This file is indexed.

/usr/include/vspline/map.h is in vspline-dev 0.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/************************************************************************/
/*                                                                      */
/*    vspline - a set of generic tools for creation and evaluation      */
/*              of uniform b-splines                                    */
/*                                                                      */
/*            Copyright 2015 - 2017 by Kay F. Jahnke                    */
/*                                                                      */
/*    The git repository for this software is at                        */
/*                                                                      */
/*    https://bitbucket.org/kfj/vspline                                 */
/*                                                                      */
/*    Please direct questions, bug reports, and contributions to        */
/*                                                                      */
/*    kfjahnke+vspline@gmail.com                                        */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

/*! \file map.h

    \brief code to handle out-of-bounds coordinates.
    
    Incoming coordinates may not be inside the range which can be evaluated
    by a functor. There is no one correct way of dealing with out-of-bounds
    coordinates, so we provide a few common ways of doing it.
    
    If the 'standard' gate types don't suffice, the classes provided here
    can serve as templates.
    
    The basic type handling the operation is a 'gate type', which 'treats'
    a single value or single simdized value. For nD coordinates, we use a
    set of these gate_type objects, one for each component; each one may be
    of a distinct type specific to the axis the component belongs to.
    
    Application of the gates is via a 'mapper' object, which contains
    the gate_types and applies them to the components in turn.
    
    The final mapper object is a functor which converts an arbitrary incoming
    coordinate into a 'treated' coordinate (or, for REJECT mode, may throw an
    out_of_bounds exception).
    
    mapper objects are derived from vspline::unary_functor, so they fit in
    well with other code in vspline and can easily be combined with other
    unary_functor objects, or used stand-alone. They are used inside vspline
    to implement the factory function vspline::make_safe_evaluator, which
    chains a suitable mapper and an evaluator to create an object allowing
    safe evaluation of a b-spline with arbitrary coordinates where out-of-range
    coordinates are mapped to the defined range in a way fitting the b-spline's
    boundary conditions.
*/

#ifndef VSPLINE_MAP_H
#define VSPLINE_MAP_H

#include <vspline/unary_functor.h>
#include <assert.h>

// for production code, the two following #defines should be
// commented out.

// define to check that results are in expected bounds

// #define ASSERT_IN_BOUNDS

// define to check that vectorized and unvectorized code
// produce identical results

// #define ASSERT_CONSISTENT

namespace vspline
{

/// class pass_gate passes it's input to it's output unmodified.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
struct pass_gate
: public vspline::unary_functor < rc_type , rc_type , _vsize >
{
  template < class T >
  void eval ( const T & c ,
                    T & result ) const
  {
    result = c ;
  }
} ;

/// factory function to create a pass_gate type functor

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
vspline::pass_gate < rc_type , _vsize >
pass()
{
  return vspline::pass_gate < rc_type , _vsize >() ;
}

/// reject_gate throws vspline::out_of_bounds for invalid coordinates

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
struct reject_gate
: public vspline::unary_functor < rc_type , rc_type , _vsize >
{

  const rc_type lower ;
  const rc_type upper ;
  
  reject_gate ( rc_type _lower ,
                rc_type _upper )
  : lower ( _lower ) ,
    upper ( _upper )
  { } ;

  void eval ( const rc_type & c ,
                    rc_type & result ) const
  {
    if ( c < lower || c > upper )
      throw vspline::out_of_bounds() ;
    result = c ;
  }
  
#ifdef USE_VC

  // the vectorized eval() is coded as a template. This way it is
  // a worse match than the single-value eval when eval is called
  // with single values. All other possible calls pass vectorized
  // data and will match this template

  template < class rc_v >
  void eval ( const rc_v & c ,
                    rc_v & result ) const
  {
    if ( any_of (   ( c < lower )
                  | ( c > upper ) ) )
      throw vspline::out_of_bounds() ;
    result = c ;
  }

#endif

} ;

/// factory function to create a reject_gate type functor given
/// a lower and upper limit for the allowed range.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
vspline::reject_gate < rc_type , _vsize >
reject ( rc_type lower , rc_type upper )
{
  return vspline::reject_gate < rc_type , _vsize > ( lower , upper ) ;
}

/// clamp gate clamps out-of-bounds values. clamp_gate takes
/// four arguments: the lower and upper limit of the gate, and
/// the values which are returned if the input is outside the
/// range: 'lfix' if it is below 'lower' and 'ufix' if it is
/// above 'upper'

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
struct clamp_gate
: public vspline::unary_functor < rc_type , rc_type , _vsize >
{
  
  const rc_type lower ;
  const rc_type upper ;
  const rc_type lfix ;
  const rc_type ufix ;
  
  clamp_gate ( rc_type _lower ,
               rc_type _upper ,
               rc_type _lfix ,
               rc_type _ufix )
  : lower ( _lower <= _upper ? _lower : _upper ) ,
    upper ( _upper >= _lower ? _upper : _lower ) ,
    lfix ( _lower <= _upper ? _lfix : _ufix ) ,
    ufix ( _upper >= _lower ? _ufix : _lfix )
  { 
    assert ( lower < upper ) ;
  } ;

  void eval ( const rc_type & c ,
                    rc_type & result ) const
  {
    if ( c < lower )
      result = lfix ;
    else if ( c > upper )
      result = ufix ;
    else
      result = c ;
  }

#ifdef USE_VC

  template < class rc_v >
  void eval ( const rc_v & c ,
                    rc_v & result ) const
  {
    result = c ;
    result ( c < lower ) = lfix ;
    result ( c > upper ) = ufix ;
  }

#endif
  
} ;

/// factory function to create a clamp_gate type functor given
/// a lower and upper limit for the allowed range, and, optionally,
/// the values to use if incoming coordinates are out-of-range

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
vspline::clamp_gate < rc_type , _vsize >
clamp ( rc_type lower , rc_type upper ,
        rc_type lfix , rc_type rfix )
{
  return vspline::clamp_gate < rc_type , _vsize >
    ( lower , upper , lfix , rfix ) ;
}

/// for the vectorized versions of mirror_gate and periodic_gate,
/// we use a vectorized fmod function. v_fmod_broadcast is used
/// to verify it's operation.

#ifdef USE_VC

template <typename rc_v>
rc_v v_fmod_broadcast ( const rc_v & lhs ,
                        const typename rc_v::EntryType & rhs )
{
  rc_v result ;
  // using std::fmod, the additional test above is not necessary,
  // but the broadcasted operation takes longer.
  for ( int e = 0 ; e < rc_v::size() ; e++ )
    result[e] = std::fmod ( lhs[e] , rhs ) ;
#ifdef ASSERT_IN_BOUNDS
  assert ( all_of ( std::abs ( result ) < std::abs ( rhs ) ) ) ;
  assert ( all_of ( std::abs ( result ) >= 0 ) ) ;
#endif
  return result ;
}

/// vectorized fmod function using std::trunc, which is fast, but
/// checking the result to make sure it's always <= rhs.

template <typename rc_v>
rc_v v_fmod ( const rc_v & lhs ,
              const typename rc_v::EntryType & rhs )
{
  auto result = lhs - rhs * std::trunc ( lhs / rhs ) ;
  // due to arithmetic imprecision, result may come out >= rhs
  // so we doublecheck and set result to 0 when this occurs
  result ( std::abs(result) >= std::abs(rhs) ) = 0 ;
#ifdef ASSERT_IN_BOUNDS
  assert ( all_of ( std::abs ( result ) < std::abs ( rhs ) ) ) ;
  assert ( all_of ( std::abs ( result ) >= 0 ) ) ;
#endif
#ifdef ASSERT_CONSISTENT
  auto reference = v_fmod_broadcast ( lhs , rhs ) ;
  assert ( all_of ( result == reference ) ) ;
#endif
  return result ;
}

#endif

/// mirror gate 'folds' coordinates into the range. From the infinite
/// number of mirror images resulting from mirroring the input on the
/// bounds, the only one inside the range is picked as the result.
/// When using this gate type with splines with MIRROR boundary conditions,
/// if the shape of the core for the axis in question is M, _lower would be
/// passed 0 and _upper M-1.
/// For splines with REFLECT boundary conditions, we'd pass -0.5 to
/// _lower and M-0.5 to upper, since here we mirror 'between bounds'
/// and the defined range is wider.
///
/// Note how this mode of 'mirroring' allows use of arbitrary coordinates,
/// rather than limiting the range of acceptable input to the first reflection,
/// as some implementations do.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
struct mirror_gate
: public vspline::unary_functor < rc_type , rc_type , _vsize >
{
  const rc_type lower ;
  const rc_type upper ;
  
  mirror_gate ( rc_type _lower ,
                rc_type _upper )
  : lower ( _lower <= _upper ? _lower : _upper ) ,
    upper ( _upper >= _lower ? _upper : _lower )
  { 
    assert ( lower < upper ) ;
  } ;

  void eval ( const rc_type & c ,
                    rc_type & result ) const
  {
    rc_type cc ( c - lower ) ;
    auto w = upper - lower ;

    cc = std::abs ( cc ) ;             // left mirror, v is now >= 0

    if ( cc >= w )
    {
      cc = fmod ( cc , 2 * w ) ;  // map to one full period
      cc -= w ;                   // center
      cc = std::abs ( cc ) ;           // map to half period
      cc = w - cc ;               // flip
    }
    
    result = cc + lower ;

#ifdef ASSERT_IN_BOUNDS
    assert ( result >= lower ) ;
    assert ( result <= upper ) ;
#endif
  }

#ifdef USE_VC

  template < class rc_v >
  void eval ( const rc_v & c ,
                    rc_v & result ) const
  {
    rc_v cc ( c - lower ) ;
    auto w = upper - lower ;

    cc = std::abs ( cc ) ;               // left mirror, v is now >= 0

    auto mask = ( cc >= w ) ;
    if ( any_of ( mask ) )
    {
      auto cm = v_fmod ( cc , 2 * w ) ;  // map to one full period
      cm -= w ;                          // center
      cm = std::abs ( cm ) ;                  // map to half period
      cm = w - cm ;                      // flip
      cc ( mask ) = cm ;
    }
    
    result = cc + lower ;
#ifdef ASSERT_IN_BOUNDS
    assert ( all_of ( result >= lower ) ) ;
    assert ( all_of ( result <= upper ) ) ;
#endif
#ifdef ASSERT_CONSISTENT
    cc = result ;
    for ( int e = 0 ; e < rc_v::size() ; e++ )
    {
      rc_type x = cc[e] ;
      eval ( x , x ) ;
      cc[e] = x ;
    }
    assert ( all_of ( cc == result ) ) ;
#endif
  }
  
#endif

} ;

/// factory function to create a mirror_gate type functor given
/// a lower and upper limit for the allowed range.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
vspline::mirror_gate < rc_type , _vsize >
mirror ( rc_type lower , rc_type upper )
{
  return vspline::mirror_gate < rc_type , _vsize > ( lower , upper ) ;
}

/// the periodic mapping also folds the incoming value into the allowed range.
/// The resulting value will be ( N * period ) from the input value and inside
/// the range, period being upper - lower.
/// For splines done with PERIODIC boundary conditions, if the shape of
/// the core for this axis is M, we'd pass 0 to _lower and M to _upper.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
struct periodic_gate
: public vspline::unary_functor < rc_type , rc_type , _vsize >
{
  const rc_type lower ;
  const rc_type upper ;
  
  periodic_gate ( rc_type _lower ,
               rc_type _upper )
  : lower ( _lower <= _upper ? _lower : _upper ) ,
    upper ( _upper >= _lower ? _upper : _lower )
  { 
    assert ( lower < upper ) ;
  } ;

  void eval ( const rc_type & c ,
                    rc_type & result ) const
  {
    rc_type cc = c - lower ;
    auto w = upper - lower ;
    
    if ( ( cc < 0 ) | ( cc >= w ) )
    {
      cc = fmod ( cc , w ) ;
      if ( cc < 0 )
        cc += w ;
      // due to arithmetic imprecision, even though cc < 0
      // cc+w may come out == w, so we need to test again:
      if ( cc >= w )
        cc = 0 ;
    }
    
    result = cc + lower ;
#ifdef ASSERT_IN_BOUNDS
    assert ( result >= lower ) ;
    assert ( result < upper ) ;
#endif
  }

#ifdef USE_VC

  template < class rc_v >
  void eval ( const rc_v & c ,
                    rc_v & result ) const
  {
    rc_v cc ;
    
    cc = c - lower ;
    auto w = upper - lower ;

    auto mask_below = ( cc < 0 ) ;
    auto mask_above = ( cc >= w ) ;
    auto mask_any = mask_above | mask_below ;
    
    if ( any_of ( mask_any ) )
    {
      auto cm = v_fmod ( cc , w ) ;
      cm ( mask_below ) += w ;
      // due to arithmetic imprecision, even though cc < 0
      // cc+w may come out == w, so we need to test again:
      cm ( cm >= w ) = 0 ;
      cc ( mask_any ) = cm ;
    }
    
    result = cc + lower ;
#ifdef ASSERT_IN_BOUNDS
    assert ( all_of ( result >= lower ) ) ;
    assert ( all_of ( result < upper ) ) ;
#endif
#ifdef ASSERT_CONSISTENT
    cc = result ;
    for ( int e = 0 ; e < rc_v::size() ; e++ )
    {
      rc_type x = cc[e] ;
      eval ( x , x ) ;
      cc[e] = x ;
    }
    assert ( all_of ( cc == result ) ) ;
#endif
  }
  
#endif
} ;

/// factory function to create a periodic_gate type functor given
/// a lower and upper limit for the allowed range.

template < typename rc_type ,
           int _vsize = vspline::vector_traits < rc_type > :: size
         >
vspline::periodic_gate < rc_type , _vsize >
periodic ( rc_type lower , rc_type upper )
{
  return vspline::periodic_gate < rc_type , _vsize > ( lower , upper ) ;
}

/// finally we define class mapper which is initialized with a set of
/// gate objects (of arbitrary type) which are applied to each component
/// of an incoming nD coordinate in turn.
/// The trickery with the variadic template argument list is necessary,
/// because we want to be able to combine arbitrary gate types (which
/// have distinct types) to make the mapper as efficient as possible.
/// the only requirement for a gate type is that it has to provide the
/// necessary eval() functions.

template < typename nd_rc_type ,
           int _vsize ,
           class ... gate_types >
struct map_functor
: public vspline::unary_functor < nd_rc_type , nd_rc_type , _vsize >
{
  typedef typename vspline::unary_functor
                   < nd_rc_type , nd_rc_type , _vsize > base_type ;
  
  typedef typename base_type::in_type in_type ;
  typedef typename base_type::out_type out_type ;
  
  enum { vsize = _vsize } ;

//   typedef typename vspline::vector_traits
//                    < in_type > :: ele_type in_ele_type ;
//                    
//   typedef typename vspline::vector_traits
//                    < out_type > :: ele_type out_ele_type ;
// 
//   typedef typename vspline::vector_traits
//                    < in_type , vsize > :: ele_v in_ele_v ;
//                    
//   typedef typename vspline::vector_traits
//                    < out_type , vsize > :: ele_v out_ele_v ;
// 
//   typedef typename vspline::vector_traits
//                    < in_type , vsize > :: type in_v ;
//                    
//   typedef typename vspline::vector_traits
//                    < out_type , vsize > :: type out_v ;
  
  enum { dimension = vigra::ExpandElementResult < nd_rc_type > :: size } ;
  
  // we hold the 1D mappers in a tuple
  
  typedef std::tuple < gate_types... > mvec_type ;
  
  // mvec holds the 1D gate objects passed to the constructor
  
  const mvec_type mvec ;
  
  // the constructor receives gate objects

  map_functor ( gate_types ... args )
  : mvec ( args... )
  { } ;
  
  // constructor variant taking a tuple of gates
  
  map_functor ( const mvec_type & _mvec )
  : mvec ( _mvec )
  { } ;
  
  // to handle the application of the 1D gates, we use a recursive
  // helper type which applies the 1D gate for a specific axis and
  // then recurses to the next axis until axis 0 is reached.
  // We also pass 'dimension' as template argument, so we can specialize
  // for 1D operation (see below)

  template < int level , int dimension , typename nd_coordinate_type >
  struct _map
  { 
    void operator() ( const mvec_type & mvec ,
                      const nd_coordinate_type & in ,
                      nd_coordinate_type & out ) const
    {
      std::get<level>(mvec).eval ( in[level] , out[level] ) ;
      _map < level - 1 , dimension , nd_coordinate_type >() ( mvec , in , out ) ;
    }
  } ;
  
  // at level 0 the recursion ends
  
  template < int dimension , typename nd_coordinate_type >
  struct _map < 0 , dimension , nd_coordinate_type >
  { 
    void operator() ( const mvec_type & mvec ,
                      const nd_coordinate_type & in ,
                      nd_coordinate_type & out ) const
    {
      std::get<0>(mvec).eval ( in[0] , out[0] ) ;
    }
  } ;
  
  // here's the specialization for 1D operation

  template < typename coordinate_type >
  struct _map < 0 , 1 , coordinate_type >
  { 
    void operator() ( const mvec_type & mvec ,
                      const coordinate_type & in ,
                      coordinate_type & out ) const
    {
      std::get<0>(mvec).eval ( in , out ) ;
    }
  } ;

  // now we define eval for unvectorized and vectorized operation
  // by simply delegating to struct _map at the top level.

  template < class in_type , class out_type >
  void eval ( const in_type & in ,
                    out_type & out ) const
  {
    _map < dimension - 1 , dimension , in_type >() ( mvec , in , out ) ;
  }

} ;

/// factory function to create a mapper type functor given
/// a set of gate_type objects. Please see vspline::make_safe_evaluator
/// for code to automatically create a mapper object suitable for a
/// specific vspline::bspline.

template < typename nd_rc_type ,
           int _vsize = vspline::vector_traits < nd_rc_type > :: size ,
           class ... gate_types >
vspline::map_functor < nd_rc_type , _vsize , gate_types... >
mapper ( gate_types ... args )
{
  return vspline::map_functor < nd_rc_type , _vsize , gate_types... >
    ( args... ) ;
}

} ; // namespace vspline

#endif // #ifndef VSPLINE_MAP_H