This file is indexed.

/usr/include/vspline/common.h is in vspline-dev 0.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/************************************************************************/
/*                                                                      */
/*    vspline - a set of generic tools for creation and evaluation      */
/*              of uniform b-splines                                    */
/*                                                                      */
/*            Copyright 2015 - 2017 by Kay F. Jahnke                    */
/*                                                                      */
/*    The git repository for this software is at                        */
/*                                                                      */
/*    https://bitbucket.org/kfj/vspline                                 */
/*                                                                      */
/*    Please direct questions, bug reports, and contributions to        */
/*                                                                      */
/*    kfjahnke+vspline@gmail.com                                        */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

/*! \file common.h

    \brief definitions common to all files in this project, utility code
    
    This file contains
    
    - some common enums and strings

    - a traits class fixing the simdized types used for vectorized code
      and some additional type inference used mainly for unary functors
    
    - exceptions used throughout vspline
*/

#ifndef VSPLINE_COMMON
#define VSPLINE_COMMON

#include <vigra/multi_array.hxx>
#include <vigra/tinyvector.hxx>

#ifdef USE_VC

#include <Vc/Vc>

#define VECTOR_TYPE Vc::SimdArray
#define DEFAULT_RSIZE Vc::Vector < ET<T> > :: Size
#define DEFAULT_VSIZE 2 * DEFAULT_RSIZE

#else

#define DEFAULT_RSIZE 1
#define DEFAULT_VSIZE 1

#endif // #ifdef USE_VC

namespace vspline
{

// this enum will hold true or false, depending on whether the
// translation unit including this header was compiled with USE_VC
// defined or not.

enum { vc_in_use =
#ifdef USE_VC
  true
#else
  false
#endif
} ;
  
/// This enumeration is used for codes connected to boundary conditions. There are
/// two aspects to boundary conditions: During prefiltering, if the implicit scheme is used,
/// the initial causal and anticausal coefficients have to be calculated in a way specific to
/// the chosen boundary conditions. Bracing, both before prefiltering when using the explicit
/// scheme, and after prefiltering when using the implicit scheme, also needs these codes to
/// pick the appropriate extrapolation code to extend the knot point data/coefficients beyond
/// the core array.

typedef enum { 
  MIRROR ,    ///< mirror on the bounds, so that f(-x) == f(x)
  PERIODIC,   ///< periodic boundary conditions
  REFLECT ,   ///< reflect, so  that f(-1) == f(0) (mirror between bounds)
  NATURAL,    ///< natural boundary conditions, f(-x) + f(x) == 2 * f(0)
  CONSTANT ,  ///< clamp. used for framing, with explicit prefilter scheme
  ZEROPAD ,   ///< used for boundary condition, bracing
  IDENTITY ,  ///< used as solver argument, mostly internal use
  GUESS ,     ///< used with EXPLICIT scheme to keep margin errors low
  SPHERICAL , ///< use for spherical panoramas, y axis
} bc_code;

/// bc_name is for diagnostic output of bc codes

const std::string bc_name[] =
{
  "MIRROR   " ,
  "PERIODIC ",
  "REFLECT  " ,
  "NATURAL  ",
  "CONSTANT " ,
  "ZEROPAD  " ,
  "IDENTITY " ,
  "GUESS    " ,
  "SPHERICAL" ,
} ;

/// using definition for the 'elementary type' of a type via vigra's
/// ExpandElementResult mechanism.

template < class T >
using ET = typename vigra::ExpandElementResult < T > :: type ;

/// unwrapping 'anything' produces the argument unchanged

template < class in_type >
in_type unwrap ( const in_type & in )
{
  return in ;
}

/// but unwrapping a TinyVector with just one element produces the
/// contained object

template < class T >
T unwrap ( const vigra::TinyVector < T , 1 > & in )
{
  return in[0] ;
}

/// wrapping 'anything' packages 'in' in a TinyVector with one element

template < class T >
vigra::TinyVector < T , 1 > wrap ( const T & in )
{
  return vigra::TinyVector < T , 1 > ( in ) ;
}

/// but 'wrapping' a TinyVector produces the TinyVector itself, since
/// it is 'already wrapped'.

template < class T , int N >
vigra::TinyVector < T , N > wrap
  ( const vigra::TinyVector < T , N > & in )
{
  return in ;
}

// if Vc isn't used, we nevertheless define is_vectorizable and vector_traits
// to provide a common interface for enquiry. This way, we have a uniform
// interface for inquiry about vectorization, which simply collapses to
// providing the unvectorized types when queried without Vc in use. And,
// additionally, in code using Vc we can switch to fallback code on
// inspection of vsize, if we find it it 1: in these cases, we can route
// the code so that vector code is avoided.

template < typename T > class is_vectorizable : public std::false_type {} ;

template < typename VT > class is_simd_type : public std::false_type {} ;

#ifdef USE_VC

#ifdef HAVE_IS_SIMD_VECTOR

// this test yields std::true_type for any T which can be vectorized by Vc,
// std::false_type for other T. TODO: not commonly available!

template < class T > using is_vectorizable =
typename Vc::is_simd_vector < Vc::Vector < T > > :: type ;

#else

// is_simd_vector hopefully comes with future Vc versions,
// but for the time being, we have to be explicit.
// in Vc ML discussion mkretz states that the set of types Vc can vectorize
// (with 1.3) is consistent throughout all ABIs, so we can just
// list the acceptable types without having to take the ABI int account.

template<> class is_vectorizable<float>          : public std::true_type {} ;
template<> class is_vectorizable<double>         : public std::true_type {} ;
template<> class is_vectorizable<int>            : public std::true_type {} ;
template<> class is_vectorizable<unsigned int>   : public std::true_type {} ;
template<> class is_vectorizable<short>          : public std::true_type {} ;
template<> class is_vectorizable<unsigned short> : public std::true_type {} ;

template < class candidate >
using is_vcable =
typename std::conditional < is_vectorizable < candidate > :: value ,
                            std::true_type ,
                            std::false_type > :: type ;
                            
#endif // HAVE_IS_SIMD_VECTOR

// test if a given type VT is a Vc::Vector or Vc::SimdArray

template < class T >
class is_simd_type < Vc::Vector < T > >
  : public std::true_type {} ;

template < class T , int _vsize >
class is_simd_type < Vc::SimdArray < T , _vsize > >
  : public std::true_type {} ;

// to code vector_traits, we need a few helper types.
// note how I pass 'vectorizable', and SZ, below, as types, even though
// it would be natural to pass a bool/an int. This is due to a bug in
// g++, which produces a failure to specialize in these cases.
// TODO not really for public use. hide?

// default vectorized type. This is where an actual Vc type is used
// to produce a SIMD type for vectorizable T. This SIMD type is not
// actally used, we only use it's size                            
                            
template < typename T , typename vectorizable >
struct dvtype
{
  typedef T type ;
  enum { size = 1 } ;
} ;

template < typename T >
struct dvtype < T , std::true_type >
{
  typedef Vc::SimdArray < T , 2 * Vc::Vector < T > :: size() > type ;
  enum { size = type::size() } ;
} ;

// ditto, but inferring rsize, which is used in filtering code.

template < typename T , typename vectorizable = std::false_type >
struct drtype
{
  typedef T type ;
  enum { size = 1 } ;
} ;

template < typename T >
struct drtype < T , std::true_type >
{
  typedef Vc::Vector < T > type ;
  enum { size = type::size() } ;
} ;

// with a given vector width, we construct the appropriate SIMD type.
// with vsize==1 (below) this collopses to T itself

template < typename T , typename SZ >
struct vtype
{
  enum { size = SZ::value } ;
  typedef Vc::SimdArray < T , size > type ;
  typedef typename type::IndexType index_type ;
  static index_type IndexesFromZero() { return index_type::IndexesFromZero() ; }
} ;

template < typename T >
struct vtype < T , std::integral_constant<int,1> >
{
  typedef T type ;
  enum { size = 1 } ;
  typedef int index_type ;
  static int IndexesFromZero() { return 0 ; }
} ;

/// struct vector_traits is a traits class fixing the types used for
/// vectorized code in vspline.

template < typename T , int _vsize = 0 , int _rsize = 0 >
struct vector_traits
{
  // first, analyze T: how many channels/dimensions does it have,
  // and what is it's elementary type? We rely on vigra's ExpandElementResult
  // mechanism here, which allows us to uniformly handle all types known to
  // this mechanism - and since it is a traits class, it can be extended to
  // handle more types if necessary.
  
  enum { dimension = vigra::ExpandElementResult < T > :: size } ;

  typedef typename vigra::ExpandElementResult < T > :: type ele_type ;

  // now we take a look at the elementary type. Can it be vectorized?
  // is_vectorizable yields a type directly inheriting from either
  // std::true_type or std::false_type. We want a type here, since we
  // need one to specialize dvtype and drtype with a type rather than
  // with a boolean, which would be more natural - but g++ fails to
  // perform the specialization if we use a non-type template argument
  // here, so I'm working around a compiler bug.
  
  typedef is_vcable < ele_type > isv ;
  
  enum { size = isv::value
                ? _vsize == 0
                  ? dvtype < ele_type , isv > :: size
                  : _vsize
                : 1 ,
         rsize = isv::value
                 ? _vsize == 0
                   ? drtype < ele_type , isv > :: size
                   : _rsize
                 : 1 } ;

  // the same compiler bug keeps me from specializing vtype with an int
  // as second template argument. Again, I wrap the argument in a
  // class type template argument to assure correct specialization:

  typedef typename std::integral_constant < int , size > sz_t ;
  
  // now the type 'ele_v', the simdized elementary type, can be produced.
  // This may 'collapse' to ele_type itself, if size if 1
  
  typedef typename vtype < ele_type , sz_t > :: type ele_v ;

  // The next two types are TinyVectors of ele_type and ele_v,
  // respectively. This is 'nice to have' in case code needs TinyVectors
  // even if the data are 1D.

  typedef vigra::TinyVector < ele_type , dimension > nd_ele_type ;
  
  typedef vigra::TinyVector < ele_v , dimension > nd_ele_v ;
  
  // syn_type, which isn't (currently) used outside, is the 'synthetic'
  // vectorized type. It is derived from ele_v or nd_ele_v, which are
  // built from the elementary type - hence the term 'synthetic'.

  typedef typename std::conditional < std::is_same < T , ele_type > :: value ,
                                      ele_v ,
                                      nd_ele_v > :: type syn_type ;
       
  // finally, we look at a special case, namely size==1. This occurs if
  // the elementary type can't be vectorized, or if _vsize is passed as
  // 1 in the first place. If this is the case, we want to use T itself
  // as the 'final' type, rather than the synthetic type which we have
  // built above. Hence this last step:
                                      
  typedef typename std::conditional
    < size == 1 , T , syn_type > :: type type ;
  
  typedef typename std::conditional
    < size == 1 , nd_ele_type , nd_ele_v > :: type tv_type ;
  
  // Some code in vspline requires indexing of either single or SIMD values.
  // So we provide a type for indexing and a static function providing
  // canonical indices for this type.

  typedef typename vtype < ele_type , sz_t > :: index_type
          index_type ;
  
  typedef typename vigra::TinyVector < index_type , dimension > 
          nd_index_type ;

  static index_type IndexesFromZero()
    { return vtype < ele_type , sz_t > :: IndexesFromZero() ; }
} ;

#else // #ifdef USE_VC

template < typename T , int _vsize = 0 >
struct vector_traits
{
  enum { size = 1 , rsize = 1 } ;

  enum { dimension = vigra::ExpandElementResult < T > :: size } ;

  typedef typename vigra::ExpandElementResult < T > :: type ele_type ;

  typedef vigra::TinyVector < ele_type , dimension > nd_ele_type ;
  
  typedef ele_type ele_v ;
  
  typedef nd_ele_type nd_ele_v ;
  
  typedef T type ;
} ;

#endif

// TODO The exceptions need some work. My use of exceptions is a bit sketchy...

/// for interfaces which need specific implementations we use:

struct not_implemented
: std::invalid_argument
{
  not_implemented ( const char * msg )
  : std::invalid_argument ( msg ) { }  ;
} ;

/// dimension-mismatch is thrown if two arrays have different dimensions
/// which should have the same dimensions.

struct dimension_mismatch
: std::invalid_argument
{
  dimension_mismatch ( const char * msg )
  : std::invalid_argument ( msg ) { }  ;
} ;

/// shape mismatch is the exception which is thrown if the shapes of
/// an input array and an output array do not match.

struct shape_mismatch
: std::invalid_argument
{
  shape_mismatch  ( const char * msg )
  : std::invalid_argument ( msg ) { }  ;
} ;

/// exception which is thrown if an opertion is requested which vspline
/// does not support

struct not_supported
: std::invalid_argument
{
  not_supported  ( const char * msg )
  : std::invalid_argument ( msg ) { }  ;
} ;

/// out_of_bounds is thrown by mapping mode REJECT for out-of-bounds coordinates
/// this exception is left without a message, it only has a very specific application,
/// and there it may be thrown often, so we don't want anything slowing it down.

struct out_of_bounds
{
} ;

/// exception which is thrown when an assiging an rvalue which is larger than
/// what the lvalue can hold

struct numeric_overflow
: std::invalid_argument
{
  numeric_overflow  ( const char * msg )
  : std::invalid_argument ( msg ) { }  ;
} ;

} ; // end of namespace vspline

#endif // VSPLINE_COMMON