/usr/include/vspline/domain.h is in vspline-dev 0.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /************************************************************************/
/* */
/* vspline - a set of generic tools for creation and evaluation */
/* of uniform b-splines */
/* */
/* Copyright 2015 - 2017 by Kay F. Jahnke */
/* */
/* The git repository for this software is at */
/* */
/* https://bitbucket.org/kfj/vspline */
/* */
/* Please direct questions, bug reports, and contributions to */
/* */
/* kfjahnke+vspline@gmail.com */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
/*! \file domain.h
\brief code to perform combined scaling and translation on coordinates
A common requirement is to map coordinates in one range to another
range, effectively performing a combined scaling and translation.
Given incoming coordinates in a range [ in_low , in_high ] and a
desired range for outgoing coordinates of [ out_low , out_high ],
and an incoming coordinate c, a vspline::domain performs this
operation:
c' = ( c - in_low ) * scale + out_low
where
scale = ( out_high - out_low ) / ( in_high - in_low )
The code can handle arbitrary dimensions, float and double coordinate
elementary types, and, optionally, it can perform vectorized operations
on vectorized coordinates.
vspline::domain is derived from vspline::unary_functor and can be
used like any other vspline::unary_functor. A common use case would
be to access a vspline::evaluator with a different coordinate range
than the spline's 'natural' coordinates (assuming a 1D spline of floats):
auto _ev = vspline::make_safe_evaluator ( bspl ) ;
auto ev = vspline::domain ( bspl , 0 , 100 ) + _ev ;
ev.eval ( coordinate , result ) ;
Here, the domain is built over the spline with an incoming range
of [ 0 , 100 ], so evaluating at 100 will be equivalent to evaluating
_ev at bspl.upper_limit().
*/
#ifndef VSPLINE_DOMAIN_H
#define VSPLINE_DOMAIN_H
#include <vspline/unary_functor.h>
#include <assert.h>
namespace vspline
{
/// class domain is a coordinate transformation functor. It provides
/// a handy way to translate an arbitrary range of incoming coordinates
/// to an arbitrary range of outgoing coordinates. This is done with a
/// linear translation function. if the source range is [s0,s1] and the
/// target range is [t0,t1], the translation function s->t is:
///
/// t = ( s - s0 ) * ( t1 - t0 ) / ( s1 - s0 ) + t0
///
/// In words: the target coordinate's distance from the target range's
/// lower bound is proportional to the source coordinate's distance
/// from the source range's lower bound. Note that this is *not* a
/// gate function: the domain will accept any incoming value and
/// perform the shift/scale operation on it; incoming values outside
/// [ in_low , in_high ] will produce outgoing values outside
/// [ out_low , out_high ].
///
/// The first constructor takes s0, s1, t0 and t1. With this functor,
/// arbitrary mappings of the form given above can be achieved.
/// The second constructor takes a vspline::bspline object to obtain
/// t0 and t1. These are taken as the spline's 'true' range, depending
/// on it's boundary conditions: for periodic splines, this is [0...M],
/// for REFLECT Bcs it's [-0.5,M-0,5], and for 'normal' splines it's
/// [0,M-1]. s0 and s1, the start and end of the domain's coordinate range,
/// can be passed in and default to 0 and 1, which constitutes 'normalized'
/// spline coordinates, where 0 is mapped to the lower end of the 'true'
/// range and 1 to the upper.
///
/// class domain is especially useful for situations where several b-splines
/// cover the same data in different resolution, like in image pyramids.
/// If these different splines are all evaluated with a domain chained to the
/// evaluator which uses a common domain range, they can all be accessed with
/// identical coordinates, even if the spline shapes don't match isotropically.
///
/// The evaluation routine in class domain_type makes sure that incoming
/// values in [ in_low , in_high ] will never produce outgoing values
/// outside [ out_low , out_high ]. If this guarantee is not needed, the
/// 'raw' evaluation routine _eval can be used instead. with _eval, output
/// may overshoot out_high slightly.
///
/// I should mention libeinspline here, which has this facility as a fixed
/// feature in it's spline types. I decided to keep it separate and create
/// class domain instead for those cases where the functionality is needed.
template < typename coordinate_type ,
int _vsize = vspline::vector_traits<coordinate_type>::size
>
struct domain_type
: public vspline::unary_functor < coordinate_type ,
coordinate_type ,
_vsize >
{
typedef vspline::unary_functor < coordinate_type ,
coordinate_type ,
_vsize >
base_type ;
using base_type::dim_in ;
using base_type::vsize ;
using typename base_type::in_type ;
using typename base_type::out_type ;
typedef typename base_type::in_ele_type rc_type ;
typedef typename vigra::TinyVector < rc_type , dim_in > limit_type ;
// internally, we work with definite TinyVectors:
const limit_type out_low , in_low , out_high , in_high ;
const limit_type scale ;
/// constructor taking the lower and upper fix points
/// for incoming and outgoing values
domain_type ( const coordinate_type & _in_low ,
const coordinate_type & _in_high ,
const coordinate_type & _out_low ,
const coordinate_type & _out_high )
: in_low ( _in_low ) ,
out_low ( _out_low ) ,
in_high ( _in_high ) ,
out_high ( _out_high ) ,
scale ( ( _out_high - _out_low ) / ( _in_high - _in_low ) )
{
assert ( in_low != in_high && out_low != out_high ) ;
}
/// constructor taking the fix points for outgoing values
/// from a bspline object, and the incoming lower and upper
/// fix points explicitly
template < class bspl_type >
domain_type ( const bspl_type & bspl ,
const coordinate_type & _in_low = coordinate_type ( 0 ) ,
const coordinate_type & _in_high = coordinate_type ( 1 ) )
: in_low ( _in_low ) ,
in_high ( _in_high ) ,
out_low ( bspl.lower_limit() ) ,
out_high ( bspl.upper_limit() ) ,
scale ( ( bspl.upper_limit() - bspl.lower_limit() )
/ ( _in_high - _in_low ) )
{
static_assert ( dim_in == bspl_type::dimension ,
"can only create domain from spline if dimensions match" ) ;
assert ( in_low != in_high ) ;
}
/// _eval only performs the domain functor's artithmetics. for many use
/// cases this will be sufficient, but the 'official' eval routine
/// (below) adds code to make sure that input inside [ in_low , in_high ]
/// will produce output inside [ out_low , out_high ]. _eval may
/// produce a value > out_high for _in == in_high due to quantization
/// errors.
template < class crd_type >
void _eval ( const crd_type & _in ,
crd_type & _out ) const
{
auto in = wrap ( _in ) ;
typedef decltype ( in ) nd_crd_t ;
typedef typename nd_crd_t::value_type component_type ;
component_type * p_out = (component_type*) ( &_out ) ;
for ( int d = 0 ; d < dim_in ; d++ )
p_out[d] = ( in[d] - in_low[d] ) * scale[d] + out_low[d] ;
}
private:
/// polish sets 'out' to 'subst' where 'patch' indicates.
/// the unvectorized case will be caught by this overload:
void polish ( rc_type & out ,
const rc_type & subst ,
bool patch ) const
{
if ( patch )
out = subst ;
}
#ifdef USE_VC
/// whereas this template will match vectorized operation
template < class c_type , class mask_type >
void polish ( c_type & out ,
const rc_type & subst ,
mask_type patch ) const
{
out ( patch ) = subst ;
}
#endif
public:
/// eval repeats the code of _eval, adding the invocation
/// of 'polish' which makes sure that, when in == in_high,
template < class crd_type >
void eval ( const crd_type & _in ,
crd_type & _out ) const
{
auto in = wrap ( _in ) ;
typedef decltype ( in ) nd_crd_t ;
typedef typename nd_crd_t::value_type component_type ;
component_type * p_out = (component_type*) ( &_out ) ;
for ( int d = 0 ; d < dim_in ; d++ )
{
p_out[d] = ( in[d] - in_low[d] ) * scale[d] + out_low[d] ;
polish ( p_out[d] , out_high[d] , in[d] == in_high[d] ) ;
}
}
} ;
/// factory function to create a domain_type type object from the
/// desired lower and upper fix point for incoming coordinates and
/// the lower and upper fix point for outgoing coordinates.
/// the resulting functor maps incoming coordinates in the range of
/// [in_low,in_high] to coordinates in the range of [out_low,out_high]
template < class coordinate_type ,
int _vsize = vspline::vector_traits<coordinate_type>::size >
vspline::domain_type < coordinate_type , _vsize >
domain ( const coordinate_type & in_low ,
const coordinate_type & in_high ,
const coordinate_type & out_low ,
const coordinate_type & out_high )
{
return vspline::domain_type < coordinate_type , _vsize >
( in_low , in_high , out_low , out_high ) ;
}
/// factory function to create a domain_type type object
/// from the desired lower and upper reference point for incoming
/// coordinates and a vspline::bspline object providing the lower
/// and upper reference for outgoing coordinates
/// the resulting functor maps incoming coordinates in the range of
/// [ in_low , in_high ] to coordinates in the range of
/// [ bspl.lower_limit() , bspl.upper_limit() ]
template < class coordinate_type ,
class spline_type ,
int _vsize = vspline::vector_traits<coordinate_type>::size >
vspline::domain_type < coordinate_type , _vsize >
domain ( const spline_type & bspl ,
const coordinate_type & in_low = coordinate_type ( 0 ) ,
const coordinate_type & in_high = coordinate_type ( 1 ) )
{
return vspline::domain_type < coordinate_type , _vsize >
( bspl , in_low , in_high ) ;
}
} ; // namespace vspline
#endif // #ifndef VSPLINE_DOMAIN_H
|