#6060a0"><b><font color="#6060a0"><b>sig</b></font></b></font>
  
   <font color="#6060a0"><b>datatype</b></font> cond = LT | LTU | LE | LEU | EQ | NE | GE | GEU | GT | GTU 
 
   <font color="#6060a0"><b>datatype</b></font> fcond = 
      ? | !<=> | == | ?= | !<> | !?>= | < | ?< | !>= | !?> |
      <= | ?<= | !> | !?<= | > | ?> | !<= | !?< | >= | ?>= |
      !< | !?= | <> | != | !? | <=> | ?<>
 
   <font color="#6060a0"><b>datatype</b></font> ext = SIGN_EXTEND | ZERO_EXTEND
 
   <font color="#6060a0"><b>datatype</b></font> rounding_mode = TO_NEAREST | TO_NEGINF | TO_POSINF | TO_ZERO
 
   <font color="#6060a0"><b>type</b></font> ty = int
   <font color="#6060a0"><b>type</b></font> fty = int
 
 <font color="#6060a0"><b>end</b></font>
 </pre></small></font>
 
 The most important of these are the 
 types <font color="#ff0000"><tt>cond</tt></font> and <font color="#ff0000"><tt>fcond</tt></font>, which represent the set of integer
 and floating point comparisions.  These types can be combined with
 the comparison constructors <tt>CMP</tt> and <tt>FCMP</tt> to form
 integer and floating point comparisions.
 <table border=1 align=left><tr><td align=center> 
    Operator </td><td align=center> Comparison </tr><tr><td align=center> 
     <tt>LT</tt>     </td><td align=center> Signed less than </tr><tr><td align=center>
     <tt>LTU</tt>    </td><td align=center> Unsigned less than </tr><tr><td align=center>
     <tt>LE</tt>     </td><td align=center> Signed less than or equal </tr><tr><td align=center>
     <tt>LEU</tt>    </td><td align=center> Unsigned less than or equal </tr><tr><td align=center>
     <tt>EQ</tt>     </td><td align=center> Equal </tr><tr><td align=center>
     <tt>NE</tt>     </td><td align=center> Not equal </tr><tr><td align=center>
     <tt>GE</tt>     </td><td align=center> Signed greater than or equal </tr><tr><td align=center>
     <tt>GEU</tt>    </td><td align=center> Unsigned greater than or equal </tr><tr><td align=center>
     <tt>GT</tt>     </td><td align=center> Signed greater than </tr><tr><td align=center>
     <tt>GTU</tt>    </td><td align=center> Unsigned greater than </tr><tr><td align=center>
 
 </td></tr></table>
 
 Floating point comparisons can be ``decoded'' as follows.
 In IEEE floating point, there are four different basic comparisons 
 tests that we can performed given two numbers <math class="inline"><i>a</i></math> and <math class="inline"><i>y</i></math>:
 <dl>
    <dt><font color="#000070"><math class="inline"><i>a < b</i></math></font><dd> Is <math class="inline"><i>a</i></math> less than <math class="inline"><i>b</i></math>?
    <dt><font color="#000070"><math class="inline"><i>a = b</i></math></font><dd> Is <math class="inline"><i>a</i></math> equal to <math class="inline"><i>b</i></math>?
    <dt><font color="#000070"><math class="inline"><i>a > b</i></math></font><dd> Is <math class="inline"><i>a</i></math> greater than to <math class="inline"><i>b</i></math>?
    <dt><font color="#000070"><math class="inline"><i>a ? b</i></math></font><dd> Are <math class="inline"><i>a</i></math> and <math class="inline"><i>b</i></math> unordered (incomparable)?
 </dl>
 Comparisons can be joined together.  For example, 
 given two double-precision floating point expressions <math class="inline"><i>a</i></math> and <math class="inline"><i>b</i></math>,
 the expression <tt>FCMP(64,<=>,a,b)</tt> 
 asks whether <math class="inline"><i>a</i></math> is less than, equal to or greater than <math class="inline"><i>b</i></math>, i.e.~whether
 <math class="inline"><i>a</i></math> and <math class="inline"><i>b</i></math> are comparable.  
 The special symbol <tt>!</tt> negates
 the meaning the of comparison.    For example, <tt>FCMP(64,!>=,a,b)</tt> 
 means testing whether <math class="inline"><i>a</i></math> is less than or incomparable with <math class="inline"><i>b</i></math>. 
 <p>
 <a name="link0003"></a>
<h2><font color="#486591">Integer Expressions</font></h2>
 
 A reference to the <math class="inline"><i>i</i></math>th 
 integer register with an <math class="inline"><i>n</i></math>-bit value is written 
 as <tt>REG(</tt><math class="inline"><i>n</i></math>,<math class="inline"><i>i</i></math><tt>)</tt>.  The operators <tt>LI</tt>, <tt>LI32</tt>,
 and <tt>LABEL</tt>, <tt>CONST</tt> are used to represent constant expressions 
 of various forms.  The sizes of these constants are inferred from context.
 <font color="#000000"><small><pre>  
   REG   : ty * reg -> rexp
   LI    : int -> rexp
   LI32  : Word32.word -> rexp
   LABEL : LabelExp.labexp -> rexp
   CONST : Constant.const -> rexp
 </pre></small></font>
 
 The following figure lists all the basic integer operators and their
 intuitive meanings.  All operators except <tt>NOTB, NEG, NEGT</tt> are binary 
 and have the type
 <font color="#000000"><small><pre>
   ty * rexp * rexp -> rexp
 </pre></small></font>
 The operators <tt>NOTB, NEG, NEGT</tt> have the type
 <font color="#000000"><small><pre>
   ty * rexp -> rexp
 </pre></small></font>
 
 <table border=1 align=center><tr><td align=left> 
    <tt>ADD</tt> </td><td align=left> Twos complement addition </tr><tr><td align=left>
   <tt>NEG</tt>      </td><td align=left> negation </tr><tr><td align=left>
   <tt>SUB</tt>      </td><td align=left> Twos complement subtraction </tr><tr><td align=left>
   <tt>MULS</tt>     </td><td align=left> Signed multiplication </tr><tr><td align=left>
   <tt>DIVS</tt>     </td><td align=left> Signed division, round to zero (nontrapping) </tr><tr><td align=left>
   <tt>QUOTS</tt>    </td><td align=left> Signed division, round to negative infinity (nontrapping) </tr><tr><td align=left>
   <tt>REMS</tt>     </td><td align=left> Signed remainder (???) </tr><tr><td align=left>
   <tt>MULU</tt>     </td><td align=left> Unsigned multiplication </tr><tr><td align=left>
   <tt>DIVU</tt>     </td><td align=left> Unsigned division </tr><tr><td align=left>
   <tt>REMU</tt>     </td><td align=left> Unsigned remainder </tr><tr><td align=left>
   <tt>NEGT</tt>      </td><td align=left> signed negation, trap on overflow </tr><tr><td align=left>
   <tt>ADDT</tt>     </td><td align=left> Signed addition, trap on overflow </tr><tr><td align=left>
   <tt>SUBT</tt>     </td><td align=left> Signed subtraction, trap on overflow </tr><tr><td align=left>
   <tt>MULT</tt>     </td><td align=left> Signed multiplication, trap on overflow </tr><tr><td align=left>
   <tt>DIVT</tt>     </td><td align=left> Signed division, round to zero,
    trap on overflow or division by zero </tr><tr><td align=left>
   <tt>QUOTT</tt>    </td><td align=left> Signed division, round to negative infinity, trap on overflow or division by zero </tr><tr><td align=left>
   <tt>REMT</tt>     </td><td align=left> Signed remainder, trap on division by zero </tr><tr><td align=left>
   <tt>ANDB</tt>     </td><td align=left> bitwise and </tr><tr><td align=left>
   <tt>ORB</tt>      </td><td align=left> bitwise or </tr><tr><td align=left>
   <tt>XORB</tt>     </td><td align=left> bitwise exclusive or </tr><tr><td align=left>
   <tt>NOTB</tt>     </td><td align=left> ones complement </tr><tr><td align=left>
   <tt>SRA</tt>      </td><td align=left> arithmetic right shift </tr><tr><td align=left>
   <tt>SRL</tt>      </td><td align=left> logical right shift </tr><tr><td align=left>
   <tt>SLL</tt>      </td><td align=left> logical left shift </tr><tr><td align=left>
 </td></tr></table>
 
 <a name="link0004"></a>
<h3><font color="#486591">Sign and Zero Extension</font></h3>
 Sign extension and zero extension are written using the operator
 <tt>CVTI2I</tt>. <tt>CVTI2I(</tt><math class="inline"><i>m</i></math>,<tt>SIGN_EXTEND</tt>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt> 
 sign extends the <math class="inline"><i>n</i></math>-bit value <math class="inline"><i>e</i></math> to an <math class="inline"><i>m</i></math>-bit value, i.e. the
 <math class="inline"><i>n-1</i></math>th bit is of <math class="inline"><i>e</i></math> is treated as the sign bit.  Similarly,
 <tt>CVTI2I(</tt><math class="inline"><i>m</i></math>,<tt>ZERO_EXTEND</tt>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt> 
 zero extends an <math class="inline"><i>n</i></math>-bit value to an <math class="inline"><i>m</i></math>-bit
 value.  If <math class="inline"><i>m <= n</i></math>, then 
 <tt>CVTI2I(</tt><math class="inline"><i>m</i></math>,<tt>SIGN_EXTEND</tt>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt> = 
 <tt>CVTI2I</tt>(<math class="inline"><i>m</i></math>,<tt>ZERO_EXTEND</tt>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt>.
 <p>
 <font color="#000000"><small><pre>
     <font color="#6060a0"><b>datatype</b></font> ext = SIGN_EXTEND | ZERO_EXTEND
     CVTI2I : ty * ext * ty * rexp -> rexp 
 </pre></small></font>
 
 <a name="link0005"></a>
<h3><font color="#486591">Conditional Move</font></h3>
 <a name="sec:cond-move"></a>
 Most new superscalar architectures incorporate conditional move 
 instructions in their ISAs.  
 Modern VLIW architectures also directly support full predication.  
 Since branching (especially with data dependent branches) can
 introduce extra latencies in highly pipelined architectures,
 condtional moves should be used in place of short branch sequences. 
 MLTree provide a conditional move instruction <tt>COND</tt>,
 to make it possible to directly express conditional moves without using
 branches. 
 <font color="#000000"><small><pre>
    COND : ty * ccexp * rexp * rexp -> rexp
 </pre></small></font>
 
 Semantically, <tt>COND(</tt><em>ty</em>,<em>cc</em>,<math class="inline"><i>a</i></math>,<math class="inline"><i>b</i></math><tt>)</tt> means to evaluate
 <em>cc</em>, and if <em>cc</em> evaluates to true then the value of the entire expression is
 <math class="inline"><i>a</i></math>; otherwise the value is <math class="inline"><i>b</i></math>.  Note that <math class="inline"><i>a</i></math> and <math class="inline"><i>b</i></math> are allowed to be
 <em>eagerly</em>
 evaluated.  In fact, we are allowed to evaluate to <em>both</em>
 branches, one branch, or neither~\footnote{When possible.}. 
 <p>
 Various idioms of the <tt>COND</tt> form are useful for expressing common
 constructs in many programming languages.  For example, MLTree does not
 provide a primitive construct for converting an integer value <tt>x</tt> to a
 boolean value (0 or 1).  But using <tt>COND</tt>, this is expressible as
 <tt>COND(32,CMP(32,NE,x,LI 0),LI 1,LI 0)</tt>.  SML/NJ represents
 the boolean values true and false as machine integers 3 and 1 respectively.
 To convert a boolean condition <math class="inline"><i>e</i></math> into an ML boolean value, we can use
 <font color="#000000"><small><pre>
    COND(32,e,LI 3,LI 1)
 </pre></small></font>
 
 Common C idioms can be easily mapped into the <tt>COND</tt> form. For example,
 <ul>
   <li> <tt>if (e1) x = y</tt> translates into
   <tt>MV(32,x,COND(32,e1,REG(32,y),REG(32,x)))</tt>
   <li>
    <font color="#000000"><small><pre>
      x = e1; 
      if (e2) x = y
    </pre></small></font>
     translates into 
   <tt>MV(32,x,COND(32,e2,REG(32,y),e1))</tt>
   <li> <tt>x = e1 == e2</tt> translates into
   <tt>MV(32,x,COND(32,CMP(32,EQ,e1,e2),LI 1,LI 0)</tt>
   <li> <tt>x = ! e</tt> translates into
    <tt>MV(32,x,COND(32,CMP(32,NE,e,LI 0),LI 1,LI 0)</tt>
   <li> <tt>x = e ? y : z</tt> translates into
    <tt>MV(32,x,COND(32,e,REG(32,y),REG(32,z)))</tt>, and
   <li> <tt>x = y < z ? y : z</tt> translates into
    <font color="#000000"><pre>
      MV(32,x,
          COND(32,
             CMP(32,LT,REG(32,y),REG(32,z)),
                REG(32,y),REG(32,z)))
    </pre></font> 
 </ul>
 <p>
 In general, the <tt>COND</tt> form should be used in place of MLTree's branching
 constructs whenever possible, since the former is usually highly 
 optimized in various MLRISC backends. 
 <p>
 <a name="link0006"></a>
<h3><font color="#486591">Integer Loads</font></h3>
 
 Integer loads are written using the constructor <tt>LOAD</tt>.
 <font color="#000000"><small><pre>
    LOAD  : ty * rexp * Region.region -> rexp
 </pre></small></font>
 The client is required to specify a <a href="regions.html">region</a> that
 serves as aliasing information for the load.  
 <p>
 <a name="link0007"></a>
<h3><font color="#486591">Miscellaneous Integer Operators</font></h3>
 
 An expression of the <tt>LET</tt>(<math class="inline"><i>s</i></math>,<math class="inline"><i>e</i></math>) evaluates the statement <math class="inline"><i>s</i></math> for
 its effect, and then return the value of expression <math class="inline"><i>e</i></math>.
 <font color="#000000"><small><pre>
   LET  : stm * rexp -> rexp
 </pre></small></font>
 Since the order of evaluation is MLTree operators are 
 <em>unspecified</em>
 the use of this operator should be severely restricted to only 
 <em>side-effect</em>-free forms.
 <p>
 <a name="link0008"></a>
<h2><font color="#486591">Floating Point Expressions</font></h2>
 
  Floating registers are referenced using the term <tt>FREG</tt>.  The
 <math class="inline"><i>i</i></math>th floating point register with type <math class="inline"><i>n</i></math> is written 
 as <tt>FREG(</tt><math class="inline"><i>n</i></math>,<math class="inline"><i>i</i></math><tt>)</tt>.
 <font color="#000000"><small><pre>
    FREG   : fty * src -> fexp
 </pre></small></font>
 
 Built-in floating point operations include addition (<tt>FADD</tt>), 
 subtraction (<tt>FSUB</tt>), multiplication (<tt>FMUL</tt>), division 
 (<tt>FDIV</tt>), absolute value (<tt>FABS</tt>), negation (<tt>FNEG</tt>)
 and square root (<tt>FSQRT</tt>).
 <font color="#000000"><small><pre>
    FADD  : fty * fexp * fexp -> fexp
    FSUB  : fty * fexp * fexp  -> fexp
    FMUL  : fty * fexp * fexp -> fexp
    FDIV  : fty * fexp * fexp -> fexp
    FABS  : fty * fexp -> fexp
    FNEG  : fty * fexp -> fexp
    FSQRT : fty * fexp -> fexp
 </pre></small></font>
 
 A special operator is provided for manipulating signs.
 To combine the sign of <math class="inline"><i>a</i></math> with the magnitude of <math class="inline"><i>b</i></math>, we can
 write <tt>FCOPYSIGN(</tt><math class="inline"><i>a</i></math>,<math class="inline"><i>b</i></math><tt>)</tt>\footnote{What should 
 happen if <math class="inline"><i>a</i></math> or <math class="inline"><i>b</i></math> is nan?}.
 <font color="#000000"><small><pre>
    FCOPYSIGN : fty * fexp * fexp -> fexp
 </pre></small></font>
 
 To convert an <math class="inline"><i>n</i></math>-bit signed integer <math class="inline"><i>e</i></math> into an <math class="inline"><i>m</i></math>-bit floating point value,
 we can write <tt>CVTI2F(</tt><math class="inline"><i>m</i></math>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt>\footnote{What happen to unsigned integers?}.
 <font color="#000000"><small><pre>
    CVTI2F : fty * ty * rexp -> fexp
 </pre></small></font>
 
 Similarly, to convert an <math class="inline"><i>n</i></math>-bit floating point value <math class="inline"><i>e</i></math> to an <math class="inline"><i>m</i></math>-bit
 floating point value, we can write <tt>CVTF2F(</tt><math class="inline"><i>m</i></math>,<math class="inline"><i>n</i></math>,<math class="inline"><i>e</i></math><tt>)</tt>\footnote{
 What is the rounding semantics?}.
 <font color="#000000"><small><pre>
    CVTF2F : fty * fty * -> fexp
 </pre></small></font>
 
 <font color="#000000"><small><pre>
   <font color="#6060a0"><b>datatype</b></font> rounding_mode = TO_NEAREST | TO_NEGINF | TO_POSINF | TO_ZERO
   CVTF2I : ty * rounding_mode * fty * fexp -> rexp
 </pre></small></font>
 
 <font color="#000000"><small><pre>
    FLOAD : fty * rexp * Region.region -> fexp
 </pre></small></font>
 
 <a name="link0009"></a>
<h2><font color="#486591">Condition Expressions</font></h2>
 Unlike languages like C, MLTree makes the distinction between condition 
 expressions and integer expressions.  This distinction is necessary for
 two purposes:
 <ul>
   <li> It clarifies the proper meaning intended in a program, and
   <li> It makes to possible for a MLRISC backend to map condition
 expressions efficiently onto various machine architectures with different
 condition code models.  For example, architectures like the Intel x86, 
 Sparc V8, and PowerPC contains dedicated condition code registers, which
 are read from and written to by branching and comparison instructions.
 On the other hand, architectures such as the Texas Instrument C6, PA RISC,
 Sparc V9, and Alpha does not include dedicated condition code registers.
 Conditional code registers in these architectures
 can be simulated by integer registers.
 </ul>
 <p>
 
 A conditional code register bit can be referenced using the constructors
 <tt>CC</tt> and <tt>FCC</tt>.  Note that the <em>condition</em> must be specified
 together with the condition code register.
 <font color="#000000"><small><pre>
    CC   : Basis.cond * src -> ccexp 
    FCC  : Basis.fcond * src -> ccexp    
 </pre></small></font>
 For example, to test the <tt>Z</tt> bit of the <tt>%psr</tt> register on the
 Sparc architecture, we can used <tt>CC(EQ,SparcCells.psr)</tt>.  
 <p>
 The comparison operators <tt>CMP</tt> and <tt>FCMP</tt> performs integer and
 floating point tests.  Both of these are <em>typed</em> by the precision
 in which the test must be performed under.
 <font color="#000000"><small><pre>
    CMP  : ty * Basis.cond * rexp * rexp -> ccexp  
    FCMP : fty * Basis.fcond * fexp * fexp -> ccexp
 </pre></small></font>
 
 Condition code expressions may be combined with the following
 logical connectives, which have the obvious meanings.
 <font color="#000000"><small><pre>
    TRUE  : ccexp 
    FALSE : ccexp 
    NOT   : ccexp -> ccexp 
    AND   : ccexp * ccexp -> ccexp 
    OR    : ccexp * ccexp -> ccexp 
    XOR   : ccexp * ccexp -> ccexp 
 </pre></small></font>
 
 <a name="link0010"></a>
<h2><font color="#486591">Statements</font></h2>
 
 Statement forms in MLTree includes assignments, parallel copies,
 jumps and condition branches, calls and returns, stores, sequencing,
 and annotation.
 <p>
 <a name="link0011"></a>
<h3><font color="#486591">Assignments</font></h3>
 
 Assignments are segregated among the integer, floating point and
 conditional code types.  In addition, all assignments are <em>typed</em>
 by the precision of destination register.
 <p>
 <font color="#000000"><small><pre>
    MV   : ty * dst * rexp -> stm
    FMV  : fty * dst * fexp -> stm
    CCMV : dst * ccexp -> stm
 </pre></small></font>  
 
 <a name="link0012"></a>
<h3><font color="#486591">Parallel Copies</font></h3>
 
 Special forms are provided for parallel copies for integer and
 floating point registers.  It is important to emphasize that
 the semantics is that all assignments are performed in parallel.
 <p>
 <font color="#000000"><small><pre>
    COPY  : ty * dst list * src list -> stm
    FCOPY : fty * dst list * src list -> stm
 </pre></small></font>
 
 <a name="link0013"></a>
<h3><font color="#486591">Jumps and Conditional Branches</font></h3>
  
 
 Jumps and conditional branches in MLTree take two additional set of
 annotations.  The first represents the <font color="#ff0000">control flow</font> and is denoted
 by the type <tt>controlflow</tt>.  The second represent 
 <font color="#ff0000">control-dependence</font> and <font color="#ff0000">anti-control-dependence</font> 
 and is denoted by the type <tt>ctrl</tt>.
 <p>
 <font color="#000000"><small><pre>
    <font color="#6060a0"><b>type</b></font> controlflow = Label.label list
    <font color="#6060a0"><b>type</b></font> ctrl = reg list
 </pre></small></font>
 Control flow annotation is simply a list of labels, which represents
 the set of possible targets of the associated jump.  Control dependence
 annotations attached to a branch or jump instruction represents the
 new definition of <font color="#ff0000">pseudo control dependence predicates</font>.  These
 predicates have no associated dynamic semantics; rather they are used
 to constraint the set of potential code motion in an optimizer
 (more on this later).
 <p>
 The primitive jumps and conditional branch forms are represented
 by the constructors <tt>JMP</tt>, <tt>BCC</tt>.
 <font color="#000000"><small><pre>
    JMP : ctrl * rexp * controlflow  -> stm
    BCC : ctrl * ccexp * Label.label -> stm
 </pre></small></font>
 
 In addition to <tt>JMP</tt> and <tt>BCC</tt>, 
 there is a <em>structured</em> if/then/else statement.
 <font color="#000000"><small><pre>
    IF  : ctrl * ccexp * stm * stm -> stm
 </pre></small></font>
 
 Semantically, <tt>IF</tt>(<math class="inline"><i>c,x,y,z</i></math>) is identical to
 <font color="#000000"><small><pre>
    BCC(<math class="inline"><i>c</i></math>, <math class="inline"><i>x</i></math>, L1)
    <math class="inline"><i>z</i></math>
    JMP([], L2)
    DEFINE L1
    <math class="inline"><i>y</i></math>
    DEFINE L2
 </pre></small></font>
 where <tt>L1</tt> and <tt>L2</tt> are new labels, as expected.
 <p>
 Here's an example of how control dependence predicates are used.
 Consider the following MLTree statement:
 <font color="#000000"><small><pre>
    IF([p], CMP(32, NE, REG(32, a), LI 0),
         MV(32, b, PRED(LOAD(32, m, ...)), p),
         MV(32, b, LOAD(32, n, ...)))
 </pre></small></font>
 In the first alternative of the <tt>IF</tt>, the <tt>LOAD</tt>
 expression is constrainted by the control dependence 
 predicate <tt>p</tt> defined in the <tt>IF</tt>,
 using the predicate constructor <tt>PRED</tt>.  These states that
 the load is <em>control dependent</em> on the test of the branch,
 and thus it may not be legally hoisted above the branch without
 potentially violating the semantics of the program. 
 For example,
 semantics violation may happen  if the value of <tt>m</tt> and <tt>a</tt>
 is corrolated, and whenever <tt>a</tt> = 0, the address in <tt>m</tt> is
 not a legal address. 
 <p>
 Note that on architectures with speculative loads, 
 the control dependence information can be used to 
 guide the transformation of control dependent loads into speculative loads.
 <p>
 Now in constrast, the <tt>LOAD</tt> in the second alternative is not
 control dependent on the control dependent predicate <tt>p</tt>, and
 thus it is safe and legal to hoist the load above the test, as in
 <font color="#000000"><small><pre>
    MV(32, b, LOAD(32, n, ...));
    IF([p], CMP(32, NE, REG(32, a), LI 0),
         MV(32, b, PRED(LOAD(32, m, ...)), p),
         SEQ []
      )
 </pre></small></font>
 Of course, such transformation is only performed if the optimizer
 phases think that it can benefit performance.  Thus the control dependence
 information does <em>not</em> directly specify any transformations, but it
 is rather used to indicate when aggressive code motions are legal and safe.
 <p>
 <a name="link0014"></a>
<h3><font color="#486591">Calls and Returns</font></h3>
 
 Calls and returns in MLTree are specified using the constructors
 <tt>CALL</tt> and <tt>RET</tt>, which have the following types.
 <font color="#000000"><small><pre>
    CALL : rexp * controlflow * mlrisc * mlrisc * 
           ctrl * ctrl * Region.region -> stm
    RET  : ctrl * controlflow -> stm
 </pre></small></font>
 
 The <tt>CALL</tt> form is particularly complex, and require some explanation.
 Basically the seven parameters are, in order:
 <dl>
    <dt><font color="#000070">address</font><dd> of the called routine.
    <dt><font color="#000070">control flow</font><dd> annotation for this call.  This information 
 specifies the potential targets of this call instruction.  Currently
 this information is ignored but will be useful for interprocedural   
 optimizations in the future.
    <dt><font color="#000070">definition and use</font><dd>  These lists specify the list of
 potential definition and uses during the execution of the call.
 Definitions and uses are represented as the type <font color="#ff0000"><tt>mlrisc</tt></font> list.
 The contructors for this type is:
 <font color="#000000"><small><pre>
   CCR : ccexp -> mlrisc
   GPR : rexp -> mlrisc
   FPR : fexp -> mlrisc
 </pre></small></font>
    <dt><font color="#000070">definition of control and anti-control dependence</font><dd> 
 These two lists specifies definitions of control and anti-control dependence.
    <dt><font color="#000070">region</font><dd> annotation for the call, which summarizes
 the set of potential memory references during execution of the call.
 </dl>
 <p>
 The matching return statement constructor <tt>RET</tt> has two
 arguments.  These are:
 <dl>
   <dt><font color="#000070">anti-control dependence</font><dd>  This parameter represents
 the set of anti-control dependence predicates defined by the return
 statement.
   <dt><font color="#000070">control flow</font><dd>  This parameter specifies the set of matching
 procedure entry points of this return.  For example, suppose we have
 a procedure with entry points <tt>f</tt> and <tt>f'</tt>.  
 Then the MLTree statements 
 <font color="#000000"><small><pre>
   f:   ...
        JMP L1
   f':  ...
   L1:  ...
        RET ([], [f, f'])
 </pre></small></font>
 can be used to specify that the return is either from
 the entries <tt>f</tt> or <tt>f'</tt>.  
 </dl>
 <p>
 <a name="link0015"></a>
<h3><font color="#486591">Stores</font></h3>
 Stores to integer and floating points are specified using the
 constructors <tt>STORE</tt> and <tt>FSTORE</tt>.   
 <font color="#000000"><small><pre>
    STORE  : ty * rexp * rexp * Region.region -> stm
    FSTORE : fty * rexp * fexp * Region.region -> stm
 </pre></small></font>
 
 The general form is
 <font color="#000000"><small><pre>
    STORE(<math class="inline"><i>width</i></math>, <math class="inline"><i>address</i></math>, <math class="inline"><i>data</i></math>, <math class="inline"><i>region</i></math>)
 </pre></small></font>
 
 Stores for condition codes are not provided.
 <a name="link0016"></a>
<h3><font color="#486591">Miscelleneous Statements</font></h3>
 
 Other useful statement forms of MLTree are for sequencing (<tt>SEQ</tt>),
 defining a local label (<tt>DEFINE</tt>).
 <font color="#000000"><small><pre>
    SEQ    : stm list -> stm
    DEFINE : Label.label -> stm
 </pre></small></font>
 The constructor <tt>DEFINE L</tt> has the same meaning as 
 executing the method <tt>defineLabel L</tt> in the 
 <a href="stream.html">stream interface</a>.
 <p>
 <a name="link0017"></a>
<h2><font color="#486591">Annotations</font></h2>
 <a href="annotations.html">Annotations</a> are used as the generic mechanism for
 exchanging information between different phases of the MLRISC system, and
 between a compiler front end and the MLRISC back end.
 The following constructors can be used to annotate a MLTree term with
 an annotation:
 <font color="#000000"><small><pre>
    MARK : rexp * Annotations.annotation -> rexp
    FMARK : fexp * Annotations.annotation -> fexp
    CCMARK : ccexp * Annotations.annotation -> ccexp 
    ANNOTATION : stm * Annotations.annotation -> stm
 </pre></small></font>
    <hr>
  <table cellpadding=0 cellspacing=0 width="100%">
  <tr>
    <td align=left>
    <table>
<tr><td><font size="-1">
<a href="mailto:george@research.bell-labs.com">Lal George</a>
</font></td></tr>
<tr><td><font size="-1">
<a href="mailto:leunga@cs.nyu.edu">Allen Leung</a>
</font></td></tr>
</table>
    </td>
    <td align=right>
      <a href="http://cm.bell-labs.com/cm/cs/what/smlnj/index.html">
      <img src="graphics/smlnj.jpg" width=80 height=50 
       alt="SML/NJ" border=0>
      </a>
      <a href="http://validator.w3.org/check?url=http://www.cs.nyu.edu/leunga/MLRISC/Doc/html/">
         <img src="graphics/vh401.gif" width=88 height=31 
          alt="Validate this page" border=0>
       </a>
    </td>
  </tr>
  <tr> <td align=left> 
       <font size="-1">
       <i> Generated by 
          <a href="mltex.html"> 
             <font color="#007777">mltex2html</font>
          </a>
       </i> 
       </font>
      </td>
  </tr>
  <tr> <td>
    <font size="-2">
    Last modified: Tue Aug  8 23:22:29 UTC 2017 by buildd@lcy01-08
    </font>
    </td>
  </tr>
  </table>
    </td>
  </tr>
  </table>
  </body>
</html>
 |