This file is indexed.

/usr/lib/python2.7/dist-packages/DisplayCAL/multiprocess.py is in dispcalgui 3.5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-

from Queue import Empty
import atexit
import logging
import math
import multiprocessing as mp
import multiprocessing.managers
import multiprocessing.pool
import sys
import threading


def cpu_count():
	"""
	Returns the number of CPUs in the system
	
	Return fallback value of 1 if CPU count cannot be determined.
	
	"""
	try:
		return mp.cpu_count()
	except:
		return 1


def pool_slice(func, data_in, args=(), kwds={}, num_workers=None,
			   thread_abort=None, logfile=None, num_batches=1):
	"""
	Process data in slices using a pool of workers and return the results.
	
	The individual worker results are returned in the same order as the
	original input data, irrespective of the order in which the workers
	finished (FIFO).
	
	Progress percentage is written to optional logfile using a background
	thread that monitors a queue.
	Note that 'func' is supposed to periodically check thread_abort.event
	which is passed as the first argument to 'func', and put its progress
	percentage into the queue which is passed as the second argument to 'func'.
	
	"""
	from config import getcfg

	if num_workers is None:
		num_workers = cpu_count()
	num_workers = max(min(num_workers, len(data_in)), 1)
	max_workers = getcfg("multiprocessing.max_cpus")
	if max_workers:
		num_workers = min(num_workers, max_workers)

	if num_workers == 1 or not num_batches:
		# Splitting the workload into batches only makes sense if there are
		# multiple workers
		num_batches = 1

	chunksize = float(len(data_in)) / (num_workers * num_batches)
	if chunksize < 1:
		num_batches = 1
		chunksize = float(len(data_in)) / num_workers

	if num_workers > 1:
		Pool = NonDaemonicPool
		manager = mp.Manager()
		if thread_abort is not None and not isinstance(thread_abort.event,
													   mp.managers.EventProxy):
			# Replace the event with a managed instance that is compatible
			# with pool
			event = thread_abort.event
			thread_abort.event = manager.Event()
			if event.is_set():
				thread_abort.event.set()
		else:
			event = None
		Queue = manager.Queue
	else:
		# Do it all in in the main thread of the current instance
		Pool = FakePool
		manager = None
		Queue = FakeQueue

	if thread_abort is not None:
		thread_abort_event = thread_abort.event
	else:
		thread_abort_event = None

	progress_queue = Queue()

	if logfile:
		def progress_logger(num_workers):
			eof_count = 0
			progress = 0
			while progress < 100 * num_workers:
				try:
					inc = progress_queue.get(True, 0.1)
					if isinstance(inc, Exception):
						raise inc
					progress += inc
				except Empty:
					continue
				except IOError:
					break
				except EOFError:
					eof_count += 1
					if eof_count == num_workers:
						break
				logfile.write("\r%i%%" % (progress / num_workers))

		threading.Thread(target=progress_logger, args=(num_workers * num_batches, ),
						 name="ProcessProgressLogger").start()

	pool = Pool(num_workers)
	results = []
	start = 0
	for batch in xrange(num_batches):
		for i in xrange(batch * num_workers, (batch + 1) * num_workers):
			end = int(math.ceil(chunksize * (i + 1)))
			results.append(pool.apply_async(WorkerFunc(func,
													   batch == num_batches - 1),
											(data_in[start:end],
											 thread_abort_event,
											 progress_queue) + args, kwds))
			start = end

	# Get results
	exception = None
	data_out = []
	for result in results:
		result = result.get()
		if isinstance(result, Exception):
			exception = result
			continue
		data_out.append(result)

	pool.terminate()

	if manager:
		# Need to shutdown manager so it doesn't hold files in use
		if event:
			# Restore original event
			if thread_abort.event.is_set():
				event.set()
			thread_abort.event = event
		manager.shutdown()

	if exception:
		raise exception

	return data_out


class WorkerFunc(object):
    
	def __init__(self, func, exit=False):
		self.func = func
		self.exit = exit

	def __call__(self, data, thread_abort_event, progress_queue, *args, **kwds):
		from log import safe_print
		try:
			return self.func(data, thread_abort_event, progress_queue, *args,
							 **kwds)
		except Exception, exception:
			import traceback
			safe_print(traceback.format_exc())
			return exception
		finally:
			progress_queue.put(EOFError())
			if mp.current_process().name != "MainProcess":
				safe_print("Exiting worker process",  mp.current_process().name)
				if sys.platform == "win32" and self.exit:
					# Exit handlers registered with atexit will not normally
					# run when a multiprocessing subprocess exits. We are only
					# interested in our own exit handler though.
					# Note all of this only applies to Windows, as it doesn't
					# have fork().
					for func, targs, kargs in atexit._exithandlers:
						# Find our lockfile removal exit handler
						if (targs and isinstance(targs[0], basestring) and
							targs[0].endswith(".lock")):
							safe_print("Removing lockfile", targs[0])
							try:
								func(*targs, **kargs)
							except Exception, exception:
								safe_print("Could not remove lockfile:",
										   exception)
					# Logging is normally shutdown by atexit, as well. Do
					# it explicitly instead.
					logging.shutdown()


class Mapper(object):

	"""
	Wrap 'func' with optional arguments.
	
	To be used as function argument for Pool.map
	
	"""
    
	def __init__(self, func, *args, **kwds):
		self.func = WorkerFunc(func)
		self.args = args
		self.kwds = kwds

	def __call__(self, iterable):
		return self.func(iterable, *self.args, **self.kwds)


class NonDaemonicProcess(mp.Process):

	daemon = property(lambda self: False, lambda self, daemonic: None)


class NonDaemonicPool(mp.pool.Pool):

	""" Pool that has non-daemonic workers """

	Process = NonDaemonicProcess


class FakeManager(object):

	""" Fake manager """

	def Queue(self):
		return FakeQueue()

	def Value(self, typecode, *args, **kwds):
		return mp.managers.Value(typecode, *args, **kwds)

	def shutdown(self):
		pass


class FakePool(object):

	""" Fake pool """

	def __init__(self, processes=None, initializer=None, initargs=(),
				 maxtasksperchild=None):
		pass

	def apply_async(self, func, args, kwds):
		return Result(func(*args, **kwds))

	def close(self):
		pass

	def map(self, func, iterable, chunksize=None):
		return func(iterable)

	def terminate(self):
		pass


class FakeQueue(object):

	""" Fake queue """

	def __init__(self):
		self.queue = []

	def get(self, block=True, timeout=None):
		try:
			return self.queue.pop()
		except:
			raise Empty

	def join(self):
		pass

	def put(self, item, block=True, timeout=None):
		self.queue.append(item)


class Result(object):

	""" Result proxy """

	def __init__(self, result):
		self.result = result

	def get(self):
		return self.result