/usr/include/epix/plot_algorithms.h is in epix 1.2.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | /*
* plot_algorithms.h -- plot function templates, for build use only
*
* This file is part of ePiX, a C++ library for creating high-quality
* figures in LaTeX
*
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
*
* Version 1.1.9
* Last Change: August 01, 2007
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* This file provides plotting templates, with T a class
*
* void plot_map_dom(const T&, const domain&)
* void plot_map_domlist(const T&, const domain_list&)
* void plot_function(const T&, double, double, int)
* void euler_plot(const T&, const P&, double, double, int)
* P euler_flow(const T&, P start, double, int)
*/
#ifndef EPIX_PLOT_ALGO
#define EPIX_PLOT_ALGO
#include <cmath>
#include <list>
#include "constants.h"
#include "triples.h"
#include "functions.h"
#include "edge_data.h"
#include "paint_style.h"
#include "domain.h"
#include "path_data.h"
namespace ePiX {
typedef std::list<domain>::const_iterator dolci;
const double INF(EPIX_INFTY);
// Are args endpoints of a plottable edge?
static bool is_valid(const P& tail, const P& head)
{
return tail.is_valid() && head.is_valid();
}
template<class T> void plot_map_dom(const T& map, const domain& R)
{
// only attempt to fill if plotting a curve
const bool is_curve(R.dim() == 1);
const bool filling(is_curve && the_paint_style().fill_flag());
// max summation indices
unsigned int i_max((R.dx1() > 0) ? R.coarse_n1() : 0);
unsigned int j_max((R.dx2() > 0) ? R.coarse_n2() : 0);
unsigned int k_max((R.dx3() > 0) ? R.coarse_n3() : 0);
if (R.dx1() > 0) // there's something to draw
{
// number of intervals in subdivision
unsigned int count1(R.fine_n1());
const double st1(R.dx1());
const double st2(R.step2());
const double st3(R.step3());
for (unsigned int j=0; j <= j_max; ++j)
for (unsigned int k=0; k <= k_max; ++k)
{
std::list<edge3d> data1;
const P init(R.corner1() + (j*st2)*E_2 + (k*st3)*E_3);
for (unsigned int i=0; i < count1; ++i)
{
P curr(map(init + P(i*st1,0,0)));
P next(map(init + P((i+1)*st1,0,0)));
data1.push_back(edge3d(curr, next, is_valid(curr, next)));
}
// close path if initial and terminal points coincide
bool closed(is_curve &&
map(init) == map(init + P(count1*st1,0,0)));
path_data path1(data1, closed && filling, filling);
path1.draw();
}
}
if (R.dx2() > 0)
{
unsigned int count2(R.fine_n2());
const double st1(R.step1());
const double st2(R.dx2());
const double st3(R.step3());
for (unsigned int i=0; i <= i_max; ++i)
for (unsigned int k=0; k <= k_max; ++k)
{
std::list<edge3d> data2;
const P init(R.corner1() + (i*st1)*E_1 + (k*st3)*E_3);
for (unsigned int j=0; j < count2; ++j)
{
P curr(map(init + P(0,j*st2,0)));
P next(map(init + P(0,(j+1)*st2,0)));
data2.push_back(edge3d(curr, next, is_valid(curr, next)));
}
// close path if initial and terminal points coincide
bool closed(is_curve &&
map(init) == map(init + P(0,count2*st2,0)));
path_data path2(data2, closed && filling, filling);
path2.draw();
}
}
if (R.dx3() > 0)
{
unsigned int count3(R.fine_n3());
const double st1(R.step1());
const double st2(R.step2());
const double st3(R.dx3());
for (unsigned int i=0; i <= i_max; ++i)
for (unsigned int j=0; j <= j_max; ++j)
{
std::list<edge3d> data3;
const P init(R.corner1() + (i*st1)*E_1 + (j*st2)*E_2);
for (unsigned int k=0; k < count3; ++k)
{
P curr(map(init + P(0,0,k*st3)));
P next(map(init + P(0,0,(k+1)*st3)));
data3.push_back(edge3d(curr, next, is_valid(curr, next)));
}
// close path if initial and terminal points coincide
bool closed(is_curve &&
map(init) == map(init + P(0,0,count3*st3)));
path_data path3(data3, closed && filling, filling);
path3.draw();
}
}
}; // end of plot_map_dom
// plot over a list of domains
template<class T> void plot_map_domlist(const T& map, const domain_list& R)
{
for (dolci p=R.m_list.begin(); p != R.m_list.end(); ++p)
plot_map_dom(map, *p);
}
// paths
template<class T>void plot_function(const T& f, double t1, double t2,
unsigned int n)
{
plot_map_dom(f, domain(t1, t2, n));
}
// Solutions of ODE systems
template<class VF> void euler_plot(const VF& field, P curr,
double t_min, double t_max,
unsigned int num_pts)
{
std::list<edge3d> data;
const double dt(t_max/(num_pts*EPIX_ITERATIONS));
const double dseek(t_min/(num_pts*EPIX_ITERATIONS));
if (fabs(t_min/num_pts) > EPIX_EPSILON) // seek beginning of path
for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i)
curr += dseek*field(curr);
// curr = "start, flowed by t_min"
P next(curr);
for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i)
{
next += dt*field(next); // Euler's method
if (i%EPIX_ITERATIONS == 0)
{
data.push_back(edge3d(curr, next, is_valid(curr, next)));
curr = next;
}
}
path_data temp(data, false, false);
temp.draw();
} // end of euler_plot
// flow x0 under field for specified time; pass x0 by value
template<class VF> P euler_flow(const VF& field, P x0,
double t_max, unsigned int num_pts=0)
{
if (num_pts == 0) // use "sensible" default; hardwired constant 4
num_pts = 4*(1 + (unsigned int)ceil(fabs(t_max)));
const double dt(t_max/(num_pts*EPIX_ITERATIONS));
for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i)
x0 += dt*field(x0);
return x0;
}
} // end of namespace
#endif /* EPIX_PLOT_ALGO */
|